Some families of pseudo-processes

by J. Klapyta (Kraków)

Abstract. We introduce several types of notions of dispersive, completely unstable, Poisson unstable and Lagrange unstable pseudo-processes. We try to answer the question of how many (in the sense of Baire category) pseudo-processes with each of these properties can be defined on the space \mathbb{R}^m . The connections are discussed between several types of pseudo-processes and their limit sets, prolongations and prolongational limit sets. We also present examples of applications of the above results to pseudo-processes generated by differential equations.

I. Introduction. The notion of the pseudo-process is a direct generalization of the notion of the process introduced by Dafermos in [2].

Let X be a non-empty set, (G, +) be an abelian semi-group with neutral element 0, and H be a sub-semi-group of G such that $0 \in H$.

DEFINITION 1.1 (see [6]). The quadruple (X, G, H, μ) is said to be a *pseudo-process* iff μ is a mapping from $G \times X \times H$ into X such that

(1.1)
$$\mu(t,x,0) = x,$$

(1.2)
$$\mu(t+s,\mu(t,x,s),r) = \mu(t,x,r+s)$$

for all $t \in G$, $x \in X$, $s, r \in H$.

DEFINITION 1.2 (see [8]). The triple (X, H, π) is said to be a *pseudo-dynamical semi-system* iff π is a mapping from $H \times X$ into X such that

(1.3)
$$\pi(0,x) = x,$$

(1.4)
$$\pi(s, \pi(r, x)) = \pi(s + r, x)$$

for all $x \in X$, $s, r \in H$.

It is known that we can replace a pseudo-process by a pseudo-dynamical semi-system (we will write briefly "a pseudo-dynamical system") analogously to the transition from non-autonomous to autonomous systems of

Key words and phrases: topological dynamics, dispersiveness, unstability, stability. Research supported by Polish scientifi grant 2-1070-91-01.

 $^{1991\} Mathematics\ Subject\ Classification:\ 54H20,\ 34C35.$

J. Kłapyta

ordinary differential equations. For a given pseudo-process (X, G, H, μ) we define the pseudo-dynamical system (Y, H, π) , where

(1.5)
$$Y := G \times X,$$

(1.6)
$$\pi(s,(t,x)) := (t+s,\mu(t,x,s)) \quad \text{for } (s,(t,x)) \in H \times Y.$$

In particular, we can reduce problems concerning stability for pseudoprocesses to corresponding problems for pseudo-dynamical systems. This idea is presented in the paper of A. Pelczar [6].

However, we will not use this method in the present paper. Limit sets and prolongational limit sets are empty for the pseudo-dynamical system (Y, H, π) defined in (1.5), (1.6). Therefore, systems defined in this way are always dispersive, completely unstable, Poisson unstable and Lagrange unstable. So, if for a given pseudo-process μ we investigate problems associated with limit sets and prolongational limit sets it is necessary to consider the pseudo-process μ itself, and not the pseudo-dynamical system (Y, H, π) defined above.

Therefore we try to transfer the methods used for investigation of dynamical systems (see [5]) to pseudo-processes. We show differences and resemblances between the results presented in [5] and in this paper.

II. Connections between pseudo-processes and their limit sets, prolongations and prolongational limit sets. Unless otherwise stated, we assume throughout the paper that the triple (X, G, H) satisfies the following assumption:

(A) (X, d) is a metric space, $(G, +, \prec)$ is a topological, ordered, abelian semi-group with neutral element 0 and with topology induced by an ordering relation which does not admit the last element, $(H, +, \prec)$ is a sub-semi-group of G (of the same type as G).

Let $\{s_n\} \subset H$ be a sequence of elements of H. We say that $s_n \to \infty$ if for every $s \in H$ there is $n_0 \in \mathbb{N}$ such that $s \prec s_n$ for every $n \ge n_0$.

Let (X, G, H, μ) be a pseudo-process and $(t, x) \in G \times X$.

DEFINITION 2.1 (see [7]). The set

(2.1)
$$\Lambda_{\mu}(t,x) := \{ y \in X : \exists \{s_n\} \subset H, s_n \to \infty$$

such that
$$\mu(t, x, s_n) \to y$$
 as $n \to \infty$

is called the *limit set* for (t, x).

DEFINITION 2.2 (see [7]). The set

$$(2.2) \quad D_{\mu}(t,x) := \{ y \in X : \exists \{t_n\} \subset G, \ \exists \{x_n\} \subset X, \ \exists \{s_n\} \subset H \\ \text{such that } t_n \to t, \ x_n \to x \text{ and } \mu(t_n, x_n, s_n) \to y \text{ as } n \to \infty \}$$

is called the *prolongation* of the point (t, x).

Analogously to the different types of prolongations of the point (t, x)(see the definitions of $D^1_{\mu}(t,x)$ and $D^2_{\mu}(t,x)$ in [7]) we can introduce

DEFINITION 2.3. The sets

$$(2.3) \quad J_{\mu}(t,x) := \{ y \in X : \exists \{t_n\} \subset G, \ \exists \{x_n\} \subset X, \ \exists \{s_n\} \subset H \\ \text{such that } t_n \to t, \ x_n \to x, \ s_n \to \infty \text{ and } \mu(t_n, x_n, s_n) \to y \text{ as } n \to \infty \},$$

(2.4)
$$J^{1}_{\mu}(t,x) := \{ y \in X : \exists \{x_n\} \subset X, \exists \{s_n\} \subset H \text{ such that} \\ x_n \to x, \ s_n \to \infty \text{ and } \mu(t,x_n,s_n) \to y \text{ as } n \to \infty \},$$

(2.5)
$$J^{2}_{\mu}(t,x) := \{ y \in X : \exists \{t_n\} \subset G, \exists \{s_n\} \subset H \text{ such that} \\ t_n \to t, \ s_n \to \infty \text{ and } \mu(t_n, x, s_n) \to y \text{ as } n \to 0 \}$$

$$\mu \to t, \ s_n \to \infty \text{ and } \mu(t_n, x, s_n) \to y \text{ as } n \to \infty$$

are called the prolongational limit set, the (1)-prolongational limit set and the (2)-prolongational limit set for (t, x) respectively.

 $\operatorname{Remark} 2.1$. If a map μ does not depend on the first variable then

$$J^{1}_{\mu}(t,x) = J_{\mu}(t,x) = J_{\mu}(0,x),$$

$$J^{2}_{\mu}(t,x) = \Lambda_{\mu}(t,x) = \Lambda_{\mu}(0,x)$$

for all $(t, x) \in G \times X$ (see also (3.1)).

DEFINITION 2.4. The set

(2.6)
$$\mu[t,x] := \{\mu(t,x,s) : s \in H\}$$

is called the *trajectory* of μ which starts at (t, x).

If we consider one fixed pseudo-process μ we will write for short $\Lambda(t, x)$, $D(t,x), J(t,x), \ldots$ instead of $A_{\mu}(t,x), D_{\mu}(t,x), J_{\mu}(t,x), \ldots$ respectively.

Let (X, G, H, μ) be a pseudo-process and $(t, x) \in G \times X$ be fixed.

THEOREM 2.1. The sets $\Lambda(t, x)$, D(t, x) and J(t, x) are closed.

Proof. We only prove the closedness of J(t, x). The proof of the closedness of the sets $\Lambda(t, x), D(t, x)$ is presented in [7].

Let $\{y_n\} \subset J(t,x)$ and $y_n \to y$. From the definition of J(t,x) it follows that for every $n \in \mathbb{N}$ there are sequences $\{t_k^n\} \subset G, \{x_k^n\} \subset X, \{s_k^n\} \subset H$ such that $t_k^n \to t, x_k^n \to x, s_k^n \to \infty$ and $\mu(t_k^n, x_k^n, s_k^n) \to y_n$ as $k \to \infty$. Hence, for every $n \in \mathbb{N}$ there is $k_n \in \mathbb{N}$ such that

$$d(\mu(t_k^n, x_k^n, s_k^n), y_n) \le 1/n$$
 for each $k \ge k_n$

and

 $t_n := t_{k_n}^n \to t, \ x_n := x_{k_n}^n \to x, \ s_n := s_{k_n}^n \to \infty \quad \text{ as } n \to \infty.$ (2.7)

For every $\varepsilon > 0$ there is $n_0 \in \mathbb{N}$ such that for every $n \ge n_0$ we have

$$d(\mu(t_n, x_n, s_n), y) \le d(\mu(t_n, x_n, s_n), y_n) + d(y_n, y) \le \varepsilon_1$$

i.e. $\mu(t_n, x_n, s_n) \to y$ as $n \to \infty$. From (2.7) and (2.3) it follows that $y \in J(t, x)$, which completes the proof.

Remark 2.2. The sets $D^{i}(t,x)$ and $J^{i}(t,x)$ (i = 1,2) are also closed. The proof is analogous.

For any topological spaces Y and X we denote by $\mathcal{F}(Y, X)$ ($\mathcal{C}(Y, X)$) the family of all maps (continuous maps) from Y into X. Put

(2.8) $\mathcal{F} := \{ \mu \in \mathcal{F}(G \times X \times H, X) : (X, G, H, \mu) \text{ is a pseudo-process} \},\$

(2.9) $\mathcal{F}_1 := \{ \mu \in \mathcal{F} : \mu \in \mathcal{C}(\{t\} \times X \times \{s\}, X) \text{ for each } (t, s) \in G \times H \},$

(2.10) $\mathcal{F}_2 := \{ \mu \in \mathcal{F} : \text{ for every fixed } \tau \in H, \text{ the one-parameter family of } \max \mu(t, \cdot, \tau) : X \to X, \text{ with } t \in G, \text{ is equicontinuous} \},$

$$(2.11) \quad \mathcal{F}_3 := \{ \mu \in \mathcal{F} : \mu \in \mathcal{C}(G \times X \times H, X) \}$$

R e m a r k 2.3. The family \mathcal{F}_2 is the set of all maps for which the quadruple (X, G, H, μ) is a process in the sense of Dafermos (see [2]).

Let (X, d) be a metric space. We define the function $\varrho : \mathcal{F} \times \mathcal{F} \to \overline{\mathbb{R}}_+ := [0, +\infty]$ by

(2.12) $\varrho(\mu,\nu) := \sup\{d(\mu(t,x,s),\nu(t,x,s)) : (t,x,s) \in G \times X \times H\}$ for $\mu, \nu \in \mathcal{F}$.

Remark 2.4. If (X,d) is a metric space then (\mathcal{F}, ϱ_1) , $(\mathcal{F}_i, \varrho_1)$ (i = 1,2,3) with

(2.13)
$$\varrho_1(\mu,\nu) := \min(1,\varrho(\mu,\nu)) \quad \text{for } \mu,\nu \in \mathcal{F}$$

are metric spaces.

LEMMA 2.1. If (X, d) is a complete metric space then $(\mathcal{F}_i, \varrho_1)$ (i = 1, 2, 3) are complete metric spaces.

Proof. First we show that $(\mathcal{F}_1, \varrho_1)$ is complete if so is (X, d). Let $\{\mu_n\} \subset \mathcal{F}_1$ be a Cauchy sequence. There is a function $\mu \in \mathcal{F}(G \times X \times H, X)$ such that $\{\mu_n\}$ is uniformly convergent to μ . Hence $\mu \in \mathcal{C}(\{t\} \times X \times \{s\}, X)$ for each $(t, s) \in G \times H$, because μ_n has this property for every $n \in \mathbb{N}$. We have

$$\begin{aligned} |\mu_n(t+s,\mu_n(t,x,s),r) - \mu(t+s,\mu(t,x,s),r)| \\ &\leq |\mu_n(t+s,\mu_n(t,x,s),r) - \mu(t+s,\mu_n(t,x,s),r)| \\ &+ |\mu(t+s,\mu_n(t,x,s),r) - \mu(t+s,\mu(t,x,s),r)| \end{aligned}$$

for $(t, x, s, r) \in G \times X \times H \times H$ and (X, G, H, μ_n) is a pseudo-process for $n \in \mathbb{N}$, i.e. μ_n satisfies (1.1), (1.2). Hence (X, G, H, μ) is a pseudo-process, so $\mu \in \mathcal{F}_1$.

Analogously we prove the completeness of \mathcal{F}_2 and \mathcal{F}_3 .

For a non-empty metric space (X, d) we denote—as usual—by 2^X the family of all subsets of X and we put

$$\operatorname{Cl}(X) := \{ A \in 2^X : \overline{A} = A \}.$$

We define a function $\widetilde{d}:2^X\times 2^X\to\overline{\mathbb{R}}$ by the formulae

$$\widetilde{d}(\emptyset, A) := \begin{cases} 0 & \text{for } A = \emptyset, \\ \infty & \text{for } A \in 2^X \setminus \{\emptyset\}, \end{cases}$$
$$\widetilde{d}(A, B) := \max(\sup_{x \in A} d(x, B), \sup_{y \in B} d(y, A)) \quad \text{for } A, B \in 2^X \setminus \{\emptyset\}, \end{cases}$$

where $d(x, B) := \inf_{y \in B} d(x, y)$, i.e. \tilde{d} is the Hausdorff metric in $Cl(X) \setminus \{\emptyset\}$ (see [3]).

LEMMA 2.2. $(Cl(X), d_1)$ with

$$d_1(A, B) := \min(1, d(A, B)) \quad for \ A, B \in \operatorname{Cl}(X)$$

is a metric space.

In the sequel we shall consider pseudo-processes in $X = \mathbb{R}^m$.

THEOREM 2.2. For all $\mu, \nu \in \mathcal{F}, \delta \in \mathbb{R}$ and $W := \Lambda, D, J$ or $W_{\mu}(t, x) := \overline{\mu[t, x]}$ we have the implication

$$\varrho(\mu,\nu) \leq \delta \Rightarrow d(W_{\mu}(t,x), W_{\nu}(t,x)) \leq \delta \text{ for each } (t,x) \in G \times X.$$

Proof. We prove this theorem for $W = \Lambda$. The other cases are proved in the same way.

Let $\mu, \nu \in \mathcal{F}$ and $\varrho(\mu, \nu) \leq \delta$. First we suppose that $y \in \Lambda_{\mu}(t, x) \neq \emptyset$. In view of (2.1) there is a sequence $\{s_n\} \subset H$ such that $s_n \to \infty$ and $\mu(t, x, s_n) \to y$ as $k \to \infty$. So there is r > 0 such that $\mu(t, x, s_n) \in B(y, r)$ for all $n \in \mathbb{N}$. For every $n \in \mathbb{N}$ we have

$$d(\nu(t, x, s_n), y) \le d(\nu(t, x, s_n), \mu(t, x, s_n)) + d(\mu(t, x, s_n), y) \le \delta + r.$$

Hence, because of the boundedness of the sequence $\{\nu(t, x, s_n)\}$ there are $z \in \mathbb{R}^m$ and a subsequence $\{\nu(t, x, s_{n_k})\}$ such that

$$\nu(t, x, s_{n_k}) \to z \in \Lambda_{\nu}(t, x) \neq \emptyset \quad \text{as } k \to \infty.$$

For every $\varepsilon > 0$ there is $k_0 \in \mathbb{N}$ such that for each $k \ge k_0$ we have

$$d(y,z) \le d(y,\mu(t,x,s_{n_k})) + d(\mu(t,x,s_{n_k}),\nu(t,x,s_{n_k})) + d(\nu(t,x,s_{n_k}),z) \\ \le \delta + \varepsilon,$$

i.e. $d(y, z) \leq \delta$. So

$$d(y, \Lambda_{\nu}(t, x)) \le d(y, z) \le \delta$$
 for every $y \in \Lambda_{\mu}(t, x)$.

Analogously we can prove that

$$d(z, \Lambda_{\mu}(t, x)) \le d(z, y) \le \delta$$
 for every $z \in \Lambda_{\nu}(t, x)$

J. Kłapyta

Hence we obtain

$$d(\Lambda_{\mu}(t,x),\Lambda_{\nu}(t,x)) \le \delta$$

Let now $\Lambda_{\mu}(t,x) = \emptyset$. The hypothesis that there is $\nu \in \mathcal{F}$ such that $\varrho(\mu,\nu) = \delta < \infty$ and $\Lambda_{\nu}(t,x) \neq \emptyset$ gives a contradiction in view of the first part of the proof. This proves the theorem.

As in the theory of dynamical systems (see [5]) we can prove the following

THEOREM 2.3. For each $(t, x) \in G \times X$ and $W := \Lambda, D, J$ or $W_{\mu}(t, x) := \overline{\mu[t, x]}$ the map

 $W(t,x): F \ni \mu \to W_{\mu}(t,x) \in \operatorname{Cl}(X)$

is uniformly continuous from (\mathcal{F}, ϱ_1) to $(\operatorname{Cl}(X), d_1)$.

R e m a r k 2.5. The theorems analogous to Theorems 2.2 and 2.3 hold for $W := D^i, J^i \ (i = 1, 2)$ (see [7] and (2.4), (2.5) in this paper).

III. Dispersive, completely unstable, Poisson unstable and Lagrange unstable pseudo-processes. Suppose (X, G, H) satisfies assumption (A).

DEFINITION 3.1. A pseudo-process (X, G, H, μ) is called

(i) dispersive iff for each $x \in X$,

 $J_{\mu}(t,x) = \emptyset$ for every $t \in G$,

(ii) completely unstable iff each $x \in X$ is wandering, i.e.

 $x \notin J_{\mu}(t, x)$ for every $t \in G$,

(iii) Poisson unstable iff for each $x \in X$,

 $x \notin \Lambda_{\mu}(t, x)$ for every $t \in G$,

(iv) Lagrange unstable iff for each $x \in X$,

 $\mu[t, x]$ is not compact for every $t \in G$,

(v) Lagrange stable iff for each $x \in X$,

 $\overline{\mu[t,x]}$ is compact for every $t \in G$.

We can define corresponding weak notions by replacing "for every $t \in G$ " by "there is $t \in G$ ". For example:

DEFINITION 3.2. A pseudo-process (X, G, H, μ) is called *weakly dispersive* iff for each $x \in X$ there is $t \in G$ such that $J_{\mu}(t, x) = \emptyset$.

If we replace the set $J_{\mu}(t,x)$ by $J_{\mu}^{i}(t,x)$ we get the definition of (*i*)dispersive or (*i*)-weakly dispersive pseudo-processes (*i* = 1, 2).

These definitions agree with the analogous ones for dynamical systems (see [1], [8]).

Let (X, G, H, μ) be a pseudo-process and suppose μ does not depend on the first variable. Put

(3.1)
$$\pi(s,x) := \mu(t,x,s) \quad \text{for } (t,x,s) \in G \times X \times H.$$

The pseudo-dynamical system (X, H, π) defined in this way is dispersive, completely unstable, Poisson unstable, Lagrange unstable or Lagrange stable if and only if so is the pseudo-process (X, G, H, μ) .

We introduce the families of all maps μ for which the corresponding pseudo-processes have one of these properties:

- (3.2) $\mathcal{D} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is dispersive} \},\$
- (3.3) $\mathcal{K} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is completely unstable} \},\$
- (3.4) $\widetilde{\mathcal{P}} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is Poisson unstable} \},\$
- (3.5) $\widetilde{\mathcal{L}} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is Lagrange unstable} \},$
- (3.6) $\mathcal{L} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is Lagrange stable} \}.$

Remark 3.1. Directly from the definitions (3.2)–(3.4) it follows that $\mathcal{D} \subset \mathcal{K} \subset \widetilde{\mathcal{P}}$.

Remark 3.2. $\mathcal{K} \setminus \widetilde{\mathcal{L}} \neq \emptyset$, so the inclusion $\widetilde{\mathcal{P}} \subset \widetilde{\mathcal{L}}$ is not true in the theory of pseudo-processes, in contrast to the theory of dynamical systems (see [5]).

EXAMPLE 3.1. Let $(\mathbb{R}, \mathbb{R}, \mathbb{R}_+, \mu)$ be the pseudo-process generated by the equation

$$x' = \frac{bt}{(t^2 + a)(1 + \ln^2(t^2 + a))} \quad (a, b > 0).$$

Then $\overline{\mu[t,x]}$ is compact for every $(t,x) \in \mathbb{R}^2$. However, $x \notin \Lambda(t,x) = J(t,x) \neq \emptyset$ for all $(t,x) \in \mathbb{R}^2$, so $\mu \in \mathcal{K} \cap \mathcal{L} \neq \emptyset$ (see (3.3), (3.6)). Such a situation is impossible in the theory of dynamical systems.

Remark 3.3. We also have

$$\mathcal{D}_{w} \subset \mathcal{K}_{w} \subset \mathcal{P}_{w} \quad \text{and} \quad \mathcal{K}_{w} \cap \mathcal{L}_{w} \neq \emptyset,$$

where (w) denotes a weak condition. For example,

 $\mathcal{K}_{w} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is weakly completely unstable} \}.$

Remark 3.4. The inclusions $\mathcal{D} \subset \widetilde{\mathcal{L}}$, $\mathcal{D}_{w} \subset \widetilde{\mathcal{L}}_{w}$ are evident because for $(t, x) \in G \times X$ such that $\mu[t, x]$ is compact we get $\Lambda_{\mu}(t, x) \neq \emptyset$.

We have the same results for the families corresponding to the (i)-prolongational limit sets (i = 1, 2):

$$\mathcal{D}^i := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is } (i) \text{-dispersive} \}.$$

IV. A classification of pseudo-processes. Let $X = \mathbb{R}^m$. In the set \mathcal{F} (see (2.8)) we introduce an equivalence relation S. If $\mu, \nu \in \mathcal{F}$ then

(4.1)
$$(\mu,\nu) \in S \stackrel{\mathrm{df}}{\Leftrightarrow} \varrho(\mu,\nu) < \infty,$$

where ρ is defined by (2.12). We denote by F_{μ} the S-equivalence class of $\mu \in \mathcal{F}$, i.e.

$$\mathcal{F}/S := \{F_{\mu} : \mu \in \mathcal{F}\}.$$

Remark 4.1. If $F_* \subset \mathcal{F}$ and $\varrho_* := \varrho|_{F_*}$ gives a metric in F_* then $F_* \subset F_{\mu}$ for every $\mu \in F_*$. That is, for every $\mu \in \mathcal{F}$ the S-equivalence class F_{μ} is the largest subset F_* of \mathcal{F} (in the sense of inclusion) for which the restriction ϱ_* is a metric and $\mu \in F_*$.

THEOREM 4.1. The spaces \mathcal{F} and \mathcal{F}_i (i = 1, 2, 3) endowed with the uniform convergence topology are not connected (see (2.8)–(2.11)).

Proof. Let $\mu \in \mathcal{F}$ and $B(\mu, r) := \{\nu \in \mathcal{F} : \varrho(\mu, \nu) < r\}$. Then $F_{\mu} = \bigcup \{B(\nu, 1) : \nu \in F_{\mu}\}$ and $\mathcal{F} \setminus F_{\mu} = \bigcup \{F_{\nu} : \nu \notin F_{\mu}\}$. So F_{μ} is open and closed in the space (\mathcal{F}, ϱ_1) , where ϱ_1 is defined by (2.13). The set $F_{\mu} \cap \mathcal{F}_i$ is open and closed in the space $(\mathcal{F}_i, \varrho_1)$ (i = 1, 2, 3) (see Lemma 2.1). This finishes the proof.

Let $\{\chi_{tx} \subset \mathcal{F} : (t,x) \in G \times X\}$ be a family satisfying the condition (C) $(\mu \in \chi_{tx} \Leftrightarrow F_{\mu} \subset \chi_{tx})$ for every $(t,x) \in G \times X$.

LEMMA 4.1. Let $(t, x) \in G \times X$, $T \subset G$, $Y \subset X$. The sets χ_{tx} , $\bigcap \{\bigcup \{\chi_{tx} : t \in T\} : x \in Y\}$ and $\bigcup \{\bigcap \{\chi_{tx} : t \in T\} : x \in Y\}$ are open and closed in (\mathcal{F}, ϱ_1) .

This follows from condition (C) and the fact that the set F_{μ} is open.

Analogously to the theory of dynamical systems we show that the families

$$\mathcal{P}_{tx} := \{ \mu \in \mathcal{F} : x \in \Lambda_{\mu}(t, x) \}, \quad (t, x) \in G \times X, \\ \mathcal{C} \setminus \mathcal{K}_{tx} := \{ \mu \in \mathcal{F} : x \in J_{\mu}(t, x) \}, \quad (t, x) \in G \times X, \end{cases}$$

do not satisfy condition (C).

For other examples we refer the reader to [5].

By Theorem 2.2 we deduce that the families

(4.2)
$$\mathcal{A}_{tx} := \{ \mu \in \mathcal{F} : \overline{\mu[t, x]} \text{ compact} \}, \quad (t, x) \in G \times X,$$

(4.3)
$$\mathcal{B}_{tx} := \{ \mu \in \mathcal{F} : J_{\mu}(t, x) \neq \emptyset \}, \quad (t, x) \in G \times X,$$

satisfy condition (C).

From the above we obtain some important results on the families of pseudo-processes defined in the third section.

THEOREM 4.2. Let $W := \mathcal{D}, \mathcal{D}_{w}, \widetilde{\mathcal{L}}, \widetilde{\mathcal{L}}_{w}, \mathcal{L}, \mathcal{L}_{w}, \mathcal{D}^{i}$ or \mathcal{D}_{w}^{i} (i = 1, 2). The set W is both open and closed in the space \mathcal{F} endowed with the uniform convergence topology.

Proof. This follows directly from (4.2) and (4.3). We have, for example,

$$\mathcal{F} \setminus \mathcal{D} = \bigcup \{ \mathcal{B}_{tx} : (t, x) \in G \times X \},\$$
$$\mathcal{L}_{w} = \bigcap \left\{ \bigcup \{ \mathcal{A}_{tx} : t \in G \} : x \in X \right\}.$$

In view of Lemma 4.1 this proves closedness and openness of the sets \mathcal{D} and \mathcal{L}_{w} . The proof for the remaining sets is similar.

COROLLARY 4.1. The set \mathcal{D} is not dense in \mathcal{K} because $\mathcal{D} \neq \mathcal{K}$.

In virtue of theorems of Baire category theory (see [4]) and from Lemma 2.1 we get

THEOREM 4.3. Let $W := \mathcal{D}, \mathcal{D}_{w}, \widetilde{\mathcal{L}}, \widetilde{\mathcal{L}}_{w}, \mathcal{L}, \mathcal{L}_{w}, \mathcal{D}^{j}$ or \mathcal{D}_{w}^{j} (j = 1, 2). The set $W \cap F_{i}$ is of the second Baire category in the space $(\mathcal{F}_{i}, \varrho_{1})$ but it is not residual in this space (i = 1, 2, 3).

COROLLARY 4.2. Let $W := \mathcal{K}, \mathcal{K}_{w}, \mathcal{K}^{j}, \mathcal{K}^{j}_{w}, P \text{ or } \mathcal{P}_{w} \ (j = 1, 2)$. The set $W \cap \mathcal{F}_{i}$ is of the second Baire category in $(\mathcal{F}_{i}, \varrho_{1}) \ (i = 1, 2, 3)$.

We can prove that pseudo-processes are either dispersive (Lagrange unstable, Lagrange stable) for all functions belonging to F_{μ} or are not dispersive (Lagrange unstable, Lagrange stable) for all these functions. We have

THEOREM 4.4. Let $F_* \subset \mathcal{F}$ and suppose that $\varrho_* := \varrho|_{F_*}$ gives a metric in F_* . Then

$$F_* \cap W \neq \emptyset \Leftrightarrow F_* \subset W$$

for $W := \mathcal{D}, \mathcal{D}_{w}, \widetilde{\mathcal{L}}, \widetilde{\mathcal{L}}_{w}, \mathcal{L}, \mathcal{L}_{w}, \mathcal{D}^{i} \text{ and } \mathcal{D}_{w}^{i} (i = 1, 2).$

Proof. We prove this assertion for $W := \widetilde{\mathcal{L}}_{w}$. The other cases are similar. Let $\mu \in F_*$ and $\mu \notin \widetilde{\mathcal{L}}_{w}$. By (4.2) we have

$$\mathcal{F}\setminus\widetilde{\mathcal{L}}_{w} = \bigcup \Big\{ \bigcap \{\mathcal{A}_{tx} : t \in G\} : x \in X \Big\}.$$

Hence there is $x_0 \in X$ such that $\mu \in \mathcal{A}_{tx_0}$ for every $t \in G$. In view of Remark 4.1, $\mu \in F_* \subset F_{\mu}$ and because \mathcal{A}_{tx} satisfies condition (C), $F_{\mu} \subset \mathcal{A}_{tx_0}$ for every $t \in G$. So $F_* \subset \mathcal{F} \setminus \widetilde{\mathcal{L}}_{w}$, which finishes the proof for $W := \widetilde{\mathcal{L}}_{w}$.

COROLLARY 4.3. Let $W := \mathcal{D}, \mathcal{L}, \mathcal{L}$. In the quotient set \mathcal{F}/S we can introduce the following equivalence relation:

$$F_{\mu}(W) F_{\nu} \Leftrightarrow \mu, \nu \in W \text{ or } \mu, \nu \notin W.$$

Of course, we can also define in \mathcal{F}/S other relations of this type. For example,

$$F_{\mu} \sim F_{\nu} \Leftrightarrow \mu, \nu \in \mathcal{L} \text{ or } \mu, \nu \in \widetilde{\mathcal{L}} \text{ or } \mu, \nu \notin \mathcal{L} \cup \widetilde{\mathcal{L}}.$$

From Theorem 4.4 it follows that these relations are well defined, i.e. their definitions are independent of the choice of representatives of the classes F_{μ}, F_{ν} .

V. Examples. The results of Section IV can be applied to processes generated by differential equations.

DEFINITION 5.1. We say that a process $(\mathbb{R}^m, \mathbb{R}, \mathbb{R}_+, \mu)$ (we will write briefly μ) is generated by a differential equation

$$(5.1) x' = f(t,x)$$

if for every $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^m$ there exists exactly one, saturated to the right, solution $\varphi(t_0, x_0, \cdot)$ of the Cauchy problem

(5.2)
$$x' = f(t, x), \quad x(t_0) = x_0,$$

defined on the interval $[t_0, \infty)$ and

(5.3)
$$\mu(t, x, \tau) = \varphi(t, x, t + \tau)$$

for every $(t, x) \in \mathbb{R} \times \mathbb{R}^m, \tau \in \mathbb{R}_+$.

EXAMPLE 5.1. We consider the differential equation

$$(\varepsilon) x' = f_{\varepsilon}(t, x),$$

where $f_{\varepsilon}(t,x) = \varepsilon$ for every $(t,x) \in \mathbb{R}^2$ ($\varepsilon \in \mathbb{R}_+$). We have $\sup\{|f_{\varepsilon}(t,x) - f_0(t,x)| : (t,x) \in \mathbb{R}^2\} = \varepsilon$, but for the process μ_{ε} generated by the equation (ε) we get $\varrho(\mu_{\varepsilon},\mu_0) = \infty$ for $\varepsilon \neq 0$. It is easily seen that $\mu_{\varepsilon} \in \mathcal{D} \cap \widetilde{\mathcal{L}}$ for $\varepsilon \neq 0$ but $\Lambda_{\mu_0}(t,x) = J_{\mu_0}(t,x) = \overline{\mu_0[t,x]} = \{x\}$ for every $(t,x) \in \mathbb{R}^2$.

The above example shows that a small change of the right hand side of a differential equation can change the type of the process generated by this equation. This difficulty exists even for dynamical systems.

However, we can change the right hand side of a differential equation in a special way.

Let $x, \tilde{x} \in \mathbb{R}^m$ and $x = (x_1, \ldots, x_m), \tilde{x} = (\tilde{x}_1, \ldots, \tilde{x}_m)$. We will write

$$x \leq \widetilde{x}$$
 if $x_k \leq \widetilde{x}_k$ for $k = 1, \dots, m$,

and for every fixed $i \in \{1, \ldots, m\}$,

$$x \leq \widetilde{x}$$
 if $x \leq \widetilde{x}$ and $x_i = \widetilde{x}_i$.

DEFINITION 5.2 (see [9]). A function $f = (f_1, \ldots, f_m)$ from $\mathbb{R} \times \mathbb{R}^m$ to \mathbb{R}^m is said to satisfy *condition* (W₊) if for every $i \in \{1, \ldots, m\}$ and $x, \tilde{x} \in \mathbb{R}^m$,

(W₊)
$$x \stackrel{i}{\leq} \tilde{x} \Rightarrow f_i(t, x) \leq f_i(t, \tilde{x}) \text{ for } t \in \mathbb{R}.$$

LEMMA 5.1 (see [9]). Assume that $f : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m$ is continuous and satisfies condition (W_+) and μ is the process generated by the differential equation (5.1). Let $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^m$, set

$$\varphi(t) := \mu(t_0, x_0, t - t_0) \quad \text{for every } t \ge t_0$$

and suppose a function ψ from \mathbb{R} into \mathbb{R}^m is differentiable and satisfies the initial condition $\psi(t_0) = x_0$. Then

- (i) $\psi'(t) \leq f(t, \psi(t))$ for $t \geq t_0 \Rightarrow \psi(t) \leq \varphi(t)$ for $t \geq t_0$,
- (ii) $\psi'(t) \ge f(t, \psi(t))$ for $t \ge t_0 \Rightarrow \psi(t) \ge \varphi(t)$ for $t \ge t_0$.

From the above we get

THEOREM 5.1. Assume that f_i (i = 1, 2, 3) are continuous functions from $\mathbb{R} \times \mathbb{R}^m$ into \mathbb{R}^m , f_i (i = 1, 2) satisfy condition (W_+) and

$$f_1(t,x) \le f_3(t,x) \le f_2(t,x), \quad (t,x) \in \mathbb{R} \times \mathbb{R}^m.$$

Denote by μ_i the process generated by the differential equation $x' = f_i(t, x)$ (i = 1, 2, 3). Then

$$\mu_1 \in F_{\mu_2} \Rightarrow F_{\mu_1} = F_{\mu_2} = F_{\mu_3}.$$

Proof. This will be proved by showing that

$$\mu_1(t, x, \tau) \le \mu_3(t, x, \tau) \le \mu_2(t, x, \tau)$$

for every $(t, x) \in \mathbb{R} \times \mathbb{R}^m, \tau \in \mathbb{R}_+$.

Fix $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^m$ and $\tau \in \mathbb{R}_+$. Denote by $\varphi_i(t_0, x_0, \cdot)$ the solution of the Cauchy problem $x' = f_i(t, x), x(t_0) = x_0$. By Lemma 5.1,

$$\varphi_1(t_0, x_0, t) \le \varphi_3(t_0, x_0, t) \le \varphi_2(t_0, x_0, t)$$
 for every $t \ge t_0$.

In view of the definition of the process μ_i (see (5.3)) we have

$$\mu_i(t_0, x_0, \tau) = \varphi_i(t_0, x_0, \tau + t_0) \quad (i = 1, 2, 3),$$

which finishes the proof.

COROLLARY 5.1. Assume that $f : \mathbb{R} \times \mathbb{R}^m \to \mathbb{R}^m$ is continuous and there exist continuous functions g, f_1, f_2 from \mathbb{R} into \mathbb{R}^m for which

$$f_1(t) \le f(t,x) - g(t) \le f_2(t)$$
 for every $(t,x) \in \mathbb{R} \times \mathbb{R}^m$

and the function $\alpha \to \int_0^{\alpha} f_i(s) \, ds$ is bounded (i = 1, 2). Denote by μ, ν the processes generated by the differential equations x' = f(t, x), x' = g(t) respectively. Then $\mu \in F_{\nu}$.

J. Kłapyta

EXAMPLE 5.2. Let $a, b, c_i \in \mathbb{R}^m$ (i = 1, ..., m). Denote by μ, ν the processes generated by the differential equations

$$x' = f(t, x) := \left(\sum_{i=1}^{m} c_i \cos x_i\right) (1 + t^2)^{-1} + a + b \sin t,$$

$$x' = g(t) := a + b \sin t$$

respectively. There is $k \in \mathbb{R}^m$ such that for every $(t, x) \in \mathbb{R} \times \mathbb{R}^m$ we have

$$\frac{-k}{1+t^2} \le f(t,x) - g(t) \le \frac{k}{1+t^2}.$$

According to Corollary 5.1 we get $\mu \in F_{\nu}$. So, if $a \neq 0$ then $\mu \in \mathcal{D} \cap \widetilde{\mathcal{L}}$ and if a = 0 then $\mu \in \mathcal{L}$.

Define

(5.4)
$$\mathcal{P} := \{ \mu \in \mathcal{F} : (X, G, H, \mu) \text{ is Poisson stable, i.e.} \\ x \in \Lambda_{\mu}(t, x) \text{ for every } (t, x) \in G \times X \}.$$

R e m a r k 5.1. Let the assumptions of Theorem 5.1 be satisfied and suppose that for every $(t, x) \in \mathbb{R} \times \mathbb{R}^m$ there exists a sequence $\{\tau_n(t, x)\} \subset \mathbb{R}_+$ such that $\tau_n(t, x) \to \infty$ and $\mu_i(t, x, \tau_n(t, x)) \to x$ (i = 1, 2) as $n \to \infty$. Then $\mu_3 \in \mathcal{P}$.

EXAMPLE 5.3. Let $a>1,\,b\in\mathbb{R},\,v$ be a continuous bounded function from $\mathbb R$ into $\mathbb R$,

$$w(t) := c_s t^s + \dots + c_1 t + c_0 \quad (c_i \in \mathbb{R}, \ i = 1, \dots, s, \ s \in \mathbb{N}),$$
$$g(t) := w'(t)e^{-w(t)},$$
$$f(t, x) := \frac{bv(x)\cos t}{(1 + \ln^2(\sin t + a))(\sin t + a)} + g(t)$$

for $t, x \in \mathbb{R}$. There exist $k_i \in \mathbb{R}$ (i = 1, 2) such that for

$$f_i(t) := \frac{k_i \cos t}{(1 + \ln^2(\sin t + a))(\sin t + a)}$$

we have

$$f_1(t) \le f(t,x) - g(t) \le f_2(t)$$
 for $t, x \in \mathbb{R}$.

Denote by μ, ν, μ_i (i = 1, 2) the processes generated by the differential equations

$$x' = f(t, x), \quad x' = g(t), \quad x' = f_i(t) \quad (i = 1, 2)$$

respectively. Because the assumptions of Corollary 5.1 are satisfied we get $\mu \in F_{\nu}$. So, for $s \neq 0$, $c_s > 0$ we have

$$x \notin J_{\nu}(t,x) = \Lambda_{\nu}(t,x) \neq \emptyset,$$

hence $\nu \in \mathcal{K} \cap \mathcal{L}$ and $\mu \in F_{\nu} \subset \mathcal{L}$. If $s \neq 0, c_s < 0$ then $\mu \in F_{\nu} \subset \mathcal{D} \cap \widetilde{\mathcal{L}}$. For s = 0 we get $g \equiv 0$. Now we see that $\mu_i \in \mathcal{L} \cap \mathcal{P}$ (see (5.4)) and

$$\mu_i(t, x, 2n\pi) \to x \quad \text{as } n \to \infty,$$

for every $(t, x) \in \mathbb{R}^2$, i = 1, 2. In view of Theorem 5.1 and Remark 5.1 we have $\mu \in \mathcal{L} \cap \mathcal{P}$ for s = 0.

Remark 5.2. If a process μ does not depend on the first variable we have the dynamical system (X, H, π) defined by (3.1). In this case for other examples we refer the reader to [5].

References

- N. P. Bhatia and G. P. Szegö, Stability Theory of Dynamical Systems, Springer, Berlin, 1970.
- [2] C. M. Dafermos, An invariant principle for compact processes, J. Differential Equations 9 (1971), 239-252.
- [3] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [4] R. C. Haworth and R. A. McCoy, *Baire spaces*, Dissertationes Math. 141 (1977).
- [5] J. Kłapyta, A classification of dynamical systems, Ann. Polon. Math. 53 (1991), 109-121.
- [6] A. Pelczar, Stability questions in generalized processes and in pseudo-dynamical systems, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom Phys. 21 (1973), 541-549.
- [7] —, Limit sets and prolongations in pseudo-processes, Univ. Iagell. Acta Math. 27 (1988), 169–186.
- [8] —, General Dynamical Systems, Monographs of the Jagiellonian University, No. 293, Kraków, 1978 (in Polish).
- [9] J. Szarski, Differential Inequalities, PWN, Warszawa, 1967.

INSTITUTE OF MATHEMATICS JAGIELLONIAN UNIVERSITY REYMONTA 4 30-059 KRAKÓW, POLAND

> Reçu par la Rédaction le 30.11.1990 Révisé le 20.2.1992 et 2.2.1994