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Abstract. We prove some conditions on a complex sequence for the existence of
universal functions with respect to sequences of certain derivative and antiderivative op-
erators related to it. These operators are defined on the space of holomorphic functions in
a complex domain. Conditions for the equicontinuity of those sequences are also studied.
The conditions depend upon the size of the domain.

1. Introduction and notation. We denote by C the complex plane
and by G a simply connected domain, i.e., G ⊂ C, G is nonempty, open and
connected, and its complement with respect to the extended plane is also
connected. H(G) denotes, as usual, the space of holomorphic functions in
G, endowed with the topology of uniform convergence on compact subsets.

B(a, r) (B(a, r)) is the euclidean open (closed, respectively) disk with
center a and radius r. We agree that B(a,+∞) = C. N is the set of pos-
itive integers. If g is a complex function defined on a subset A ⊂ C, we
write ‖g‖A = supz∈A |g(z)|. If A,B ⊂ C, then d(A,B) will stand for the
infimum of the distances |a − b| (a ∈ A, b ∈ B) and the diameter of A is
diam(A) = sup{|a− b| : a, b ∈ A}. We adopt the conventions d(a, ∅) = +∞
(a ∈ C), 1/+∞ = 0 and 1/0 = +∞. We define the circumscribed radius
of G as

R(G) = inf
a∈C

sup
b∈G
|a− b|

= inf{r > 0 : there is an open disk B of radius r with G ⊂ B} ,

and the inscribed radius of G as
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%(G) = sup
b∈G

inf
a6∈G
|a− b|

= sup{r > 0 : there is an open disk B of radius r with B ⊂ G} .

The numbers diam(G), R(G) and %(G) describe, elementarily, the “size” of
the domain G. If we fix a point a ∈ G, we define

∆(G) = sup
z∈G

inf{r > 0 : a is in the connected component

of B(z, r) ∩G containing z} .

It is easy to check the following:

(a) 0 < %(G) ≤ (1/2) diam(G) ≤ R(G) ≤ (
√

3/2) diam(G) ≤ ∞.
(b) G is bounded if and only if diam(G) is finite if and only if R(G) is

finite if and only if ∆(G) is finite.
(c) If G is bounded, then %(G) = R(G) if and only if G is an open disk.
(d) d(a,C \G) ≤ supz∈G |z − a| ≤ ∆(G) ≤ diam(G).
(e) If G is starlike with respect to a, then ∆(G) = supz∈G |z − a|.
(f) d(a,C \G) = ∆(G) if and only if G is C or an open disk with center

a. In this last case, the common value is the radius of G.

The set of polynomials is dense inH(G) by Runge’s theorem [12, pp. 288–
291]. H(G) is a second-countable Fréchet space. A topological space X is a
Baire space if and only if the intersection of a countable family of open dense
subsets is also dense. Baire’s category theorem asserts that each completely
metrizable topological space is a Baire space. Consequently, H(G) is a Baire
space. In a Baire space X, a subset is residual when it contains a dense Gδ
subset of X. Such a subset is “very large” in X. For this see, for instance,
[8, pp. 213–214 and 238] and [11, pp. 40–41].

We use a very general notion of universality, which can be found in [6],
namely: Let X and Y be topological spaces and Tn : X → Y (n ∈ N) a
sequence of continuous mappings. Then an element x ∈ X is called {Tn}∞n=1-
universal if its orbit {Tn(x) : n ∈ N} is dense in Y . Several versions of
the following result can be found in [5], where universal vectors are called
hypercyclic. Its proof is an application of Baire’s theorem.

Theorem A. Let X be a linear topological space that is a Baire space, Y a
linear topological space that is second-countable, D ⊂ X dense in X, D′ ⊂ Y
dense in Y and Tn : X → Y (n ∈ N) a countable family of continuous linear
mappings satisfying the following condition:

(A) For every d ∈ D and every d′ ∈ D′ there exist a sequence {xp :
p ∈ N} ⊂ X and positive integers n1 < n2 < . . . such that xp → 0,
Tnp

(d)→ 0 and Tnp
(xp)→ d′ (p→∞).

Then the subset of {Tn}∞n=1-universal vectors x ∈ X is residual in X.
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In addition, we point out that if X and Y are two nontrivial metric linear
spaces and {Tn : n ∈ N} is an equicontinuous family of linear operators from
X into Y , then the orbit {Tn(x) : n ∈ N} of each x ∈ X is bounded; so
there is no {Tn}∞n=1-universal vector in X.

In this paper derivative and antiderivative operators will be considered.
These are defined as follows. The derivative operators are

Dn : H(G) 3 f 7→ f (n) ∈ H(G) (n ∈ N) .

If a point a ∈ G is fixed, the antiderivative operators are

In : H(G) 3 f 7→
z∫
a

In−1f(t) dt ∈ H(G) (n ∈ N) ,

with I0f = f , the integral being taken along any rectifiable arc in G joining
a to z. These operators are linear and continuous. Further, we have

Inf(z) =
1

(n− 1)!

z∫
a

(z − t)n−1f(t) dt (∀n ∈ N, ∀f ∈ H(G), ∀z ∈ G) .

MacLane’s theorem [10] states that there exists f ∈ H(C) such that
the orbit {f (n) : n ∈ N} is dense in H(C) or, equivalently, f is {Dn}∞n=1-
universal in H(C). This theorem is also proved in [1]. S. M. Duios Ruis [3]
has proved that, indeed, there is a residual set of such functions. Further-
more, R. M. Gethner and J. H. Shapiro [4] and K. G. Grosse-Erdmann [6,
Satz 2.2.8] have derived the same result for every simply connected domain
(see also [7] for a sharp result on growth of {Dn}∞n=1-universal entire func-
tions). Trivially, there cannot be any {In}∞n=1-universal function f ∈ H(G),
because Inf(a) = 0 (∀n ∈ N). Nevertheless, it is shown in [2] that there ex-
ists a sequence {Cn}∞n=1 ⊂ C with the following property: For every entire
function φ the set {Qn(z) = Inφ(z) +

∑n−1
j=0 (Cn−j/j!)zj : n ∈ N} is dense

in H(C) (note that the coefficients Cn’s do not depend upon φ). This has
been extended by W. Luh [9] to functions φ which are holomorphic in an
open set with simply connected components.

All these results will be generalized and strengthened in this paper, by in-
serting a multiplicative complex sequence {cn}∞n=1. In addition, the equicon-
tinuity of generalized derivative and antiderivative operators will be studied.
The size of the domain G will play an important role. We associate with
{cn}∞n=1 the numbers α, β ∈ [0,∞] given by

α = lim sup
n→∞

(n!|cn|)1/n =
1
e

lim sup
n→∞

(n|cn|1/n) ,

β = lim sup
n→∞

(
|cn|
n!

)1/n

= e lim sup
n→∞

|cn|1/n

n
.

The equalities of limsup’s hold because of Stirling’s formula.
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2. Derivative operators. First, we ask if there exists f ∈ H(G) such
that the orbit {cnf (n) : n ∈ N} is dense. The following result strengthens
MacLane’s theorem substantially; for this, choose cn = 1 (∀n ∈ N).

Theorem 1. If R(G) ≤ α, then the subset of f ∈ H(G) such that the
orbit {cnf (n) : n ∈ N} is dense in H(G) is residual.

P r o o f. By the definition ofR(G), there is a ∈ C such that |z−a| < R(G)
∀z ∈ G. Then supz∈K |z − a| < R(G) for every compact subset K ⊂ G.
Apply Theorem A to X = Y = H(G), D = D′ = {polynomials} and
Tn = cnD

n (n ∈ N). Fix two polynomials P,Q with Q(z) =
∑m
j=0 aj(z−a)j .

By hypothesis, there is a sequence of positive integers n1 < n2 < . . . with
cnp
6= 0 (∀p ∈ N) and limp→∞(np!|cnp

|)1/np ≥ R(G). Thus

(1) lim
p→∞

(supz∈K |z − a|)np

np!|cnp
|

= 0 .

Define fp by

fp(z) =
m∑
j=0

j!aj(z − a)j+np

(j + np)!cnp

.

Then Tnp(P ) = 0 whenever np > degree(P ), Tnp(fp) = Q (∀p ∈ N) and,
by (1), fp → 0 (p→∞) uniformly on compact subsets of G. So, condition
(A) of Theorem A is evidently satisfied and the subset of functions which
are {cnDn}∞n=1-universal is residual. The theorem is proved.

Now, we give a necessary condition for the existence of {cnDn}∞n=1-
universal functions.

Theorem 2. If there is f ∈ H(G) whose orbit {cnf (n) : n ∈ N} is dense
in H(G), then %(G) ≤ α.

P r o o f. Assume by way of contradiction that α < %(G). Fix r ∈
(α, %(G)). From the definition of %(G), there exists b ∈ G such that B(b, r) ⊂
G. By assumption, limn→∞ n!|cn|/rn = 0 and, because of Cauchy’s inequal-
ities,

|cnf (n)(b)| ≤ |cn|
n!‖f‖B̄(b,r)

rn
→ 0 (n→∞) .

Then the sequence {cnf (n)(b)}∞n=1 is bounded, and so {cnf (n)}∞n=1 cannot
approximate the constant function g(z) = 1 + supn∈N |cnf (n)(b)| on the
compact set K = {b}. This is a contradiction.

Corollary 1. If B is an open disk , then the following statements are
equivalent :

(a) The subset of f ∈ H(B) such that the orbit {cnf (n) : n ∈ N} is dense
in H(B) is residual.
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(b) There is f ∈ H(B) whose orbit {cnf (n) : n ∈ N} is dense in H(B).
(c) radius(B) ≤ α.

Next, the following two results furnish a necessary and sufficient condi-
tion for the equicontinuity. We can drop the hypothesis of simple connect-
edness. We distinguish the cases G 6= C, G = C.

Theorem 3. If G ⊂ C is an arbitrary domain (simply connected or
not) different from C, then the family of operators F = {cnDn : n ∈ N} is
equicontinuous if and only if α = 0.

P r o o f. Assume that α = 0. Fix a basic neighborhood of the origin of
H(G), say V (ε,K) = {f ∈ H(G) : |f(z)| ≤ ε ∀z ∈ K}, where ε > 0 and
K ⊂ G is compact. We must find δ > 0 and a compact subset L ⊂ G
satisfying

(2)
⋃
n∈N

cnD
n(V (δ,K)) ⊂ V (ε,K) .

We have limn→∞(n!|cn|)1/n = 0, by hypothesis. Pick a cycle γ ⊂ G\K (see
[12, p. 287]) such that Cauchy’s formula

f (n)(z) =
n!

2πi

∮
γ

f(t)
(t− z)n+1

dt

holds for n ∈ N, z ∈ K and f ∈ H(G). The constant M = supn∈N n!|cn|/
d(K, γ)n is finite. Choose L = γ and δ = 2πεd(K, γ)/(1 +M length(γ)). If
n ∈ N, f ∈ V (δ, L) and z ∈ K, we have

|cnf (n)(z)| =
∣∣∣∣n!cn

2πi

∮
γ

f(t)
(t− z)n+1

dt

∣∣∣∣ ≤ n!|cn| length(γ)‖f‖γ
2πd(K, γ)n+1

≤ ε .

Consequently, (2) is satisfied and this proves that F is equicontinuous.
It remains to show that if α > 0 then F is not equicontinuous. Fix a

point a in G and put R := d(a,C \ G) = |a − b|, where b ∈ C \ G. Fix r
with 0 < r < R and R − r < α. Put K = B(a, r) and ε = 1. Let L be
any compact subset of G and δ a positive number. Let m > 0 be so small
that m/|z − a| < δ, if z ∈ L ∪ K. Then the function f(z) := m/(z − a)
belongs to V (δ, L) and sup{|cnf (n)| : z ∈ K} = n!|cn|m/|R− r|n+1, so that
sup{n!|cn|m/|R− r|n+1 : n ∈ N} =∞. Therefore⋃

n∈N
cnD

n(V (δ, L)) 6⊂ V (1,K),

which implies that F is not equicontinuous.

The condition of equicontinuity and the results of Theorems 1 and 2 can
be stated jointly in the case G = C.
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Theorem 4. The following properties are equivalent :

(a) The sequence {(n!|cn|)1/n}∞n=1 is bounded.
(b) The sequence {n|cn|1/n}∞n=1 is bounded.
(c) There is no entire function f such that {cnf (n)}∞n=1 is dense in H(C).
(d) The set of entire functions f such that {cnf (n)}∞n=1 is dense in H(C)

is not residual in H(C).
(e) The family of operators {cnDn : n ∈ N} on H(C) is equicontinuous.

P r o o f. Obviously, R(C) = %(C) =∞. Moreover, α is finite if and only if
the sequence {(n!|cn|)1/n}∞n=1 is bounded. The equivalence of (a) and (b) is
due to Stirling’s formula. (a) implies (c) by Theorem 2. It is trivial that (c)
implies (d). (d) implies (a) by Theorem 1. Therefore (a)–(d) are equivalent.
It is evident that (e) implies (c). Hence, the unique thing to prove is that (a)
implies (e). But we can follow the first part of the proof of Theorem 3 step
by step with the sole exception that we may choose the cycle γ in such a
way that supn∈N(n!|cn|)1/n ≤ d(K, γ) (note that this would not be possible
if G 6= C, except that cn = 0 ∀n ∈ N). Then we obtain (2) by choosing
L = γ an δ = 2πεd(K, γ)/ length(γ).

3. Antiderivative operators. Recall that, in the definition of In (n∈
N), a point a ∈ G has been fixed. We furnish a sufficient condition on the se-
quence {cn}∞n=1 in order to get a certain property of {cnIn}∞n=1-universality,
which generalizes that given in Section 1 (note that β = 0 if cn = 1 ∀n ∈ N).
It turns also to be a sufficient condition for the equicontinuity of the family
{cnIn : n ∈ N}.

Lemma. If β ≤ 1/∆(G) and f ∈ H(G), then {cnInf}∞n=1 converges to
zero uniformly on compact subsets.

P r o o f. Let z ∈ G. From the definition of ∆(G), a lies in the connected
component of B(z,∆(G)) ∩ G containing z. Then there exists a rectifiable
arc γz ⊂ G joining a to z such that |z − t| < ∆(G) (∀t ∈ γz). Fix a
compact set K ⊂ G. Then we may choose a compact set L and the arcs
γz in such a way that

⋃
z∈K γz ⊂ L ⊂ G, supz∈K length(γz) = S < ∞ and

|z − t| ≤M = a constant <∆(G) (∀t ∈ γz, ∀z ∈ K). Fix M1 ∈ (M,∆(G)).
Since β ≤ 1/∆(G), there is n0 ∈ N such that |cn|/(n − 1)! ≤ 1/Mn−1

1

whenever n ≥ n0. If z ∈ K, n ≥ n0 and f ∈ H(G), we obtain

|cnInf(z)| =
∣∣∣∣ cn
(n− 1)!

∫
γz

(z − t)n−1f(t) dt
∣∣∣∣ ≤ |cn|

(n− 1)!
Mn−1‖f‖L length(γz)

≤ S‖f‖L(M/M1)n−1 → 0 (n→∞) .

Thus limn→∞ ‖cnInf‖K = 0, as required.
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Theorem 5. Assume that β ≤ 1/∆(G). Then there exists a sequence
{Cn}∞n=1 ⊂ C such that for every f ∈ H(G) the sequence {Qn(z) = cnI

nf(z)
+
∑n−1
j=0 (Cn−j/j!)zj : n ∈ N} has the following properties:

(a) {Qn(z) : n ∈ N} is dense in H(G).
(b) For every compact set B ⊂ G with connected complement and every

function g which is continuous on B and holomorphic in the interior of B,
there is a subsequence of {Qn(z) : n ∈ N} converging to g uniformly on B.

(c) For every Lebesgue-measurable set E ⊂ G and every Lebesgue-
measurable function g : E → C ∪ {∞}, there is a subsequence of {Qn(z) :
n ∈ N} converging almost everywhere to g on E.

P r o o f. We apply the mentioned result of Luh [9] to the domain G
and the function φ = 0. We obtain that there is a sequence {Cn}∞n=1 ⊂ C
such that the set {Hn}∞n=1 given by Hn(z) =

∑n−1
j=0 (Cn−j/j!)zj (n ∈ N) is

dense in H(G). By the lemma, {cnInf}∞n=1 tends to zero in H(G). Thus
{Qn = cnI

nf +Hn}∞n=1 is also dense in H(G). This proves (a). Finally, (b)
and (c) are straightforward consequences of [9, Lemma 3].

Theorem 6. (a) If β ≤ 1/∆(G), then the family of operators {cnIn :
n ∈ N}, defined on H(G), is equicontinuous.

(b) If β > 1/d(a,C \G), then the above family is not equicontinuous.

P r o o f. (a) As in the proof of Theorem 3, fix a basic neighborhood of
the origin V (ε,K), where ε > 0 and K ⊂ G is compact. If one looks at the
proof of the above lemma, the following is readily seen:

|cnInf(z)| ≤ Sδ(M/M1)n−1 ≤ Sδ = ε

whenever δ = ε/S, n ≥ n0, z ∈ K and ‖f‖L ≤ δ. Therefore⋃
n≥n0

cnI
n(V (δ, L)) ⊂ V (ε,K) .

This implies that the family {cnIn : n ≥ n0} is equicontinuous. Therefore
{cnIn : n ∈ N} is equicontinuous.

(b) Assume that β > 1/d(a,C \ G). Fix µ, ν with 1/d(a,C \ G) < µ <
ν < β. Suppose that δ > 0 and L ⊂ G is compact. Consider the compact
set K = {z : |z − a| = 1/µ}. There is m ∈ N with δ(ν/µ)m > 1 and
|cm| > m!νm. The constant function f(z) = δ is obviously in V (δ, L). If
z ∈ K we have

|cmImf(z)| =
∣∣∣∣δcm (z − a)m

m!

∣∣∣∣ =
∣∣∣∣ δcmm!µm

∣∣∣∣ ≥ δ(νµ
)m

> 1 ,

so cmIm(V (δ, L)) is not included in V (1,K). Hence {cnIn : n ∈ N} is not
equicontinuous.
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Corollary 2. (a) If G = C, then the family of operators {cnIn : n ∈ N}
is equicontinuous if and only if β = 0.

(b) If G is an open disk with center a, then the family of operators
{cnIn : n ∈ N} is equicontinuous if and only if β ≤ 1/ radius(G).

The author would like to thank the referee for helpful comments and
suggestions.
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