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Some families of pseudo-processes

by J. K lapyta (Kraków)

Abstract. We introduce several types of notions of dispersive, completely unstable,
Poisson unstable and Lagrange unstable pseudo-processes. We try to answer the question
of how many (in the sense of Baire category) pseudo-processes with each of these properties
can be defined on the space Rm. The connections are discussed between several types of
pseudo-processes and their limit sets, prolongations and prolongational limit sets. We also
present examples of applications of the above results to pseudo-processes generated by
differential equations.

I. Introduction. The notion of the pseudo-process is a direct general-
ization of the notion of the process introduced by Dafermos in [2].

Let X be a non-empty set, (G,+) be an abelian semi-group with neutral
element 0, and H be a sub-semi-group of G such that 0 ∈ H.

Definition 1.1 (see [6]). The quadruple (X,G,H, µ) is said to be a
pseudo-process iff µ is a mapping from G×X ×H into X such that

(1.1) µ(t, x, 0) = x,

(1.2) µ(t+ s, µ(t, x, s), r) = µ(t, x, r + s)

for all t ∈ G, x ∈ X, s, r ∈ H.

Definition 1.2 (see [8]). The triple (X,H, π) is said to be a pseudo-
dynamical semi-system iff π is a mapping from H ×X into X such that

(1.3) π(0, x) = x,

(1.4) π(s, π(r, x)) = π(s+ r, x)

for all x ∈ X, s, r ∈ H.
It is known that we can replace a pseudo-process by a pseudo-dynamical

semi-system (we will write briefly “a pseudo-dynamical system”) analo-
gously to the transition from non-autonomous to autonomous systems of
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ordinary differential equations. For a given pseudo-process (X,G,H, µ) we
define the pseudo-dynamical system (Y,H, π), where

(1.5) Y := G×X,
(1.6) π(s, (t, x)) := (t+ s, µ(t, x, s)) for (s, (t, x)) ∈ H × Y.

In particular, we can reduce problems concerning stability for pseudo-
processes to corresponding problems for pseudo-dynamical systems. This
idea is presented in the paper of A. Pelczar [6].

However, we will not use this method in the present paper. Limit sets
and prolongational limit sets are empty for the pseudo-dynamical system
(Y,H, π) defined in (1.5), (1.6). Therefore, systems defined in this way
are always dispersive, completely unstable, Poisson unstable and Lagrange
unstable. So, if for a given pseudo-process µ we investigate problems associ-
ated with limit sets and prolongational limit sets it is necessary to consider
the pseudo-process µ itself, and not the pseudo-dynamical system (Y,H, π)
defined above.

Therefore we try to transfer the methods used for investigation of dy-
namical systems (see [5]) to pseudo-processes. We show differences and re-
semblances between the results presented in [5] and in this paper.

II. Connections between pseudo-processes and their limit sets,
prolongations and prolongational limit sets. Unless otherwise stated,
we assume throughout the paper that the triple (X,G,H) satisfies the fol-
lowing assumption:

(A) (X, d) is a metric space, (G,+,≺) is a topological, ordered, abelian
semi-group with neutral element 0 and with topology induced by an
ordering relation which does not admit the last element, (H,+,≺) is
a sub-semi-group of G (of the same type as G).

Let {sn} ⊂ H be a sequence of elements of H. We say that sn → ∞ if
for every s ∈ H there is n0 ∈ N such that s ≺ sn for every n ≥ n0.

Let (X,G,H, µ) be a pseudo-process and (t, x) ∈ G×X.

Definition 2.1 (see [7]). The set

(2.1) Λµ(t, x) := {y ∈ X : ∃{sn} ⊂ H, sn →∞
such that µ(t, x, sn)→ y as n→∞}

is called the limit set for (t, x).

Definition 2.2 (see [7]). The set

(2.2) Dµ(t, x) := {y ∈ X : ∃{tn} ⊂ G, ∃{xn} ⊂ X, ∃{sn} ⊂ H
such that tn → t, xn → x and µ(tn, xn, sn)→ y as n→∞}

is called the prolongation of the point (t, x).
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Analogously to the different types of prolongations of the point (t, x)
(see the definitions of D1

µ(t, x) and D2
µ(t, x) in [7]) we can introduce

Definition 2.3. The sets

(2.3) Jµ(t, x) := {y ∈ X : ∃{tn} ⊂ G, ∃{xn} ⊂ X, ∃{sn} ⊂ H
such that tn → t, xn → x, sn →∞ and µ(tn, xn, sn)→ y as n→∞},

(2.4) J1
µ(t, x) := {y ∈ X : ∃{xn} ⊂ X, ∃{sn} ⊂ H such that

xn → x, sn →∞ and µ(t, xn, sn)→ y as n→∞},
(2.5) J2

µ(t, x) := {y ∈ X : ∃{tn} ⊂ G, ∃{sn} ⊂ H such that
tn → t, sn →∞ and µ(tn, x, sn)→ y as n→∞}

are called the prolongational limit set , the (1)-prolongational limit set and
the (2)-prolongational limit set for (t, x) respectively.

R e m a r k 2.1. If a map µ does not depend on the first variable then

J1
µ(t, x) = Jµ(t, x) = Jµ(0, x),

J2
µ(t, x) = Λµ(t, x) = Λµ(0, x)

for all (t, x) ∈ G×X (see also (3.1)).

Definition 2.4. The set

(2.6) µ[t, x] := {µ(t, x, s) : s ∈ H}

is called the trajectory of µ which starts at (t, x).

If we consider one fixed pseudo-process µ we will write for short Λ(t, x),
D(t, x), J(t, x), . . . instead of Λµ(t, x), Dµ(t, x), Jµ(t, x), . . . respectively.

Let (X,G,H, µ) be a pseudo-process and (t, x) ∈ G×X be fixed.

Theorem 2.1. The sets Λ(t, x), D(t, x) and J(t, x) are closed.

P r o o f. We only prove the closedness of J(t, x). The proof of the closed-
ness of the sets Λ(t, x), D(t, x) is presented in [7].

Let {yn} ⊂ J(t, x) and yn → y. From the definition of J(t, x) it follows
that for every n ∈ N there are sequences {tnk} ⊂ G, {xnk} ⊂ X, {snk} ⊂ H
such that tnk → t, xnk → x, snk → ∞ and µ(tnk , x

n
k , s

n
k ) → yn as k → ∞.

Hence, for every n ∈ N there is kn ∈ N such that

d(µ(tnk , x
n
k , s

n
k ), yn) ≤ 1/n for each k ≥ kn

and

(2.7) tn := tnkn
→ t, xn := xnkn

→ x, sn := snkn
→∞ as n→∞.

For every ε > 0 there is n0 ∈ N such that for every n ≥ n0 we have

d(µ(tn, xn, sn), y) ≤ d(µ(tn, xn, sn), yn) + d(yn, y) ≤ ε,
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i.e. µ(tn, xn, sn) → y as n → ∞. From (2.7) and (2.3) it follows that y ∈
J(t, x), which completes the proof.

R e m a r k 2.2. The sets Di(t, x) and J i(t, x) (i = 1, 2) are also closed.
The proof is analogous.

For any topological spaces Y and X we denote by F(Y,X) (C(Y,X)) the
family of all maps (continuous maps) from Y into X. Put

F : = {µ ∈ F(G×X ×H,X) : (X,G,H, µ) is a pseudo-process},(2.8)
F1 : = {µ ∈ F : µ ∈ C({t} ×X × {s}, X) for each (t, s) ∈ G×H},(2.9)
F2 : = {µ ∈ F : for every fixed τ ∈ H, the one-parameter family of(2.10)

maps µ(t, ·, τ) : X → X, with t ∈ G, is equicontinuous},
F3 : = {µ ∈ F : µ ∈ C(G×X ×H,X)}.(2.11)

R e m a r k 2.3. The family F2 is the set of all maps for which the quad-
ruple (X,G,H, µ) is a process in the sense of Dafermos (see [2]).

Let (X, d) be a metric space. We define the function % : F ×F → R+ :=
[0,+∞] by

(2.12) %(µ, ν) := sup{d(µ(t, x, s), ν(t, x, s)) : (t, x, s) ∈ G×X ×H}
for µ, ν ∈ F .

R e m a r k 2.4. If (X, d) is a metric space then (F , %1), (Fi, %1) (i =
1, 2, 3) with

(2.13) %1(µ, ν) := min(1, %(µ, ν)) for µ, ν ∈ F
are metric spaces.

Lemma 2.1. If (X, d) is a complete metric space then (Fi, %1) (i = 1, 2, 3)
are complete metric spaces.

P r o o f. First we show that (F1, %1) is complete if so is (X, d). Let {µn}⊂
F1 be a Cauchy sequence. There is a function µ ∈ F(G ×X ×H,X) such
that {µn} is uniformly convergent to µ. Hence µ ∈ C({t} ×X × {s}, X) for
each (t, s) ∈ G×H, because µn has this property for every n ∈ N. We have

|µn(t+ s, µn(t, x, s), r)− µ(t+ s, µ(t, x, s), r)|
≤ |µn(t+ s, µn(t, x, s), r)− µ(t+ s, µn(t, x, s), r)|

+ |µ(t+ s, µn(t, x, s), r)− µ(t+ s, µ(t, x, s), r)|
for (t, x, s, r) ∈ G × X × H × H and (X,G,H, µn) is a pseudo-process for
n ∈ N, i.e. µn satisfies (1.1), (1.2). Hence (X,G,H, µ) is a pseudo-process,
so µ ∈ F1.

Analogously we prove the completeness of F2 and F3.
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For a non-empty metric space (X, d) we denote—as usual—by 2X the
family of all subsets of X and we put

Cl(X) := {A ∈ 2X : A = A}.

We define a function d̃ : 2X × 2X → R by the formulae

d̃(∅, A) : =
{

0 for A = ∅,
∞ for A ∈ 2X\{∅},

d̃(A,B) : = max(sup
x∈A

d(x,B), sup
y∈B

d(y,A)) for A,B ∈ 2X\{∅},

where d(x,B) := infy∈B d(x, y), i.e. d̃ is the Hausdorff metric in Cl(X)\{∅}
(see [3]).

Lemma 2.2. (Cl(X), d1) with

d1(A,B) := min(1, d̃(A,B)) for A,B ∈ Cl(X)

is a metric space.

In the sequel we shall consider pseudo-processes in X = Rm.

Theorem 2.2. For all µ, ν ∈ F , δ ∈ R and W := Λ,D, J or Wµ(t, x) :=
µ[t, x] we have the implication

%(µ, ν) ≤ δ ⇒ d̃(Wµ(t, x),Wν(t, x)) ≤ δ for each (t, x) ∈ G×X.
P r o o f. We prove this theorem for W = Λ. The other cases are proved

in the same way.
Let µ, ν ∈ F and %(µ, ν) ≤ δ. First we suppose that y ∈ Λµ(t, x) 6= ∅.

In view of (2.1) there is a sequence {sn} ⊂ H such that sn → ∞ and
µ(t, x, sn) → y as k → ∞. So there is r > 0 such that µ(t, x, sn) ∈ B(y, r)
for all n ∈ N. For every n ∈ N we have

d(ν(t, x, sn), y) ≤ d(ν(t, x, sn), µ(t, x, sn)) + d(µ(t, x, sn), y) ≤ δ + r.

Hence, because of the boundedness of the sequence {ν(t, x, sn)} there are
z ∈ Rm and a subsequence {ν(t, x, snk

)} such that

ν(t, x, snk
)→ z ∈ Λν(t, x) 6= ∅ as k →∞.

For every ε > 0 there is k0 ∈ N such that for each k ≥ k0 we have

d(y, z) ≤ d(y, µ(t, x, snk
)) + d(µ(t, x, snk

), ν(t, x, snk
)) + d(ν(t, x, snk

), z)
≤ δ + ε,

i.e. d(y, z) ≤ δ. So

d(y, Λν(t, x)) ≤ d(y, z) ≤ δ for every y ∈ Λµ(t, x).

Analogously we can prove that

d(z, Λµ(t, x)) ≤ d(z, y) ≤ δ for every z ∈ Λν(t, x).
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Hence we obtain
d̃(Λµ(t, x), Λν(t, x)) ≤ δ.

Let now Λµ(t, x) = ∅. The hypothesis that there is ν ∈ F such that %(µ, ν) =
δ <∞ and Λν(t, x) 6= ∅ gives a contradiction in view of the first part of the
proof. This proves the theorem.

As in the theory of dynamical systems (see [5]) we can prove the following

Theorem 2.3. For each (t, x) ∈ G×X and W := Λ,D, J or Wµ(t, x) :=
µ[t, x] the map

W (t, x) : F 3 µ→Wµ(t, x) ∈ Cl(X)
is uniformly continuous from (F , %1) to (Cl(X), d1).

R e m a r k 2.5. The theorems analogous to Theorems 2.2 and 2.3 hold for
W := Di, J i (i = 1, 2) (see [7] and (2.4), (2.5) in this paper).

III. Dispersive, completely unstable, Poisson unstable and La-
grange unstable pseudo-processes. Suppose (X,G,H) satisfies assump-
tion (A).

Definition 3.1. A pseudo-process (X,G,H, µ) is called

(i) dispersive iff for each x ∈ X,

Jµ(t, x) = ∅ for every t ∈ G,
(ii) completely unstable iff each x ∈ X is wandering, i.e.

x 6∈ Jµ(t, x) for every t ∈ G,
(iii) Poisson unstable iff for each x ∈ X,

x 6∈ Λµ(t, x) for every t ∈ G,
(iv) Lagrange unstable iff for each x ∈ X,

µ[t, x] is not compact for every t ∈ G,
(v) Lagrange stable iff for each x ∈ X,

µ[t, x] is compact for every t ∈ G.

We can define corresponding weak notions by replacing “for every t ∈ G”
by “there is t ∈ G”. For example:

Definition 3.2. A pseudo-process (X,G,H, µ) is called weakly disper-
sive iff for each x ∈ X there is t ∈ G such that Jµ(t, x) = ∅.

If we replace the set Jµ(t, x) by J iµ(t, x) we get the definition of (i)-
dispersive or (i)-weakly dispersive pseudo-processes (i = 1, 2).

These definitions agree with the analogous ones for dynamical systems
(see [1], [8]).
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Let (X,G,H, µ) be a pseudo-process and suppose µ does not depend on
the first variable. Put

(3.1) π(s, x) := µ(t, x, s) for (t, x, s) ∈ G×X ×H.

The pseudo-dynamical system (X,H, π) defined in this way is dispersive,
completely unstable, Poisson unstable, Lagrange unstable or Lagrange sta-
ble if and only if so is the pseudo-process (X,G,H, µ).

We introduce the families of all maps µ for which the corresponding
pseudo-processes have one of these properties:

D : = {µ ∈ F : (X,G,H, µ) is dispersive},(3.2)
K : = {µ ∈ F : (X,G,H, µ) is completely unstable},(3.3)

P̃ : = {µ ∈ F : (X,G,H, µ) is Poisson unstable},(3.4)

L̃ : = {µ ∈ F : (X,G,H, µ) is Lagrange unstable},(3.5)
L : = {µ ∈ F : (X,G,H, µ) is Lagrange stable}.(3.6)

R e m a r k 3.1. Directly from the definitions (3.2)–(3.4) it follows that
D ⊂ K ⊂ P̃.

R e m a r k 3.2. K\L̃ 6=∅ , so the inclusion P̃ ⊂ L̃ is not true in the theory
of pseudo-processes, in contrast to the theory of dynamical systems (see [5]).

Example 3.1. Let (R,R,R+, µ) be the pseudo-process generated by the
equation

x′ =
bt

(t2 + a)(1 + ln2(t2 + a))
(a, b > 0).

Then µ[t, x] is compact for every (t, x) ∈ R2. However, x 6∈ Λ(t, x) =
J(t, x) 6= ∅ for all (t, x) ∈ R2, so µ ∈ K ∩ L 6= ∅ (see (3.3), (3.6)). Such
a situation is impossible in the theory of dynamical systems.

R e m a r k 3.3. We also have

Dw ⊂ Kw ⊂ P̃w and Kw ∩ Lw 6= ∅,

where (w) denotes a weak condition. For example,

Kw := {µ ∈ F : (X,G,H, µ) is weakly completely unstable}.

R e m a r k 3.4. The inclusions D ⊂ L̃, Dw ⊂ L̃w are evident because for
(t, x) ∈ G×X such that µ[t, x] is compact we get Λµ(t, x) 6= ∅.

We have the same results for the families corresponding to the (i)-
prolongational limit sets (i = 1, 2):

Di := {µ ∈ F : (X,G,H, µ) is (i)-dispersive}.
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IV. A classification of pseudo-processes. Let X = Rm. In the set
F (see (2.8)) we introduce an equivalence relation S. If µ, ν ∈ F then

(4.1) (µ, ν) ∈ S df⇔ %(µ, ν) <∞,

where % is defined by (2.12). We denote by Fµ the S-equivalence class of
µ ∈ F , i.e.

F/S := {Fµ : µ ∈ F}.

R e m a r k 4.1. If F∗ ⊂ F and %∗ := %|F∗ gives a metric in F∗ then
F∗ ⊂ Fµ for every µ ∈ F∗. That is, for every µ ∈ F the S-equivalence class
Fµ is the largest subset F∗ of F (in the sense of inclusion) for which the
restriction %∗ is a metric and µ ∈ F∗.

Theorem 4.1. The spaces F and Fi (i = 1, 2, 3) endowed with the uni-
form convergence topology are not connected (see (2.8)–(2.11)).

P r o o f. Let µ ∈ F and B(µ, r) := {ν ∈ F : %(µ, ν) < r}. Then Fµ =⋃
{B(ν, 1) : ν ∈ Fµ} and F\Fµ =

⋃
{Fν : ν 6∈ Fµ}. So Fµ is open and closed

in the space (F , %1), where %1 is defined by (2.13). The set Fµ ∩ Fi is open
and closed in the space (Fi, %1) (i = 1, 2, 3) (see Lemma 2.1). This finishes
the proof.

Let {χtx ⊂ F : (t, x) ∈ G×X} be a family satisfying the condition

(C) (µ ∈ χtx ⇔ Fµ ⊂ χtx) for every (t, x) ∈ G×X.

Lemma 4.1. Let (t, x) ∈ G×X, T ⊂ G, Y ⊂ X. The sets χtx,
⋂
{
⋃
{χtx :

t ∈ T} : x ∈ Y } and
⋃
{
⋂
{χtx : t ∈ T} : x ∈ Y } are open and closed in

(F , %1).

This follows from condition (C) and the fact that the set Fµ is open.
Analogously to the theory of dynamical systems we show that the fami-

lies
Ptx : = {µ ∈ F : x ∈ Λµ(t, x)}, (t, x) ∈ G×X,

C\Ktx : = {µ ∈ F : x ∈ Jµ(t, x)}, (t, x) ∈ G×X,
do not satisfy condition (C).

For other examples we refer the reader to [5].
By Theorem 2.2 we deduce that the families

Atx : = {µ ∈ F : µ[t, x] compact}, (t, x) ∈ G×X,(4.2)
Btx : = {µ ∈ F : Jµ(t, x) 6= ∅}, (t, x) ∈ G×X,(4.3)

satisfy condition (C).
From the above we obtain some important results on the families of

pseudo-processes defined in the third section.
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Theorem 4.2. Let W := D,Dw, L̃, L̃w,L,Lw,Di or Diw (i = 1, 2). The
set W is both open and closed in the space F endowed with the uniform
convergence topology.

P r o o f. This follows directly from (4.2) and (4.3). We have, for example,

F\D =
⋃
{Btx : (t, x) ∈ G×X},

Lw =
⋂{⋃

{Atx : t ∈ G} : x ∈ X
}
.

In view of Lemma 4.1 this proves closedness and openness of the sets D
and Lw. The proof for the remaining sets is similar.

Corollary 4.1. The set D is not dense in K because D 6= K.

In virtue of theorems of Baire category theory (see [4]) and from
Lemma 2.1 we get

Theorem 4.3. Let W := D,Dw, L̃, L̃w,L,Lw,Dj or Djw (j = 1, 2). The
set W ∩ Fi is of the second Baire category in the space (Fi, %1) but it is not
residual in this space (i = 1, 2, 3).

Corollary 4.2. Let W := K,Kw,Kj ,Kjw, P or Pw (j = 1, 2). The set
W ∩ Fi is of the second Baire category in (Fi, %1) (i = 1, 2, 3).

We can prove that pseudo-processes are either dispersive (Lagrange un-
stable, Lagrange stable) for all functions belonging to Fµ or are not disper-
sive (Lagrange unstable, Lagrange stable) for all these functions. We have

Theorem 4.4. Let F∗ ⊂ F and suppose that %∗ := %|F∗ gives a metric
in F∗. Then

F∗ ∩W 6= ∅ ⇔ F∗ ⊂W
for W := D,Dw, L̃, L̃w,L,Lw,Di and Diw (i = 1, 2).

P r o o f. We prove this assertion forW := L̃w. The other cases are similar.
Let µ ∈ F∗ and µ 6∈ L̃w. By (4.2) we have

F\L̃w =
⋃{⋂

{Atx : t ∈ G} : x ∈ X
}
.

Hence there is x0 ∈ X such that µ ∈ Atx0 for every t ∈ G. In view of
Remark 4.1, µ ∈ F∗ ⊂ Fµ and becauseAtx satisfies condition (C), Fµ ⊂ Atx0

for every t ∈ G. So F∗ ⊂ F\L̃w, which finishes the proof for W := L̃w.

Corollary 4.3. Let W := D, L̃,L. In the quotient set F/S we can
introduce the following equivalence relation:

Fµ (W )Fν ⇔ µ, ν ∈W or µ, ν 6∈W.
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Of course, we can also define in F/S other relations of this type. For
example,

Fµ ∼ Fν ⇔ µ, ν ∈ L or µ, ν ∈ L̃ or µ, ν 6∈ L ∪ L̃.
From Theorem 4.4 it follows that these relations are well defined, i.e. their
definitions are independent of the choice of representatives of the classes
Fµ, Fν .

V. Examples. The results of Section IV can be applied to processes
generated by differential equations.

Definition 5.1. We say that a process (Rm,R,R+, µ) (we will write
briefly µ) is generated by a differential equation

(5.1) x′ = f(t, x)

if for every (t0, x0) ∈ R×Rm there exists exactly one, saturated to the right,
solution ϕ(t0, x0, ·) of the Cauchy problem

(5.2) x′ = f(t, x), x(t0) = x0,

defined on the interval [t0,∞) and

(5.3) µ(t, x, τ) = ϕ(t, x, t+ τ)

for every (t, x) ∈ R× Rm, τ ∈ R+.

Example 5.1. We consider the differential equation

(ε) x′ = fε(t, x),

where fε(t, x) = ε for every (t, x) ∈ R2 (ε ∈ R+). We have sup{|fε(t, x) −
f0(t, x)| : (t, x) ∈ R2} = ε, but for the process µε generated by the equation
(ε) we get %(µε, µ0) = ∞ for ε 6= 0. It is easily seen that µε ∈ D ∩ L̃ for
ε 6= 0 but Λµ0(t, x) = Jµ0(t, x) = µ0[t, x] = {x} for every (t, x) ∈ R2.

The above example shows that a small change of the right hand side of
a differential equation can change the type of the process generated by this
equation. This difficulty exists even for dynamical systems.

However, we can change the right hand side of a differential equation in
a special way.

Let x, x̃ ∈ Rm and x = (x1, . . . , xm), x̃ = (x̃1, . . . , x̃m). We will write

x ≤ x̃ if xk ≤ x̃k for k = 1, . . . ,m,

and for every fixed i ∈ {1, . . . ,m},

x
i
≤ x̃ if x ≤ x̃ and xi = x̃i.
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Definition 5.2 (see [9]). A function f = (f1, . . . , fm) from R×Rm to Rm
is said to satisfy condition (W+) if for every i ∈ {1, . . . ,m} and x, x̃ ∈ Rm,

(W+) x
i
≤ x̃⇒ fi(t, x) ≤ fi(t, x̃) for t ∈ R.

Lemma 5.1 (see [9]). Assume that f : R× Rm → Rm is continuous and
satisfies condition (W+) and µ is the process generated by the differential
equation (5.1). Let (t0, x0) ∈ R× Rm, set

ϕ(t) := µ(t0, x0, t− t0) for every t ≥ t0
and suppose a function ψ from R into Rm is differentiable and satisfies the
initial condition ψ(t0) = x0. Then

(i) ψ′(t) ≤ f(t, ψ(t)) for t ≥ t0 ⇒ ψ(t) ≤ ϕ(t) for t ≥ t0,
(ii) ψ′(t) ≥ f(t, ψ(t)) for t ≥ t0 ⇒ ψ(t) ≥ ϕ(t) for t ≥ t0.

From the above we get

Theorem 5.1. Assume that fi (i = 1, 2, 3) are continuous functions from
R× Rm into Rm, fi (i = 1, 2) satisfy condition (W+) and

f1(t, x) ≤ f3(t, x) ≤ f2(t, x), (t, x) ∈ R× Rm.

Denote by µi the process generated by the differential equation x′ = fi(t, x)
(i = 1, 2, 3). Then

µ1 ∈ Fµ2 ⇒ Fµ1 = Fµ2 = Fµ3 .

P r o o f. This will be proved by showing that

µ1(t, x, τ) ≤ µ3(t, x, τ) ≤ µ2(t, x, τ)

for every (t, x) ∈ R× Rm, τ ∈ R+.
Fix (t0, x0) ∈ R × Rm and τ ∈ R+. Denote by ϕi(t0, x0, ·) the solution

of the Cauchy problem x′ = fi(t, x), x(t0) = x0. By Lemma 5.1,

ϕ1(t0, x0, t) ≤ ϕ3(t0, x0, t) ≤ ϕ2(t0, x0, t) for every t ≥ t0.

In view of the definition of the process µi (see (5.3)) we have

µi(t0, x0, τ) = ϕi(t0, x0, τ + t0) (i = 1, 2, 3),

which finishes the proof.

Corollary 5.1. Assume that f : R×Rm → Rm is continuous and there
exist continuous functions g, f1, f2 from R into Rm for which

f1(t) ≤ f(t, x)− g(t) ≤ f2(t) for every (t, x) ∈ R× Rm

and the function α →
∫ α
0
fi(s) ds is bounded (i = 1, 2). Denote by µ, ν

the processes generated by the differential equations x′ = f(t, x), x′ = g(t)
respectively. Then µ ∈ Fν .
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Example 5.2. Let a, b, ci ∈ Rm (i = 1, . . . ,m). Denote by µ, ν the pro-
cesses generated by the differential equations

x′ = f(t, x) :=
( m∑
i=1

ci cosxi
)

(1 + t2)−1 + a+ b sin t,

x′ = g(t) := a+ b sin t

respectively. There is k ∈ Rm such that for every (t, x) ∈ R× Rm we have
−k

1 + t2
≤ f(t, x)− g(t) ≤ k

1 + t2
.

According to Corollary 5.1 we get µ ∈ Fν . So, if a 6= 0 then µ ∈ D ∩ L̃ and
if a = 0 then µ ∈ L.

Define

(5.4) P := {µ ∈ F : (X,G,H, µ) is Poisson stable, i.e.
x ∈ Λµ(t, x) for every (t, x) ∈ G×X}.

R e m a r k 5.1. Let the assumptions of Theorem 5.1 be satisfied and sup-
pose that for every (t, x) ∈ R×Rm there exists a sequence {τn(t, x)} ⊂ R+

such that τn(t, x)→∞ and µi(t, x, τn(t, x))→ x (i = 1, 2) as n→∞. Then
µ3 ∈ P.

Example 5.3. Let a > 1, b ∈ R, v be a continuous bounded function
from R into R ,

w(t) : = cst
s + . . .+ c1t+ c0 (ci ∈ R, i = 1, . . . , s, s ∈ N),

g(t) : = w′(t)e−w(t),

f(t, x) : =
bv(x) cos t

(1 + ln2(sin t+ a))(sin t+ a)
+ g(t)

for t, x ∈ R. There exist ki ∈ R (i = 1, 2) such that for

fi(t) :=
ki cos t

(1 + ln2(sin t+ a))(sin t+ a)
we have

f1(t) ≤ f(t, x)− g(t) ≤ f2(t) for t, x ∈ R.
Denote by µ, ν, µi (i = 1, 2) the processes generated by the differential equa-
tions

x′ = f(t, x), x′ = g(t), x′ = fi(t) (i = 1, 2)
respectively. Because the assumptions of Corollary 5.1 are satisfied we get
µ ∈ Fν . So, for s 6= 0, cs > 0 we have

x 6∈ Jν(t, x) = Λν(t, x) 6= ∅,
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hence ν ∈ K∩L and µ ∈ Fν ⊂ L. If s 6= 0, cs < 0 then µ ∈ Fν ⊂ D∩ L̃. For
s = 0 we get g ≡ 0. Now we see that µi ∈ L ∩ P (see (5.4)) and

µi(t, x, 2nπ)→ x as n→∞,
for every (t, x) ∈ R2, i = 1, 2. In view of Theorem 5.1 and Remark 5.1 we
have µ ∈ L ∩ P for s = 0.

R e m a r k 5.2. If a process µ does not depend on the first variable we
have the dynamical system (X,H, π) defined by (3.1). In this case for other
examples we refer the reader to [5].
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