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Convex meromorphic mappings

by Albert E. Livingston (Newark, Del.)

Abstract. We study functions f(z) which are meromorphic and univalent in the unit
disk with a simple pole at z = p, 0 < p < 1, and which map the unit disk onto a domain
whose complement is either convex or is starlike with respect to a point w0 6= 0.

1. Introduction. Let S(p), 0 < p < 1, be the class of functions mero-
morphic and univalent in the unit disk ∆ = {z : |z| < 1} with a simple pole
at z = p with a power series expansion f(z) = z+ b2z

2 + . . . for |z| < p. The
class S(p) has been investigated by a number of authors. We let C(p) be
the subclass of S(p) made up of functions f such that C \ f [∆] is a convex
set. Royster [11] considered the class K(p) consisting of members of S(p)
for which there exists δ, 0 < δ < 1, so that for δ < |z| < 1,

Re
[
1 +

zf ′′(z)
f ′(z)

]
< 0 .

Obviously K(p) ⊂ C(p). Royster also studied the class Σ(p) ⊂ S(p) consist-
ing of functions f such that

Re
[

1 + pz

1− pz
− z + p

1 + pz
−
(

1 +
zf ′′(z)
f ′(z)

)]
> 0

for z ∈ ∆, and proved that K(p) = Σ(p) for 0 < p < 2 −
√

3 but for
p > 2 −

√
3, K(p) is a proper subset of Σ(p). Pfaltzgraff and Pinchuk [10]

essentially proved that C(p) = Σ(p) for 0 < p < 1, by way of the Herglotz
representation of functions of positive real part [12]. We will give another
proof of this fact. We will also consider several coefficient problems. If f is
a member of S(p) we will consider the two expansions

(1.1) f(z) = z +
∞∑
n=2

bnz
n, |z| < p ,
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and

(1.2) f(z) =
∞∑

n=−1

an(z − p)n , |z − p| < 1− p .

Goodman [2] conjectured that if f is a member of S(p), then

(1.3) |bn| ≤
1 + p2 + . . .+ p2n−2

pn−1
.

Jenkins [3] proved that (1.3) is true for any value of n for which the
Bieberbach conjecture holds. Since DeBrange [1] has now proven that con-
jecture to be valid for all n, it follows that (1.3) holds for all n. The in-
equality (1.3) is actually sharp in C(p), since the extremal function f(z) =
−pz/(z − p)(1 − pz) maps ∆ onto the complement of the real interval
[−p/(1− p)2,−p/(1 + p)2]. Miller [9] proved that if f is a member of Σ(p),
then ∣∣∣∣b2 − (1 + p2 + p4)

p(1 + p2)

∣∣∣∣ ≤ p

1 + p2

from which it follows that

Re(b2) ≥ 1 + p4

p(1 + p2)
> 1 .

Miller [9] also obtained a lower bound for Re b3, which is positive for p near 0,
for f in C(p) = Σ(p). We will obtain the sharp inequality

Re b3 ≥
1− p2 + p4

p2
> 1

if f is in C(p) = Σ(p).
Concerning the expansion (1.2), the sharp estimate |a−1| ≤ p2/(1− p2)

if f is a member of S(p) has been proven by Kirwan and Schober [4] and
also Komatu [5]. Komatu [5] obtained the sharp bound on |a1| for f in S(p)
and the extremal function is a member of C(p). We will give another proof
in C(p) and also obtain the sharp bound on |a2| for f in C(p).

2. The class of C(p). In this section we will give a different necessary
and sufficient condition for membership in C(p) and a new proof that C(p) =
Σ(p).

Theorem 1. f is a member of C(p) if and only if for z ∈ ∆,

(2.1) Re
[
1 + p2 − 2pz +

(z − p)(1− pz)f ′′(z)
f ′(z)

]
< 0 .

P r o o f. If f is a member of S(p) let h(z) = f((z + p)/(1 + pz)); then h
has a simple pole at z = 0 and C \ h[∆] = C \ f [∆]. Thus, f is a member of
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C(p) if and only if h is convex with a simple pole at z = 0. This is the case
if and only if [10]

Re
(

1 +
zh′′(z)
h′(z)

)
< 0

for z ∈ ∆. A straightforward computation gives

Re
(

1 +
zh′′(z)
h′(z)

)
= ReQ(z)

where

Q(z) =
1− pz
1 + pz

+

(1− p2)z
(1 + pz)2

f ′′
(
z + p

1 + pz

)
f ′
(
z + p

1 + pz

) .

But ReQ(z) < 0 for z ∈ ∆ if and only if ReQ((z − p)/(1 − pz)) < 0 for
z ∈ ∆. However,

Q

(
z − p
1− pz

)
=

1− p2 − 2pz
(1− p2)

+
(z − p)(1− pz)f ′′(z)

(1− p2)f ′(z)
,

which gives (2.1).

R e m a r k. If f is a member of C(p) and

P (z) = 2pz − 1− p2 − (z − p)(1− pz)f ′′(z)
f ′(z)

then ReP (z) > 0, z ∈ ∆, P (p) = 1− p2 and P ′(p) = 0.

Lemma 1. Let P (z) satisfy ReP (z) > 0, z ∈ ∆, and P (0) = 1. If
0 < p < 1, then for z ∈ ∆,

Re
[

(z − p)(1− pz)P (z) + p

z
− pz

]
> 0 .

P r o o f. Let 0 < r < 1 and Pr(z) = P (rz). Then

Qr(z) =
(z − p)(1− pz)Pr(z) + p

z
− pz

is analytic for |z| ≤ 1. If |z| = 1, then

Qr(z) =
(z − p)(1− pz)Pr(z)

z
− p
(
z − 1

z

)
and

ReQr(z) = |1− pz|2 RePr(z) > 0 .
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Since Qr(z) is analytic for |z| ≤ 1, ReQr(z) > 0 for z ∈ ∆. Letting r → 1,
we obtain for z ∈ ∆,

Re
[

(z − p)(1− pz)P (z) + p

z
− pz

]
≥ 0 .

But equality cannot occur in the last inequality since the quantity on the
left side equals 1− p2 when z = p.

Lemma 2. If ReP (z) > 0 for z ∈ ∆ and P (p) = 1− p2, then for z ∈ ∆,

Re
[
zP (z)− p+ pz2

(z − p)(1− pz)

]
> 0 .

P r o o f. Let p < r < 1 and α = (r − 1)p/(r − p2) and Lr(z) = r(z −
α)/(1− αz). It is easily verified that Lr[∆] = {z : |z| < r} and Lr(p) = p.

Let

Qr(z) =
zP (Lr(z))− p+ pz2

(z − p)(1− pz)
.

Qr(z) is analytic for |z| ≤ 1 and ReP (Lr(z)) > 0 for |z| ≤ 1. If |z| = 1 then

ReQr(z) = Re
[

zP (Lr(z))
(z − p)(1− pz)

+
pz(z − 1/z)

(z − p)(1− pz)

]
=

1
|1− pz|2

ReP (Lr(z)) > 0 .

Since Qr is analytic for |z| ≤ 1, it follows that ReQr(z) > 0 for z ∈ ∆.
Letting r → 1, we obtain for z ∈ ∆,

Re
[
zP (z)− p+ pz2

(z − p)(1− pz)

]
≥ 0 .

But equality cannot occur in the last inequality since the expression on the
left equals 1 when z = 0.

Theorem 2. C(p) = Σ(p) for 0 < p < 1.

P r o o f. Let f be a member of Σ(p) and

P (z) = −1− zf ′′(z)
f ′(z)

+
1 + pz

1− pz
− z + p

z − p
.

Then ReP (z)>0, z∈∆, and P (0) = 1. Straightforward computations give

2pz − 1− p2 − (z − p)(1− pz)f ′′(z)
f ′(z)

=
(z − p)(1− pz)P (z) + p

z
− pz .

Therefore, by Lemma 1,

Re
[
2pz − 1− p2 − (z − p)(1− pz)f ′′(z)

f ′(z)

]
> 0

for z ∈ ∆, and thus by Theorem 1, f is a member of C(p).
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Conversely, suppose f is a member of C(p) and let

P (z) = 2pz − 1− p2 − (z − p)(1− pz)f ′′(z)
f ′(z)

.

Then by Theorem 1, ReP (z) > 0, z ∈ ∆, and P (p) = 1−p2. Straightforward
computations give

−1− zf ′′(z)
f ′(z)

− z + p

z − p
+

1 + pz

1− pz
=
zP (z)− p+ pz2

(z − p)(1− pz)
.

Thus, by Lemma 2,

Re
[
− 1− zf ′′(z)

f ′(z)
− z + p

z − p
+

1 + pz

1− pz

]
> 0

for z ∈ ∆. Therefore f is a member of Σ(p).

3. The coefficients an. In this section we use Theorem 1 to study the
coefficients a1 and a2 in (1.2), if f is a member of C(p). We will make use
of the following lemma.

Lemma 3. Let P (z) be analytic in ∆ and satisfy ReP (z) > 0, z ∈ ∆,
P (p) = 1− p2 and P ′(p) = 0, 0 < p < 1. If P (z) = (1− p2) + d2(z − p)2 +
d3(z − p)3 + . . . for |z − p| < 1− p, then

|d2| ≤
2

1− p2
,(3.1) ∣∣∣∣ p

1− p2
d2 + d3

∣∣∣∣ ≤ 6p
(1− p2)2

, 2/3 ≤ p < 1 ,(3.2) ∣∣∣∣ p

1− p2
d2 + d3

∣∣∣∣ ≤ 2(1 + 9
4p

2)
1− p2

, 0 < p ≤ 2/3 .(3.3)

All the inequalities are sharp.

P r o o f. Let

w(z) =
P (z)− (1− p2)
P (z) + 1− p2

.

Then w(p) = 0 and |w(z)| ≤ 1, z ∈ ∆. Also

w′(z) =
2(1− p2)P ′(z)

[P (z) + (1− p)2]2

and hence w′(p) = 0. Comparing coefficients in the expansions of both
sides of

[P (z) + (1− p2)]w(z) = P (z)− (1− p2) ,
we obtain

(3.4) d2 = (1− p2)w′′(p)
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and

(3.5)
p

1− p2
d2 + d3 = pw′′(p) + (1− p)w

′′′(p)
3

.

We can write

w(z) = φ

(
z − p
1− pz

)
where φ is analytic for |z| < 1, φ(0) = φ′(0) = 0 and |φ(z)| ≤ 1, z ∈ ∆. In
particular, we obtain

w′′(p) =
φ′′(0)

(1− p2)2
.

Since |φ′′(0)/2| ≤ 1, we have |w′′(p)| ≤ 2/(1 − p2)2. Thus from (3.4) we
obtain

|d2| = (1− p2)|w′′(p)| ≤ 2
1− p2

,

which is (3.1).
Next from (3.5) we obtain

p

1− p2
d2 + d3 =

1
(1− p2)2

[
φ′′′(0)

3
+ 3pφ′′(0)

]
.

If φ(z) = c2z
2 + c3z

3 + . . . , z ∈ ∆, then
p

1− p2
d2 + d3 =

2
(1− p2)2

[c3 + 3pc2] .

Using known inequalities for bounded functions, we obtain

|c3 + 3pc2| ≤ |c3|+ 3p|c2| ≤ 1− |c2|2 + 3p|c2| .
Therefore

(3.6)
∣∣∣∣ p

1− p2
d2 + d3

∣∣∣∣ ≤ 2
(1− p2)2

[1 + 3p|c2| − |c2|2] .

Let x = |c2| and h(x) = 1 + 3px− x2, 0 ≤ x ≤ 1. Then h′(x) = 3p− 2x.
If p ≥ 2/3, then h′(x) ≥ 0 for 0 ≤ x ≤ 1 and hence

(3.7) h(x) ≤ h(1) = 3p , 2/3 ≤ p < 1 .

If 0 < p < 2/3, then h(x) achieves its maximum at x = 3p/2. Hence

(3.8) h(x) ≤ 1 + 9
4p

2 , 0 < p ≤ 2/3 .

Combining (3.6), (3.7) and (3.8) gives (3.2) and (3.3).
Equality is attained in (3.1) by the function

P (z) =
1 + p2 − 4pz + (1 + p2)z2

1− z2
,

which is obtained by taking w(z) = [(z − p)/(1− pz)]2. The same function
gives equality in (3.2).
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If 0 < p < 2/3, let

φ(z) =
z2(z + 3

2p)
1 + 3

2pz

and w(z) = φ((z− p)/(1− pz)). The resulting function P (z) = (1− p2)(1 +
w(z))/(1− w(z)) gives equality in (3.3).

Theorem 3. Let f be a member of C(p) and have the expansion (1.2).
Then

|a1| ≤
p2

(1− p2)3
,(3.9)

|a2| ≤
(4 + 9p2)|a−1|

12(1− p2)3
, 0 < p ≤ 2/3 ,(3.10)

|a2| ≤
p

(1− p2)3
|a−1| ≤

p3

(1− p2)4
, 2/3 ≤ p ≤ 1 .(3.11)

All the inequalities are sharp.

R e m a r k. Making use of the area theorem, Komatu [5] proved inequality
(3.9) for the larger class S(p).

P r o o f o f T h e o r e m 3. Let

P (z) = 2pz − 1− p2 − (z − p)(1− pz)f ′′(z)
f ′(z)

.

Then P (z) satisfies the hypotheses of Lemma 3. Comparing coefficients on
both sides of the equation

[2p(z − p)− (1− p2)]f ′(z)− (z − p)[(1− p2)− p(z − p)]f ′′(z) = P (z)f ′(z)

we obtain

(3.12) 2a1(1− p2) = a−1d2

and

(3.13) 6(1− p2)a2 = 2pa1 + a−1d3 .

Combining (3.1) and (3.12) gives

|a1| ≤
|a−1|

(1− p2)2
.

However, |a−1| ≤ p2/(1− p2) (cf. [4], [5]), giving (3.9).
Combining (3.12) and (3.13) gives

(3.14) a2 =
1

6(1− p2)

[
p

1− p2
d2 + d3

]
a−1 .

If 0 < p ≤ 2/3, then (3.3) and (3.14) gives (3.10). If 2/3 ≤ p < 1, then (3.2)
combined with (3.14) gives (3.11).
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Equality is attained in (3.9) and (3.11) by f(z) = −pz/((z− p)(1− pz)).
If 0 < p ≤ 2/3, equality is attained in (3.10) by the function f which satisfies

2pz − 1− p2 − (z − p)(1− pz)f ′′(z)
f ′(z)

= P (z)

where P (z) is the function satisfying the hypotheses of Lemma 3 and giving
equality in (3.3). Since ReP (z) = 0 on |z| = 1 with finitely many exceptions
and since

1 +
zf ′′(z)
f ′(z)

=
z

(z − p)(1− pz)

[
p

(
z − 1

z

)
− P (z)

]
,

it follows that on |z| = 1,

Re
(

1 +
zf ′′(z)
f ′(z)

)
=

1
|1− pz|2

ReP (z) = 0

with finitely many exceptions.
Laborious computations give

P (z) =
(1− p2)(2 + 2p− p2)

2− 2p− p2
· (1 + z)(z − eiγ)(z − e−iγ)

(1− z)(z − eiβ)(z − e−iβ)

where eiγ 6= eiβ , and eiβ is not real for 0 < p < 2/3. Thus Re(1 +
zf ′′(z)/f ′(z)) = 0 on |z| = 1 with 3 exceptional points. It follows that
for the extremal function in the case 0 < p < 2/3, C \ f [∆] is the interior of
a triangle.

R e m a r k. In the case 0 < p < 2/3 of Theorem 3, using the inequality
|a−1| ≤ p2/(1− p2) in (3.10) does not result in a sharp inequality.

Theorem 4. If f is a member of C(p) with expansion (1.2), then∣∣∣∣p+
a0(1− p2)

a−1

∣∣∣∣ ≤ 1 + p2

p
,

and the inequality is sharp.

P r o o f. Let
h(z) =

−a−1

(1− p2)f
(
p− z
1− pz

) ,

then h is a member of S(p) and for |z − p| < 1− p,

h(z) = z +
(
p+

(1− p2)a0

a−1

)
z2 + . . .

Using (1.3) when n = 2, we get∣∣∣∣p+
(1− p2)a0

a−1

∣∣∣∣ ≤ 1 + p2

p
.

Equality is attained by f(z) = −pz/((z − p)(1− pz)).



Convex meromorphic mappings 283

4. The coefficients bn. Let f be a member of C(p) and have the expan-
sion (1.1) for |z| < p. As remarked in the introduction, sharp upper bounds
on |bn| are known for all n and a sharp lower bound on Re(b2) follows from
results in [9]. In this section we will obtain a sharp lower bound on Re(b3)
which suggests a conjecture concerning Re(bn) for all n.

Theorem 5. Let f be a member of C(p) with expansion (1.1). Then

(4.1) Re b2 ≥
1 + p4

p(1 + p2)
> 1

and

(4.2) Re b3 ≥
1− p2 + p4

p2
=

1 + p6

p2(1 + p2)
> 1 .

Both inequalities are sharp, each being attained by the function

f(z) =
p(1 + p2)z − 2p2z2

(1− p2)(p− z)(1− pz)
.

P r o o f. Let

P (z) = 2pz − 1− p2 − (−p+ (1 + p2)z − pz2)f ′′(z)
f ′(z)

,

then ReP (z) > 0, z ∈ ∆, P (p) = 1 − p2 and P ′(p) = 0. Let P (z) =
c0 + c1z + c2z

2 + . . . Comparing coefficients on both sides of the equation

P (z)f ′(z) = [2pz − (1 + p2)]f ′(z)− [−p+ (1 + p2)z − pz2]f ′′(z) ,

we obtain

(4.3) c0 = 2pb2 − (1 + p2)

and

(4.4) 2c0b2 + c1 = 2p− 4(1 + p2)b2 + 6pb3 .

Using (4.3) and (4.4) we obtain

(4.5) b2 =
c0 + (1 + p2)

2p

and

(4.6) 6p2b3 = c20 + 3(1 + p2)c0 + pc1 + 2(1 + p2 + p4) .

Let w(z) = [P (z)− (1− p2)]/[P (z) + (1− p2)], then |w(z)| < 1 for z ∈ ∆
and w(p) = w′(p) = 0. Thus we can write

w(z) =
(
z − p
1− pz

)2

φ(z)



284 A. E. Livingston

where |φ(z)| < 1 for z ∈ ∆. We have

P (z) =
(1− p2)(1 + w(z))

1− w(z)
.

Thus

(4.7) c0 = P (0) =
(1− p2)(1 + w(0))

1− w(0)
=

(1− p2)(1 + p2φ(0))
1− p2φ(0)

.

It follows that

Re c0 ≥ (1− p2)
1− p2|φ(0)|
1 + p2|φ(0)|

≥ (1− p2)2

1 + p2
.

Using this inequality in conjunction with (4.5) gives (4.1), which has also
been proven by Miller [9].

Next, we have

c1 = P ′(0) =
2(1− p2)w′(0)

(1− w(0))2

=
2(1− p2)[−2p(1− p2)φ(0) + p2φ′(0)]

(1− p2φ(0))2
.

Combining (4.6), (4.7) and (4.8), we eventually obtain

(4.9) 6p2b3 = (1− p2)
[
(1− p2) +

2p3φ′(0)
(1− p2φ(0))2

+ 3(1 + p2)
1 + p2φ(0)
1− p2φ(0)

]
+ 2(1 + p2 + p4) .

Now let

Q(z) =
1 + p2φ(z)
1− p2φ(z)

.

Then ReQ(z) ≥ (1− p2)/(1 + p2) > 0 for z ∈ ∆ and (4.9) can be written as

(4.10) 6p2b3 = (1− p2)[(1− p2) + pQ′(0) + 3(1 + p2)Q(0)]
+ 2(1 + p2 + p4) .

Let T (z) = Q(z) − (1 − p2)/(1 + p2). Since ReT (z) > 0 for z ∈ ∆, it is
known that

|T ′(0)| ≤ 2 ReT (0) .

Thus

|Q′(0)| ≤ 2 Re
[
Q(0)− 1− p2

1 + p2

]
.

Hence

2 ReQ(0) ≥ |Q′(0)|+ 2
1− p2

1 + p2
.
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Using the last inequality with (4.10) we obtain

6p2 Re b3 ≥ (1− p2)
[
(1− p2)− p|Q′(0)|+ 3

2
(1 + p2)|Q′(0)|+ 3(1− p2)

]
+ 2(1 + p2 + p4)

= (1− p2)
[
(1− p2) +

3 + 3p2 − 2p
2

|Q′(0)|+ 3(1− p2)
]

+ 2(1 + p2 + p4)
≥ (1− p2)[4(1− p2)] + 2(1 + p2 + p4)
= 6(1− p2 + p4) ,

which gives (4.2).
An examination of the proof indicates that equality holds in (4.1)

and (4.2) if and only if φ(z) ≡ −1. This leads to the extremal function
stated in the theorem.

R e m a r k. It seems reasonable to expect that the extremal function for
Theorem 5 is extremal for all n. That is, we expect that if f is a member of
C(p), then Re(bn) ≥ (1 + p2n)/(pn−1(1 + p2)) for all n.

5. Starlike functions. Miller [7]–[9] considered functions f of S(p) for
which there exists %, 0 < % < 1, so that Re[zf ′(z)/(f(z) − w0)] < 0 for
% < |z| < 1 and a fixed w0 ∈ C, w0 6= 0. These functions map ∆ onto
the complement of a set which is starlike with respect to w0. This class of
functions is a subclass of the class Σ∗(p, w0) defined as the class of functions
f in S(p) such that for z ∈ ∆,

Re
[

pz

1− pz
− p

z − p
− zf ′(z)

(f(z)− w0)

]
> 0 .

Actually, the two classes are the same if 0 < p <
√

3− 2
√

2 (cf. [9]). But
for p ≥

√
3− 2

√
2 and proper choice of w0 the first class is a proper subset

of the second. We will prove that Σ∗(p, w0) is the class of all functions f in
S(p) such that C \ f [∆] is starlike with respect to w0, which we denote by
Σs(p, w0).

Theorem 6. f is a member of Σs(p, w0) if and only if , for z ∈ ∆,

Re
[

(z − p)(1− pz)f ′(z)
f(z)− w0

]
< 0 .

P r o o f. Suppose f is a member of S(p) and let

g(z) = f

(
z + p

1 + pz

)
.
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f is a member of Σs(p, w0) if and only if C \ g(∆) is starlike with respect
to w0. This is the case if and only if F (z) = g(z) − w0 maps ∆ onto the
complement of a set which is starlike with respect to the origin. Since F has
its pole at the origin, C \ F [∆] is starlike with respect to the origin if and
only if Re[zF ′(z)/F (z)] < 0 for z ∈ ∆. The last inequality is true if and
only if

Re
[(

z − p
1− pz

)
F ′
(
z − p
1− pz

)/
F

(
z − p
1− pz

)]
< 0

for z ∈ ∆. A straightforward computation gives(
z − p
1− pz

)
F ′
(
z − p
1− pz

)/
F

(
z − p
1− pz

)
=

(z − p)(1− pz)f ′(z)
(1− p2)(f(z)− w0)

and the theorem follows.

Theorem 7. Σs(p, w0) = Σ∗(p, w0) for all p, 0 < p < 1, and all w0 6= 0.

P r o o f. Let f be a member of Σ∗(p, w0) and

P (z) =
pz

1− pz
− p

z − p
− zf ′(z)
f(z)− w0

,

then ReP (z) > 0 for z ∈ ∆ and P (0) = 1. From this we obtain

(5.1)
(z − p)(1− pz)f ′(z)

f(z)− w0
= − (z − p)(1− pz)P (z) + p(1− z2)

z
.

Let 0 < r < 1 and

Qr(z) =
(z − p)(1− pz)P (rz) + p(1− z2)

z
,

then Qr(z) is analytic for |z| ≤ 1, and

ReQr(z) = |1− pz|2 ReP (rz) > 0

for |z| = 1. Thus ReQr(z) > 0 for z ∈ ∆. If we let r → 1, we obtain

(5.2) Re
[

(z − p)(1− pz)P (z) + p(1− z2)
z

]
≥ 0 .

However, the expression on the left side of (5.2) is strictly positive for z = p.
Thus equality cannot occur in (5.2). Hence from (5.1),

Re
[

(z − p)(1− pz)f ′(z)
f(z)− w0

]
< 0

for z ∈ ∆. Thus by Theorem 6, f is a member of Σs(p, w0).
Conversely, suppose f is a member of Σs(p, w0) and let

P (z) = − (z − p)(1− pz)f ′(z)
f(z)− w0

,
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then ReP (z) > 0 for z ∈ ∆ and P (p) = 1− p2. We obtain

(5.3)
pz

1− pz
− p

(z − p)
− zf ′(z)
f(z)− w0

=
zP (z)− p(1− z2)

(z − p)(1− pz)
.

By Lemma 2 the real part of the expression on the right side of (5.3) is
strictly positive for z in ∆. Thus f is a member of Σ∗(p, w0).

Miller [9] has given some estimates of coefficients in the expansion (1.1)
if f is a member of Σ∗(p, w0) = Σs(p, w0). We will next give sharp bounds
on a few coefficients in the expansion (1.2).

Theorem 8. If f(z) is a member of Σ∗(p, w0) and has expansion (1.2)
for |z − p| < 1− p then

|a0 − w0| ≤
2 + p

1− p2
|a−1|(5.4)

and

|a1| ≤
|a−1|

(1− p2)2
(5.5)

Both inequalities are sharp.

P r o o f. We first prove inequality (5.5). Let

P (z) =
−(z − p)(1− pz)f ′(z)

f(z)− w0
,

then ReP (z) > 0 for z ∈ ∆ and P (p) = 1− p2. Let

P (z) = (1− p2) +
∞∑
n=1

cn(z − p)n

for |z − p| < 1− p. Comparing coefficients on both sides of the equation

(f(z)− w0)P (z) = −(z − p)(1− pz)f ′(z) ,

we obtain

a−1c1 + (1− p2)(a0 − w0) = − pa−1 ,(5.6)
a−1c2 + (a0 − w0)c1 + (1− p2)a1 = − a1(1− p2) .(5.7)

Combining (5.6) and (5.7), we eventually obtain

(5.8) −2(1− p2)2a1 = a−1[(1− p2)c2 − pc1 − c21] .

We now claim that |(1− p2)c2 − pc1 − c21| ≤ 2. To prove this, let

Q(z) =
1

1− p2
P

(
z + p

1 + pz

)
,
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then ReP (z) > 0 for z ∈ ∆ and Q(0) = 1. Thus [11] there exists m(t)
increasing on [0, 2π] with

∫ 2π

0
dm(t) = 1, such that

1
1− p2

P

(
z + p

1 + pz

)
=

2π∫
0

1 + eitz

1− eitz
dm(t) .

Thus

P (z) = (1− p2)
2π∫
0

(1− pz) + eit(z − p)
(1− pz)− eit(z − p)

dm(t) .

Expanding the integrand in powers of z − p and integrating we obtain

c1 = 2
2π∫
0

eit dm(t)

and

c2 =
2

1− p2

2π∫
0

(e2it + peit) dm(t) =
2

1− p2

2π∫
0

e2it dm(t) +
pc1

1− p2
.

Thus

(5.9) (1− p2)c2 − pc1 − c21 = 2
2π∫
0

e2it dm(t)− c21 .

Now let

T (z) =
2π∫
0

1 + eitz

1− eitz
dm(t) .

Then ReT (z) > 0 for z ∈ ∆ and T (0) = 1. If

T (z) = 1 + p1z + p2z
2 + . . . , z ∈ ∆ ,

then

p1 = 2
2π∫
0

eit dm(t) = c1 and p2 = 2
2π∫
0

e2it dm(t) .

Thus from (5.9),

(1− p2)c2 − pc1 − c21 = p2 − p2
1 .

But it is known [6] that |p2 − p2
1| ≤ 2. Thus

|(1− p2)c2 − pc1 − c21| ≤ 2 .

Therefore from (5.8) we obtain

2(1− p2)2|a1| ≤ 2|a−1| ,

which is (5.5).
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Next, from (5.6),

|a0 − w0| =
|a−1||c1 + p|

1− p2
=
|a−1||p1 + p|

1− p2
≤ |a−1|(2 + p)

1− p2
.

To see sharpness, consider

f(z) = w0 + pw0
(1− z)2

(z − p)(1− pz)
.

Since
(z − p)(1− pz)f ′(z)

f(z)− w0
= −(1− p2)

1 + z

1− z
,

f(z) is a member of Σs(p, w0). Moreover, C\f [∆] is the line segment ξ= tw0,
(1 + p2)/(1 + p)2 ≤ t ≤ (1 + p2)/(1− p)2. Also, for |z − p| < 1− p,

f(z) =
pw0(1− p)

(1 + p)(z − p)

+
[
w0 +

p(p− 2 + p2)
(1 + p)(1− p2)

w0

]
+

pw0

(1− p)(1 + p)3
(z − p) + . . . ,

from which we can see that equality is attained in (5.4) and (5.5).

Theorem 9. With the notation of Theorem 8,

|a−1| ≤
p(1− p)

1 + p
|w0|

and the inequality is sharp.

P r o o f. With P (z) as in the proof of Theorem 8,
d

dz
log(z − p)(f(z)− w0) =

(1− pz)− P (z)
(z − p)(1− pz)

.

Integrating, we obtain

f(z)− w0 =
pw0

z − p
exp

z∫
0

(1− pξ)− P (ξ)
(ξ − p)(1− pξ)

dξ .

Thus

a−1 = lim
z→p

(z − p)(f(z)− w0) = pw0 exp
p∫

0

(1− pξ)− P (ξ)
(ξ − p)(1− pξ)

dξ

and

(5.10) |a−1| = p|w0| exp
p∫

0

(1− pξ)− ReP (ξ)
(ξ − p)(1− pξ)

dξ .

We can write

P (z) = (1− p2)Q
(
z − p
1− pz

)
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where ReQ(z) > 0 for z ∈ ∆ and Q(0) = 1. Using the well-known inequality
ReQ(z) ≥ (1− |z|)/(1 + |z|), we obtain for ξ real and 0 ≤ ξ ≤ p,

ReP (ξ) ≥ (1− p2)
1−

∣∣∣∣ ξ − p1− pξ

∣∣∣∣
1 +

∣∣∣∣ ξ − p1− pξ

∣∣∣∣(5.11)

= (1− p2)
1− p− ξ

1− pξ

1 +
p− ξ
1− pξ

= (1− p)2 1 + ξ

1− ξ
.

Combining (5.10) and (5.11) gives

|a−1| ≤ p|w0| exp
p∫

0

(1− pξ)− (1− p)2 1 + ξ

1− ξ
(ξ − p)(1− pξ)

dξ

= p|w0| exp
p∫

0

pξ + (p− 2)
(1− ξ)(1− pξ)

dξ

= p|w0| exp
p∫

0

(
−2

1− ξ
+

p

1− pξ

)
dξ = p|w0|

(
1− p
1 + p

)
,

which is the inequality to be proven. Equality is attained by the function
given in Theorem 8.

Corollary. With notation of Theorem 8,

|a0 − w0| ≤
p(p+ 2)
(1 + p)2

|w0|

and
|a1| ≤

p

(1− p)(1 + p)3
|w0| .

Both inequalities are sharp.
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