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Analytic cell decomposition of sets definable
in the structure Rexp

by Ta Lê Loi (Dalat and Kraków)

Abstract. We prove that every set definable in the structure Rexp can be decomposed
into finitely many connected analytic manifolds each of which is also definable in this
structure.

Let An be the smallest ring of real-valued functions on Rn containing
all polynomials and closed under exponentiation. We consider the smallest
class D of subsets of Euclidean spaces Rn, n ∈ N, containing all analytic
sets of the form

(∗) {x ∈ Rn : f(x) = 0}, where f ∈ An and n ∈ N,
and closed under taking: finite unions, finite intersections, complements and
linear projections onto smaller dimensional Euclidean spaces. We adopt the
name D-sets for elements of D.

In general, a D-set is not subanalytic but the class D has some nice
properties. As a direct consequence of Wilkie’s Theorem [11], [12] of model
completeness of the theory of the structure Rexp, each D-set is the image
of an analytic set of the form (∗) under a natural projection, thus by Kho-
vanskĭı’s Theorem [4] it has only finitely many connected components. In
particular, D is O-minimal (i.e. every D-set of R is a finite union of intervals
and points) so there are a Cell Decomposition Theorem and a Triangulation
Theorem for this class (see [2], [6]).

In [3] L. van den Dries and C. Miller proved that each D-set can be parti-
tioned into finitely many connected analytic manifolds each of which is also
a D-set. In this paper we give another proof of this property (Theorem 2.8)
avoiding making use of the O-minimality and the finite model completeness
of the theory of the structure Rexp as used in [3].
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I. Preliminaries

1.1. Definition. Let Rn denote the ring of real-valued functions on Rn
generated over R by the coordinate functions x1, . . . , xn and their exponents
exp(x1), . . . , exp(xn), i.e.

Rn := R[x1, . . . , xn, exp(x1), . . . , exp(xn)].

A subset X of Rn is called Rn-analytic iff it is the zero set of a function
from Rn.

A subset X of Rn is called Rn-semianalytic iff

X =
p⋃
i=1

{x ∈ Rn : fi(x) = 0, gij(x) > 0, j = 1, . . . , q}

where fi, gij ∈ Rn, p, q ∈ N.
An Rn-analytic leaf is a subset S of Rn of the form

S =
{
x ∈ Rn : f1(x) = . . . = fk(x) = 0, δ(x) =

D(f1, . . . , fk)
D(xi1 , . . . , xik)

(x) 6= 0
}

where f1, . . . , fk ∈ Rn, 1 ≤ i1 < . . . < ik ≤ n, k ∈ N.
An Rn-semianalytic leaf is a subset of Rn which is the intersection of

an Rn-analytic leaf and an open set {x ∈ Rn : g1(x) > 0, . . . , gp(x) > 0},
gi ∈ Rn, i = 1, . . . , p, p ∈ N.

1.2. R e m a r k. From the definition, Rn is a noetherian ring, closed under
the operators ∂/∂xi (i = 1, . . . , n), and every Rn-semianalytic leaf is an
analytic submanifold of Rn.

1.3. Proposition. Every Rn-semianalytic set has only finitely many
connected components.

P r o o f. First of all note that
g > 0 iff ∃v (v2g − 1 = 0),

f = 0 and g = 0 iff f2 + g2 = 0, and
f = 0 or g = 0 iff fg = 0.

After introducing some new variables an Rn-semianalytic set is a projection
of an Rn+m-analytic set. The proposition follows from Khovanskĭı’s result
[4] or [5, Ch. I, §1.2].

1.4. Proposition (Tougeron). Every Rn-analytic set can be represented
as a disjoint union of finitely many analytic manifolds Si, each Si being a
connected component of an Rn-analytic leaf S̃i. Consequently , every Rn-
semianalytic set can be represented as a union of finitely many analytic
manifolds, each of which is a connected component of an Rn-semianalytic
leaf.
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P r o o f. The proposition follows from Remark 1.2, Proposition 1.3 and
[9, Prop. 1.3] (see also [10]).

The following proposition is analogous to Lemmas A and B in [1].

1.5. Proposition. Let X be a subset of Rn×Rm and π : Rn×Rm → Rn
be the natural projection. If X can be represented as a union of finitely many
Si, where each Si is a connected component of an Rn+m-semianalytic leaf ,
then there are finitely many subsets Bj in X, each Bj being a connected
component of an Rn+m-semianalytic leaf such that :

(i) π(X) = π(
⋃
j Bj).

(ii) For each j, π|Bj : Bj → Rn is an immersion.

P r o o f. Induction on d = dimX. If d = 0 there is nothing to prove.
Suppose d > 0, X =

⋃
Si, where each Si is a connected component of an

Rn+m-semianalytic leaf S̃i. By the inductive hypothesis the proposition is
true for

⋃
i:dimSi<d

Si, so we can suppose X =
⋃
Si with dim S̃i = d for

all i. Fix i, write S = Si and

S̃ = S̃i = {(x, y) ∈ Rn × Rm : f1(x, y) = . . . = fn+m−d(x, y) = 0,
δ(x, y) 6= 0, g1(x, y) > 0, . . . , gp(x, y) > 0}

where fi, gj ∈ Rn+m; i = 1, . . . , n + m − d, j = 1, . . . , p; δ is a jacobian of
(f1, . . . , fn+m−d).

If n− α = max rankπ|S , then there exists a jacobian

δ1 =
D(f1, . . . , fn+m−d)

D(xi1 , . . . , xiα , yj1 , . . . , yjβ )
, α+ β = n+m− d, such that δ1|S 6= 0.

Therefore dimS ∩ {δ1 = 0} < d and by Proposition 1.4, S ∩ {δ1 = 0} is
as in the assumption. Hence, by the inductive hypothesis, it is sufficient to
consider

S′ = S ∩ {δ1 6= 0}
= {f1 = . . . = fn+m−d = 0, δ1 6= 0, δ 6= 0, g1 > 0, . . . , gp > 0}.

Note that S′ is a union of finitely many connected components of S̃ ∩
{δ1 6= 0}, π|S′ has constant rank n− α and dimS′ = d.

For each x ∈ π(S′) the fibre π−1(x) ∩ S′ is a submanifold of Rn+m of
codimension d+ α− n.

C a s e 1: d+α−n=0, i.e. rankπ|S′=dimS′. Then π|S′ is an immersion.
Take the connected components of S′ as Bj ’s. In this case the number of
Bj ’s is finite by Proposition 1.3.

C a s e 2: d+ α− n > 0, i.e. rankπ|S′ < dimS′. Define

θS′ :=
1

1 + |x|2 + |y|2
· δ2

1 + δ2
· δ21

1 + δ21

p∏
i=1

g2
i

1 + g2
i

.
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Then θS′ is a quotient of functions inRn+m and θS′(x, y)→ 0 as (x, y)→∞
in S′, or (x, y) tends to a point of S′ \ S′.

Define S′′ = {(x, y) ∈ S′ : grad(θS′ |π−1(x)∩S′)(x, y) = 0}. Then

(a) S′′ is as in the assumptions.
(b) dimS′′ < dimS′.
(c) π−1(x) ∩ S′′ 6= ∅, ∀x ∈ π(S′).

Indeed, to see (a) note that S′′ = {(x, y) ∈ S′ : dyf1 ∧ . . . ∧ dyfn+m−d
∧dyθS′(x, y) = 0} (here dyf(x, y) :=

∑m
i=1

∂f
∂yi

(x, y)dyi), and by the form of
θS′ and Proposition 1.4, (a) follows.

To prove (b), let T be a connected component of π−1(x) ∩ S′. Then
T is not compact, because β < m and the projection of π−1(x) ∩ S′ onto
{y ∈ Rm : yi1 = . . . = yiβ = 0} is open, and θS′ |T > 0, θS′(x, y) → 0
as (x, y) ∈ T, y → ∞ or (x, y) tends to a point of T \ T . These imply
θS′ |T is not constant, so dimS′′ ∩ T < dimT . Therefore dimS′′ ∩ π−1(x) <
dimS′ ∩ π−1(x),∀x ∈ π(S′). Hence dimS′′ < dimS′.

Finally, θS′ |T has a positive maximum on T , i.e. ∃ (x, y) ∈ T (grad θS′ |T
(x, y) = 0), and (c) follows.

As a result, we have S′′ ⊂ S′, dimS′′ < dimS′ and π(S′′) = π(S′). By
the inductive hypothesis, the proposition is proved.

1.6. Corollary. Let F ∈ Rn+m and (x, y) = (x1, . . . , xn, y1, . . . , ym)
be the coordinate functions of Rn×Rm. Then there are hj = (hj1, . . . , hjm),
hji ∈ Rn+m and gj1, . . . , gjp ∈ Rn+m, j = 1, . . . , l, i = 1, . . . ,m, such that

{x : ∃y (F (x, y) = 0)} =
l⋃

j=1

{
x : ∃y

(
F (x, y) = 0, hj(x, y) = 0,

Dhj
Dy

(x, y) 6= 0, gjs(x, y) > 0, s = 1, . . . , p
)}

.

P r o o f (compare with [3, Lemma (5.13)]). By Propositions 1.4 and 1.5
there are finitely many subsets Bj of F−1(0) such that each Bj is a connected
component of an Rn+m-semianalytic leaf of the form{

(x, y) : f1(x, y) = . . . = fk(x, y) = 0,

D(f1, . . . , fk)
D(xi1 , . . . , xiα , yj1 , . . . , yjβ )

(x, y) 6= 0, g1(x, y) > 0, . . . , gp(x, y) > 0
}
,

and {x : ∃y (F (x, y) = 0)} = π(F−1(0)) = π(
⋃
j Bj) and π|Bj are immer-

sions. Moreover, each Bj can be taken to be of the form of Case 1 in the
proof of Proposition 1.5, that is,

α = n− d, α+ β = k = m+ n− d.
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Hence, β = m ≤ k, and for each j,

Bj ⊂
{
f1 = . . . = fk = 0,

D(f1, . . . , fk)
D(xi1 , . . . , xiα , y1, . . . , ym)

6= 0, g1 > 0, . . . , gp > 0
}
.

Therefore,

Bj ⊂
⋃

1≤i1<...<im≤k

{
fi1 = . . . = fim = 0,

D(fi1 , . . . , fim)
D(y1, . . . , ym)

6= 0, g1 > 0, . . . , gp > 0
}
.

Hence the corollary is satisfied with the functions hJ = (fi1 , . . . , fim) and
g1, . . . , gp, 1 ≤ i1 < . . . < im ≤ k (where hJ , gi, k depend on Bj).

2. The class of D-sets. Decomposition theorem. In this section we
give another definition of the class of D-sets defined at the beginning of this
paper. We present here the proof of analytic cell decomposition of D-sets
(Theorem 2.8) based on Wilkie’s Theorem on the Tarski property of this
class (Theorem 2.3), Khovanskĭı’s result on the finiteness of the number of
connected components (Lemma 2.8.2) and Proposition 1.5 above (compare
with [3, Th. 8.8], where the proof is strongly based on model theory methods;
see also [2]).

2.1. Definition. Let Dn denote the class of subsets of Rn each of
which is the image of an Rn+m-semianalytic set by the natural projection
π : Rn × Rm → Rn for some m ∈ N. Each set in Dn is called a Dn-set . A
D-set is a Dn-set for some n ∈ N.

2.2. Proposition. (i) For each Dn-set S there are m ∈ N and F ∈
Rn+m such that S = π(F−1(0)), where π is the natural projection of Rn ×
Rm onto Rn.

(ii) If fi, gij ∈ An, i = 1, . . . , p, j = 1, . . . , q, then the semianalytic set
of the form

p⋃
i=1

{x ∈ Rn : fi(x) = 0, gij(x) > 0, j = 1, . . . , q}

is a Dn-set.

P r o o f. See [7, Prop. 1.2].

As a direct consequence of Wilkie’s result on model completeness of the
theory of the structure Rexp (see [11], [12, Main Theorem]) we have the
following theorem.
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2.3. Theorem (Wilkie). D = (Dn)n∈N is a Tarski system, i.e.

• If S, T ∈ Dn, then S ∪ T , S ∩ T and S \ T ∈ Dn.
• If S ∈ Dn+1, then π(S) ∈ Dn, where π : Rn+1 → Rn is the natural

projection.

2.4. Proposition. The closure, the interior and the boundary (in Rn)
of a Dn-set are Dn-sets.

P r o o f. This follows from Theorem 2.3.

2.5. R e m a r k. (i) A D-set, in general, is not subanalytic (e.g. {(x, y) :
x > 0, y = exp(−1/x)} in R2).

(ii) By Propositions 1.4 and 1.5, the dimension of a Dn-set S, defined by

dimS := max{dimΓ :
Γ is an analytic submanifold of Rn contained in S},

equals maxj dimBj , where Bj ’s are given in Proposition 1.5.

The following definition, inspired by  Lojasiewicz’s proof of Tarski’s The-
orem in [8], is introduced by L. van den Dries (see [3, §8]).

2.6. Definition. (i) A map f : S → Rm with S ⊂ Rn is called a D-map
if its graph belongs to Dn+m. In this case it is called D-analytic if there is
an open neighborhood U of S in Rn with U ∈ Dn and an analytic D-map
F : U → Rm such that F |S = f .

(ii) Dn-analytic cells in Rn are defined by induction on n:
D1-analytic cells are points {r} or open intervals (a, b),−∞ ≤ a < b

≤ ∞.
If C is a Dn-analytic cell and f, g : C → R are D-analytic such that

f < g, then the sets

(f, g) := {(x, r) ∈ C × R : f(x) < r < g(x)},
(−∞, f) := {(x, r) ∈ C × R : r < f(x)},

(g,∞) := {(x, r) ∈ C × R : g(x) < r},
Γ (f) := graphf and C × R

are Dn+1-analytic cells.
(iii) A D-analytic decomposition of Rn is defined by induction on n:
A D-analytic decomposition of R1 is a finite collection of intervals and

points

{(−∞, a1), . . . , (ak,∞), {a1}, . . . , {ak}}, where a1 < . . . < ak.

A D-analytic decomposition of Rn+1 is a finite partition of Rn+1 into
Dn+1-analytic cells C such that the set of all the projections π(C) is a
D-analytic decomposition of Rn (here π : Rn+1 → Rn is the natural projec-
tion).
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We say that a decomposition partitions S if S is a union of some cells of
the decomposition.

2.7. R e m a r k. Obviously, everyDn-analytic cell S is aDn-set. Moreover,
it is a connected analytic submanifold of Rn. In fact, there are r ∈ N, r ≤ n
and a permutation σ of {1, . . . , n}, p(x1, . . . , xn) = (xσ(1), . . . , xσ(r)) such
that h = p|S is a Cω-diffeomorphism (1) from S onto an open cell in Rr.

If, moreover, f : S → Rm, then f is D-analytic iff f ◦ h−1 is a D-map,
analytic on h(S). Indeed, define

U = {x ∈ Rn : p(x) ∈ p(S)} and F (x) = f ◦ h−1(p(x)), x ∈ U.
Then U,F satisfy the condition of Definition 2.6(i) for f, S.

2.8. Theorem (L. van den Dries & C. Miller).
(In) For S1, . . . , Sk ∈ Dn there is a D-analytic decomposition of Rn

partitioning S1, . . . , Sk.
(IIn) For every D-function f : S → R with S ∈ Dn, there is a D-analytic

decomposition of Rn partitioning S such that , for each cell C ⊂ S in the
decomposition, the restriction f |C : C → R is D-analytic.

To prove the theorem we need two lemmas.

2.8.1. Lemma. Suppose A is an open Dn-set and f : A→ R is a D-map.
Then

R0(f) := {x ∈ A : f is continuous at x} ∈ Dn,
A \R0(f) ∈ Dn and dim(A \R0(f)) < n.

P r o o f. By Proposition 2.4 the closure of the graph of f , Γ (f), is a
Dn+1-set, so

R0(f) = {x ∈ A : ∃ε,M > 0,∀x′ ∈ A, |x− x′| < ε⇒ |f(x′)| ≤M and
∀(x′, y) ∈ Γ (f), |x− x′| < ε⇒ (x′, y) ∈ Γ (f)}

and A \R0(f) are Dn-sets, by Theorem 2.3.
Since Γ (f) ∈ Dn+1, by Propositions 2.2 and 1.5, it follows that Γ (f) =

π(
⋃
j Bj), where π : Rn+1 × Rm → Rn+1 is the natural projection, each Bj

is a connected component of an Rn+1+m-semianalytic leaf and π|Bj is an
immersion.

Define X =
⋃
j:dimBj=n

π(Bj) and p : Rn+1 → Rn, p(x, y) = x, the
projection on the first n coordinates. Then p(X) ⊂ R0(f). Indeed, for all
(x, y)∈X ⊂Γ (f), there are B=Bj0 and z∈B such that π(z) = (x, y) and
dimB = n. Since π|B is an immersion and p is 1-1 on π(B) and dimB = n,
there is a neighborhood U of z in B such that p◦π(B∩U) is a neighborhood

(1) “Cω” stands for “analytic”.
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of x. So the germs at (x, y) of Γ (f) and π(B∩U) are equal, i.e. f is continuous
at x.

Therefore, A \ R0(f) ⊂ A \ p(X) ⊂
⋃
j:dimBj<n

π(Bj), and this implies
dim(A \R0(f)) < n.

2.8.2. Lemma. Let S be a Dn+1-set. Suppose that for all x in Rn, Sx :=
({x} × R) ∩ S is finite. Then there is N ∈ N such that

cardSx ≤ N, ∀x ∈ Rn.
P r o o f. By Proposition 2.2, S = π(F−1(0)), where F ∈ Rn+1+m and

π : Rn+1×Rm → Rn+1 is the natural projection. By Khovanskĭı’s property
(see [4] or [5, Ch. III, §3.14]) there is N ∈ N such that

nc(F−1(0) ∩ ({x} × R× Rm)) ≤ N, ∀x ∈ Rn.
(Here nc denotes the number of connected components.) This implies

nc(Sx) = nc(π(F−1(0)) ∩ {x} × R) ≤ N, ∀x ∈ Rn,
and from the assumption, cardSx ≤ N , ∀x ∈ Rn.

2.8.3. P r o o f o f T h e o r e m 2.8. Induction on n.

P r o o f o f (I1). This follows from Propositions 2.2 and 1.3.

P r o o f o f (II1). Suppose f : S → R is a D-map and S ∈ D1. By (I1) it
suffices to prove (II1) for S = (a, b) and by Lemma 2.8.1 we can suppose that
f is continuous on (a, b). By Proposition 2.2 there are m ∈ N and F ∈ R2+m

such that
Γ (f) = {(x, y) ∈ S × R : ∃z (F (x, y, z) = 0)}.

From Corollary 1.6 there are hj = (hj1, . . . , hj,m+1) with hji ∈ R2+m and
gj1, . . . , gjp ∈ R2+m, i = 1, . . . ,m+ 1, j = 1, . . . , l, such that

{x : ∃y, z (F (x, y, z) = 0)} =
⋃
j

{
x : ∃y, z

(
F (x, y, z) = hj(x, y, z) = 0,

Dhj
D(y, z)

(x, y, z) 6= 0, gjs(x, y, z) > 0, s = 1, . . . , p
)}

.

For each j = 1, . . . , l define

Aj =
{
x ∈ S : ∃z

(
hj(x, f(x), z) = 0,

Dhj
D(y, z)

(x, f(x), z) 6= 0, gjs(x, f(x), z) > 0, s = 1, . . . , p
)}

.

Then Aj ∈ D1 and S =
⋃
j Aj . By (I1) there is a decomposition of R

partitioning A1, . . . , Al. On each interval of the decomposition contained
in Aj , f is continuous and satisfies the conditions of the implicit function
theorem, so f is analytic on this interval, and (II1) follows.
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Now suppose that (I1), . . . , (In), (II1), . . . , (IIn) hold.

P r o o f o f (In+1). Suppose S1, . . . , Sk ∈ Dn+1. Set Y =
⋃k
α=1 bdn(Sα),

where

bdn(S) := {(x, y) ∈ Rn × R : (x, y)
is a boundary point in {x} × R of Sx = S ∩ ({x} × R)}.

Then Y ∈ Dn+1, by Theorem 2.3, and by Propositions 2.2, 1.3 and Lemma
2.8.2 there is N ∈ N such that

cardYx ≤ N, ∀x ∈ Rn.
For each i = 1, . . . , N , Bi := {x ∈ Rn : cardYx = i} is a Dn-set, by
Theorem 2.3. There are functions fi1, . . . , fii on Bi such that −∞ := fi0 <
fi1 < . . . < fii < fi,i+1 :=∞ and

Yx = {fi1(x), . . . , fii(x)} for x ∈ Bi.
Note that fij ,where j = 1, . . . , i, are D-maps, because

Γ (fij)
= {(x, y) : x ∈ Bi,∃(x, y1), . . . , (x, yi) ∈ Y, y1 < . . . < yj = y < . . . < yi}.

For any α = 1, . . . , k define

Cαij = {x ∈ Bi : (x, fij(x)) ∈ (Sα)x},
Dαij = {x ∈ Bi : {x} × (fij(x), fi,j+1(x)) ⊂ (Sα)x}.

Then Cαij and Dαij are D-sets.
From (In), (IIn) there is a D-analytic decomposition, say P, of Rn par-

titioning all Cαij and Dαij such that for each C ∈ P, if C ⊂ Bi then fij |C
is D-analytic. The collection

N⋃
i=1

⋃
C∈P
C⊂Bi

{(fij |C , fi,j+1|C), Γ (fil|C) : j = 0, . . . , i, l = 1, . . . , i}

∪ {C × R : C ∈ P, C ∩Bi = ∅, ∀i = 1, . . . , N}
is a D-analytic decomposition of Rn+1 partitioning S1, . . . , Sk.

P r o o f o f (IIn+1). Suppose S ⊂ Rn+1 and f : S → R is a D-function.
By (In+1) we can suppose that S is a Dn+1-analytic cell and it suffices to
find a decomposition of S into D-analytic cells such that the restriction of
f to each cell is D-analytic.

C a s e 1: dimS < n+ 1. By Remark 2.7 there are r = dimS (< n+ 1)
and h : S → Rr of the form h(x) = (xσ(1), . . . , xσ(r)) such that h is a Cω-
diffeomorphism from S onto the Dr-analytic cell h(S). Note that f ◦ h−1 :
h(S)→ R is a D-function.
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By (IIr) there is a decomposition of h(S) into cells B such that, for
each B, f ◦h−1|B is D-analytic. This implies S is decomposed into the cells
h−1(B) ∩ S on each of which f is D-analytic (make use of Remark 2.7).

C a s e 2: dimS = n + 1. Then S is open. By Lemma 2.8.1, (In+1) and
Case 1 we can assume that f is continuous on S. Similarly to the proof of
(II1), there is F ∈ Rn+2+m such that

Γ (f) = {(x, y) ∈ Rn+1 × R : ∃z (F (x, y, z) = 0)}.
By Corollary 1.6,

{x : ∃y, z (F (x, y, z) = 0)} =
l⋃

j=1

{
x : ∃y, z

(
F (x, y, z) = hj(x, y, z) = 0,

Dhj
D(y, z)

(x, y, z) 6= 0, gjs(x, y, z) > 0, s = 1, . . . , p
)}

,

where hj = (hj1, . . . , hj,m+1), hij , gj1, . . . , gjp ∈ Rn+2+m, j = 1, . . . , l.
For j = 1, . . . , l define

Aj =
{
x ∈ S : ∃z

(
hj(x, f(x), z) = 0,

Dhj
D(y, z)

(x, f(x), z) 6= 0, gjs(x, f(x), z) > 0, s = 1, . . . , p
)}

.

Then S =
⋃
j Aj and Aj ∈ Dn+1. By (In+1) there is a D-analytic decompo-

sition of Rn+1 partitioning A1, . . . , Al. For each cell of the decomposition
with dimension < n+1, we apply Case 1. For each cell C of dimension n+1
with C ⊂ Ai we can apply the implicit function theorem to the continuous
function f |C . This finishes the proof.

2.9. Corollary. The class of D-sets has the  Lojasiewicz property :

( L) Every D-set has only finitely many connected components and each
component is also a D-set.

2.10. Corollary (Cω-stratification of D-sets). Let S1, . . . , Sk be D-sets.
Then there is a Cω-stratification of Rn compatible with S1, . . . , Sk. Pre-
cisely , there is a finite family {Γ dα} of subsets of Rn such that :

(S1) Γ dα are disjoint , Rn =
⋃
α,d Γ

d
α and Si =

⋃
{Γ dα : Γ dα ∩ Si 6= ∅},

i = 1, . . . , k.
(S2) Each Γ dα is a Dn-analytic cell of dimension d.
(S3) Γ dα \ Γ dα is a union of some cells Γ eβ with e < d.

P r o o f. The following lemma is proved in [2, Ch. 7, Th. 1.8].

2.10.1. Lemma. dim(C \C) < dimC for every nonempty D-set C ⊂ Rn.
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Now, applying Theorem 2.8 iteratively, we construct families Fd by de-
creasing induction on d: Let Pn be a D-analytic decomposition of Rn par-
titioning S1, . . . , Sk. Define Fn = {C ∈ Pn : dimC = n}. Suppose that
Fn, . . . ,Fd+1 are constructed (d ≥ 0). Let Pd be a D-analytic decomposi-
tion of Rn partitioning S1, . . . , Sk, C \C where C ∈ Fd+1 ∪ . . .∪Fn. Define

Fd = {C ∈ Pd : dimC = d,C ∩ C ′ = ∅,∀C ′ ∈ Fd+1 ∪ . . . ∪ Fn}.
Then, by the construction and Lemma 2.10.1, the family of cells F =⋃

0≤d≤n Fd satisfies (S1)–(S3).

2.11. Corollary. Let f : R → R be a D-function. Then there are
a1 < . . . < ak such that f is analytic on each interval (ai, ai+1), i = 0, . . . , k,
where a0 := −∞ and ak+1 :=∞.

2.12. Corollary. Let M be an analytic submanifold of Rn and fi :
M → R, i ∈ I, be a family of analytic D-functions. Then there are i1, . . . , ik
∈ I such that ⋂

i∈I
f−1
i (0) = f−1

i1
(0) ∩ . . . ∩ f−1

ik
(0).

P r o o f. Induction on d=dimM . By Corollary 2.9, it suffices to prove the
corollary for connected analytic submanifolds. If d= 0 it is clear. Suppose
that d > 0.

If fi ≡ 0 for every i ∈ I, the corollary is verified. If there is µ ∈ I such
that fµ 6≡ 0, then dim f−1

µ (0) < d. The corollary follows from Theorem 2.8
and the inductive hypothesis.
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