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Proper intersection multiplicity
and regular separation of analytic sets

by Ewa Cygan and Piotr Tworzewski (Kraków)

Abstract. We consider complex analytic sets with proper intersection. We find their
regular separation exponent using basic notions of intersection multiplicity theory.

1. Separation. This part of the paper is the straightforward gener-
alization of the corresponding section in [8] (cf. [4], IV.7). Let M be an
m-dimensional normed complex vector space and X,Y closed sets in an
open subset G of M . For p > 0, we say that X and Y are p-separated at
a ∈ G if a ∈ X ∩ Y and

%(z,X) + %(z, Y ) ≥ c%(z,X ∩ Y )p,

in a neighbourhood of the point a, for some c > 0. (%(·, Z) denotes the
distance function to the set Z ⊂M).

Let us start with the following obvious lemma (cf. [4], [8]).

Lemma 1.1 Let H1 ⊂ G and H2 be open subsets of normed , finite-
dimensional complex vector spaces and let f : H1 → H2 be a biholomor-
phism. Then closed subsets X and Y of G are p-separated at a point a ∈ H1

if and only if f(X ∩H1) and f(Y ∩H1) are p-separated at f(a).

By the above lemma we can consider p-separation for closed subsets
of complex manifolds. Let us mention that in this paper all manifolds are
assumed to be second-countable.

Namely, we say that closed subsets X and Y of an m-dimensional com-
plex manifold M are p-separated at a ∈M if for some (and hence for every)
chart ϕ : Ω → G ⊂ Cm such that a ∈ Ω, the sets ϕ(X ∩Ω) and ϕ(Y ∩Ω),
closed in G, are p-separated at ϕ(a).
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Lemma 1.2 (cf. [3], part 18). Let G be an open subset of a normed finite-
dimensional complex vector space. Suppose that a ∈ X ∩ Y is an accumu-
lation point of X \ Y and let p > 0. Then X and Y are p-separated at a if
and only if there exist a neighbourhood U of a and c > 0 such that

%(x, Y ) ≥ c%(x,X ∩ Y )p for x ∈ X ∩ U.

P r o o f. We must show that the above condition implies that X and Y
are p-separated at a. We can assume that c ∈ (0, 1) and U is contained in
the ball B(a, 1). Since a is an accumulation point of X \ Y , we have p ≥ 1.

Take r > 0 such that B(a, 4r) ⊂ U . If z ∈ B(a, r) then there exist
x ∈ X ∩ B(a, 2r) and y ∈ Y ∩ B(a, 2r) such that %(z,X) = |z − x| and
%(z, Y ) = |z − y|. Therefore

l := %(z,X) + %(z, Y ) ≥ |x− y| ≥ %(x, Y ) ≥ c%(x,X ∩ Y )p.

Let w be a point of (X ∩ Y )∩B(a, 4r) for which %(x,X ∩ Y ) = |x−w|.
Then l ≥ c|x−w|p. Moreover, l ≥ %(z,X) = |z− x| ≥ c|z− x|p. Combining
these inequalities we deduce that

l ≥ c

2
(|x− w|p + |z − x|p) ≥ c

2p
|z − w|p ≥ c

2p
%(z,X ∩ Y )p,

which completes the proof.

Lemma 1.3. Let M be a complex manifold. If a ∈M and p > 0 then the
following conditions are equivalent :

(1) X and Y are p-separated at a,
(2) X × Y and ∆M are p-separated at (a, a),

where ∆M = {(x, x) ∈M2 : x ∈M} is the diagonal in M2.

P r o o f. Without loss of generality we can assume that M is an open
subset of a normed complex vector space N with dimN ≥ 1, and take the
norm |(x, y)| = |x|+ |y| in N2. Observe that for z ∈M ,

%((z, z), X × Y ) = %(z,X) + %(z, Y ),

and

%((z, z), (X × Y ) ∩∆M ) = 2%(z,X ∩ Y ).

Now Lemma 1.2 completes the proof.

2. Special descriptions of analytic sets. Let us start with the fol-
lowing general lemma.

Lemma 2.1. Suppose that k, d are positive integers, r = (k − 1)d + 1
and L1, . . . , Lr are linear forms on Ck such that Li1 , . . . , Lik are linearly
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independent for i1, . . . , ik ∈ {1, . . . , r} with is 6= it for s 6= t. Define

Λ : (Ck)d 3 (v1, . . . , vd)→
( d∏
i=1

L1(vi), . . . ,
d∏
i=1

Lr(vi)
)
∈ Cr.

Then there exists a positive constant A > 0 such that |Λ(v1, . . . , vd)| ≥
A|v1| · . . . · |vd| for v1, . . . , vd ∈ Ck.

P r o o f. It is easy to verify that Λ(v1, . . . , vd) = 0 if and only if
∏d
i=1 |vi|

= 0. Since Λ : (Ck)d → Cr is a d-linear mapping our lemma follows by a
standard calculation.

Now, let D be an open connected subset in Cn, Z a pure n-dimensional
analytic subset of D×Ck such that the natural projection π|Z : Z 3 (x, y)→
x ∈ D is proper. Then the mapping π|Z : Z → D is a so-called branched
covering. In particular, it has the following properties:

1) π|Z is surjective and open,
2) there exist a proper analytic subset S ofD and a positive integer d such

that the mapping π|Z\π−1(S) : Z \π−1(S)→ D \S is locally biholomorphic,
and

#(π|Z)−1(x) = d if x ∈ D \ S,
#(π|Z)−1(x) < d if x ∈ S.

The set D \ S is called the regular set of π|Z and d its multiplicity (sheet
number).

Each set Z as above has a special description, especially useful from the
point of view of regular separation.

Proposition 2.2. There exists a holomorphic mapping F : D×Ck → Cr,
r = (k − 1)d+ 1, such that

1) F−1(0) = Z,
2) |F (z)| ≥ %(z, (π|Z)−1(π(z)))d for z ∈ D × Ck.

P r o o f. Let L1, . . . , Lr be linear forms on Ck satisfying the assumptions
of Lemma 2.1. For every s ∈ {1, . . . , r} define

ΦLs
: D × Ck 3 (x, y)→ (x, Ls(y)) ∈ D × C, ZLs

= ΦLs
(Z).

It is easy to show (cf. [9]) that the projection π̃|ZLs
: ZLs

3(x, t)→x∈D
is proper. We can assume, by changing the forms if necessary, that the
multiplicity of the branched covering π̃|ZLs

is equal to d for all s ∈ {1, . . . , r}.
There exist holomorphic functions as1, . . . , a

s
d on D such that

ZLs
= {(x, t) ∈ D × C : Ps(x, t) = td + as1(x)td−1 + . . .+ asd(x) = 0}

for s = 1, . . . , r.
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Define a holomorphic mapping

F1 : D × Ck 3 (x, y)→ (P1(x, L1(y)), . . . , Pr(x, Lr(y))) ∈ Cr.

It follows immediately that F−1
1 (0) = Z. To prove the second condition we

fix (x, y) ∈ D × Ck such that x is a regular point of the branched covering
π|Z : Z → D. If (π|Z)−1(x) = {(x, yi) : i = 1, . . . , d} then Ps(x, t) =
(t− Ls(y1)) · . . . · (t− Ls(yd)), s = 1, . . . , r, and so

F1(x, y) =
( d∏
i=1

L1(y − yi), . . . ,
d∏
i=1

Lr(y − yi)
)
.

Now, Lemma 2.1 implies

|F1(x, y)| ≥ A|y − y1| · . . . · |y − yd| ≥ A%(y, {y1, . . . , yd})d.

By continuity we can extend this inequality to all points z = (x, y) ∈ D×Ck.
It is clear that F = A−1F1 is the required mapping and the proof is complete.

3. Proper intersections. For the convenience of the reader we recall
some basic facts on proper intersections of analytic sets.

Let X and Y be pure dimensional analytic subsets of a complex manifold
M of dimension m. We say that X and Y meet properly on M if

dim(X ∩ Y ) = dimX + dimY −m.

Then we have the intersection product X ·Y of X and Y which is an analytic
cycle on M defined by the formula

X · Y =
∑
C

i(X · Y,C) C,

where the summation extends over all analytic components C of X ∩Y and
i(X · Y,C) denotes the intersection multiplicity along the component C in
the sense of Draper ([2], Def. 4.5; cf. [10]). Such multiplicities are positive
integers.

Now, let M be a complex manifold and let Z be a pure n-dimensional
analytic subset of M . For a ∈M we denote by dega Z the degree of Z at a
(see [2], p. 194). This degree is equal to the so-called Lelong number of Z
at a.

In this paper we will consider a natural extension of this definition to
n-dimensional analytic cycles. Namely, if A =

∑
C αCC is an n-dimensional

analytic cycle on M then the sum

degaA =
∑
C

αC dega C

is well defined and we call it the degree of the cycle A at the point a.
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4. Main results. Let us begin with a general useful fact for branched
coverings.

Theorem 4.1. Let D be an open connected subset of Cn and let Z be
a pure n-dimensional analytic subset of D × Ck such that π|Z : Z → D is
proper with multiplicity d. Suppose that E is closed in D and V = E × Ck.
Then Z and V are d-separated at every a ∈ Z ∩ V .

P r o o f. Fix a ∈ Z ∩ V and r > 0 such that B(a, 2r) ⊂ D × Ck. By the
mean value theorem there exists C > 0 such that |F (z′)−F (z′′)| ≤ C|z′−z′′|
for z′, z′′ ∈ B(a, 2r), where F is the function from Proposition 2.2.

For z ∈ B(a, r)∩V there is w ∈ Z ∩B(a, 2r) such that %(z, Z) = |z−w|.
Then

%(z, Z) = |z − w| ≥ C−1|F (z)− F (w)|
= C−1|F (z)| ≥ C−1%(z, (π|Z)−1(π(z)))d.

But (π|Z)−1(π(z)) ⊂ Z ∩ V and so

%(z, Z) ≥ C−1%(z, Z ∩ V )d for z ∈ B(a, r) ∩ V.

Now, Lemma 1.2 implies that Z and V are d-separated at a.

We can now prove our main result.

Theorem 4.2. Let M be a complex manifold and let X, Y be pure di-
mensional analytic subsets of M. Suppose that X and Y meet properly on
M , a ∈ X ∩ Y and p = dega(X · Y ). Then X and Y are p-separated at a.

P r o o f. Consider the intersection of X × Y and ∆M in M ×M . Write
n = dim(X × Y ) = dimX + dimY , k = 2m− n and suppose that G, H, W
are open unit balls in Cn−m, Cm, Ck respectively. Define D = G×H.

By ([2], Prop. 4.6, Cor. 5.2) there exists a chart ϕ : Ω → D×W defined
on an open neighbourhood Ω of b = (a, a) in M ×M such that:

(1) Z = ϕ(Ω∩(X×Y )) is an analytic subset of D×Ck of pure dimension
n such that the natural projection π|Z : Z → D is proper,

(2) (π|Z)−1(0) = {0} = ϕ(b),
(3) ϕ(Ω ∩∆M ) = G× {0} ×W ,
(4) deg0(Z · (0×W )) = p = dega(X · Y ).

Observe that the multiplicity of the branched covering π|Z : Z → D is p
and so, by Theorem 4.1, the sets Z and (G×{0})×Ck are p-separated at 0.
Then X × Y and ∆M are p-separated at b = (a, a). Now Lemma 1.3 shows
that X and Y are p-separated at a and the proof is complete.
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