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Some families of pseudo-processes

by J. KeapyTa (Krakow)

Abstract. We introduce several types of notions of dispersive, completely unstable,
Poisson unstable and Lagrange unstable pseudo-processes. We try to answer the question
of how many (in the sense of Baire category) pseudo-processes with each of these properties
can be defined on the space R™. The connections are discussed between several types of
pseudo-processes and their limit sets, prolongations and prolongational limit sets. We also
present examples of applications of the above results to pseudo-processes generated by
differential equations.

I. Introduction. The notion of the pseudo-process is a direct general-
ization of the notion of the process introduced by Dafermos in [2].

Let X be a non-empty set, (G,+) be an abelian semi-group with neutral
element 0, and H be a sub-semi-group of G such that 0 € H.

DEFINITION 1.1 (see [6]). The quadruple (X,G, H, ) is said to be a
pseudo-process iff p is a mapping from G x X x H into X such that

(1.1) wu(t,z,0) =z,
(1.2) p(t + s, u(t x,8),1) = p(t, z,7 + s)
forallte G,z € X, s,r € H.

DEFINITION 1.2 (see [8]). The triple (X, H, ) is said to be a pseudo-
dynamical semi-system iff 7 is a mapping from H x X into X such that
(1.3) m(0,z) = x,

(1.4) m(s,w(r,x)) =7(s+rx)
forallz € X, s,r € H.
It is known that we can replace a pseudo-process by a pseudo-dynamical

semi-system (we will write briefly “a pseudo-dynamical system”) analo-
gously to the transition from non-autonomous to autonomous systems of
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ordinary differential equations. For a given pseudo-process (X, G, H, i) we
define the pseudo-dynamical system (Y, H, ), where

(1.5) Y =G x X,
(1.6) (s, (t,x)) == (t + s, u(t,z,s)) for (s,(t,z)) € HxY.

In particular, we can reduce problems concerning stability for pseudo-
processes to corresponding problems for pseudo-dynamical systems. This
idea is presented in the paper of A. Pelczar [6].

However, we will not use this method in the present paper. Limit sets
and prolongational limit sets are empty for the pseudo-dynamical system
(Y,H,m) defined in (1.5), (1.6). Therefore, systems defined in this way
are always dispersive, completely unstable, Poisson unstable and Lagrange
unstable. So, if for a given pseudo-process u we investigate problems associ-
ated with limit sets and prolongational limit sets it is necessary to consider
the pseudo-process p itself, and not the pseudo-dynamical system (Y, H, )
defined above.

Therefore we try to transfer the methods used for investigation of dy-
namical systems (see [5]) to pseudo-processes. We show differences and re-
semblances between the results presented in [5] and in this paper.

I1. Connections between pseudo-processes and their limit sets,
prolongations and prolongational limit sets. Unless otherwise stated,
we assume throughout the paper that the triple (X, G, H) satisfies the fol-
lowing assumption:

(A) (X,d) is a metric space, (G, +, <) is a topological, ordered, abelian
semi-group with neutral element 0 and with topology induced by an
ordering relation which does not admit the last element, (H,+, <) is
a sub-semi-group of G (of the same type as G).

Let {s,} C H be a sequence of elements of H. We say that s,, — oo if
for every s € H there is ny € N such that s < s, for every n > nyg.
Let (X,G, H, ) be a pseudo-process and (t,z) € G x X.

DEFINITION 2.1 (see [7]). The set
(21) Au(t,z)={ye X :3{s,} CH,s, =
such that p(t,z,s,) — y as n — oo}
is called the limit set for (t,z).
DEFINITION 2.2 (see [7]). The set
(22) Du(t,z)={ye X :Ht,} CG, Hzp} C X, Hsp} CH
such that ¢, — t, x, — x and p(t,, xn, Sn) — y as n — oo}

is called the prolongation of the point (¢,x).
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Analogously to the different types of prolongations of the point (t,x)
(see the definitions of D} (t,x) and D7 (t, ) in [7]) we can introduce

DEFINITION 2.3. The sets
(2.3) Ju(t,z):={ye X :Ht,} CG, Ha,} C X, IHsp,} CH
such that t, — t, x, — x, s, — o0 and p(t,,Tn, s,) — y as n — oo},
(2.4) Jﬁ(t,x) ={ye X :Hz,} C X, IH{s,} C H such that
Tp — T, Sy — 00 and p(t, xn, $n) — y asn — oo},
2 . :
(2.5)  J,(t,x)={ye€ X :Ht,} CG, IHsn} C H such that
tn, — t, $Sp — 00 and p(ty,x,S,) — y as n — oo}

are called the prolongational limit set, the (1)-prolongational limit set and
the (2)-prolongational limit set for (t,z) respectively.

Remark 2.1. If a map p does not depend on the first variable then
Ji(t, x) = J,(t,z) = J,(0,2),
Ji(t, x)=A,(t,z) = A,(0,x)
for all (t,2) € G x X (see also (3.1)).
DEFINITION 2.4. The set
(2.6) plt,z] == {p(t,z,s):se€ H}
is called the trajectory of u which starts at (¢, x).

If we consider one fixed pseudo-process p we will write for short A(t, x),
D(t,x),J(t,x),... instead of A,(t,z), D, (t,x), J,(t, ),... respectively.
Let (X,G, H, ) be a pseudo-process and (¢,z) € G x X be fixed.

THEOREM 2.1. The sets A(t,z), D(t,z) and J(t,x) are closed.

Proof. We only prove the closedness of J(¢,x). The proof of the closed-
ness of the sets A(t,x), D(t, x) is presented in [7].

Let {y,} C J(t,z) and y,, — y. From the definition of J(¢,z) it follows
that for every n € N there are sequences {t}'} C G, {z}} C X, {s}} C H
such that ¢t} — t, 2} — =, s} — oo and p(ty,a},sy) — yn as k — oo.
Hence, for every n € N there is k, € N such that

d(p(ty, zy,s1),yn) < 1/n  for each k >k,
and
(2.7) tn =ty —t, Tp:=2x) — T, 5p:=5, — 00 asn— oo.
For every € > 0 there is ng € N such that for every n > ng we have

d(:u(tna xna Sn)a y) S d(,u(tn,a:n, sn)vyn) + d(yn7y) S 57
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ie. p(tn,zn,sn) — y as n — oco. From (2.7) and (2.3) it follows that y €
J(t,x), which completes the proof.

Remark 2.2. The sets D'(t,z) and J*(t,z) (i = 1,2) are also closed.
The proof is analogous.

For any topological spaces Y and X we denote by F(Y, X) (C(Y, X)) the
family of all maps (continuous maps) from Y into X. Put

(2.8) F:={peF(GxXxHX):(X,G H,u) is a pseudo-process },
(29) Fr:={peF:uelC{t} x X x{s},X) for each (t,s) € G x H},
(2.10) Fo:={p € F: for every fixed 7 € H, the one-parameter family of

maps p(t,-,7): X — X, with t € G, is equicontinuous},
(2.11) Fy:={peF:pelC(GxX x H,X)}.

Remark 2.3. The family 7> is the set of all maps for which the quad-
ruple (X, G, H, ;1) is a process in the sense of Dafermos (see [2]).

Let (X, d) be a metric space. We define the function o : F x F — R :=
[0, +-00] by
(2.12) ol v) == sup{d(u(t, z,5), v(t,2,5)) : (t,2,5) € G X X x H}
for p,v € F.

Remark 2.4. If (X,d) is a metric space then (F, 1), (Fi,01) (i =
1,2,3) with
(2.13) o1(p,v) :==min(1, o(p,v)) for p,v € F
are metric spaces.

LEMMA 2.1. If (X,d) is a complete metric space then (F;, 01) (1 = 1,2,3)
are complete metric spaces.

Proof. First we show that (Fi, 01) is complete if so is (X, d). Let {u,} C
F1 be a Cauchy sequence. There is a function p € F(G x X x H, X) such
that {u,} is uniformly convergent to p. Hence p € C({t} x X x {s}, X) for
each (t,s) € G x H, because u,, has this property for every n € N. We have

|:un(t + Snun(tv$a 5)7T) - :u(t + Svﬂ(t’xvs)v’r”
< |/’Ln(t + S,Mn(t,$,8),7") - N(t + S,Mn(t,l‘, S)7T)|
+ |t + 8, pn(t,x,8), 1) — pu(t + s, u(t, z,8),7)|

for (t,z,s,r) € G x X x H x H and (X, G, H, u1,,) is a pseudo-process for
n € N, i.e. u, satisfies (1.1), (1.2). Hence (X, G, H, u) is a pseudo-process,
so u € Fi.

Analogously we prove the completeness of F» and F3.
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For a non-empty metric space (X,d) we denote—as usual—by 2% the
family of all subsets of X and we put

CI(X):={Aec2X A=A}
We define a function d : 2% x 2¥ - R by the formulae
~ 0 for A=0,
d0,4): = {oo for A € 2X\{0},

d(A, B) : = max(sup d(z, B),supd(y, A)) for A, B € 25\{0},
z€A yeB

where d(z, B) := inf,cp d(z,y), i.e. d is the Hausdorff metric in C1(X)\{0}
(see [3]).
LEMMA 2.2. (CI(X),d1) with

d1(A, B) :=min(1,d(A, B)) for A, B € Cl(X)
1S a metric space.
In the sequel we shall consider pseudo-processes in X = R™.

THEOREM 2.2. For all p,v € F,d € R and W := A, D, J or W,(t,z) :=
wlt, x] we have the implication

o(p,v) <6 =dW,(t,x), W,(t,x)) <9 for each (t,z) € G x X.

Proof. We prove this theorem for W = A. The other cases are proved
in the same way.

Let u,v € F and o(u,v) < é. First we suppose that y € A,(t,z) # 0.
In view of (2.1) there is a sequence {s,} C H such that s, — oo and
w(t,x,sp) — y as k — oo. So there is » > 0 such that u(t,z,s,) € B(y,r)
for all n € N. For every n € N we have

dv(t,x,sn),y) < dv(t,x,sn), pt,x,s,)) + d(p(t, z, s,),y) <0+

Hence, because of the boundedness of the sequence {v(t,x,s,)} there are
z € R™ and a subsequence {v(t,, sy, )} such that

v(t,x,8n,) — 2 € Ay (t,x) #0  as k — oo.
For every € > 0 there is ky € N such that for each k > kg we have
d(y,2) < d(y, wlt, 0, 50,)) + At T, 50), V(1 T, 50)) + AV (7, 50,), 2)
< +e,
ie. d(y,z) <d. So
d(y, A, (t,x)) <d(y,z) < for every y € A,(t, x).
Analogously we can prove that

d(z,A,(t,z)) <d(z,y) < for every z € A, (t,x).
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Hence we obtain
d(A,(t, x), Ay (t,x)) < 6.
Let now A,,(t,z) = (). The hypothesis that there is v € F such that o(y,v) =

d < oo and A, (t,x) # 0 gives a contradiction in view of the first part of the
proof. This proves the theorem.

As in the theory of dynamical systems (see [5]) we can prove the following

THEOREM 2.3. For each (t,x) € GxX and W := A, D, J or W,(t,z) :=
wlt, x] the map

Wi(t,xz): F>p— Wyt x) e Cl(X)
is uniformly continuous from (F, 1) to (CI(X),dy).

Remark 2.5. The theorems analogous to Theorems 2.2 and 2.3 hold for
W := D% J" (i =1,2) (see [7] and (2.4), (2.5) in this paper).

ITI. Dispersive, completely unstable, Poisson unstable and La-
grange unstable pseudo-processes. Suppose (X, G, H) satisfies assump-
tion (A).

DEFINITION 3.1. A pseudo-process (X, G, H, i) is called
(i) dispersive iff for each z € X,
Ju(t,x) =0 for every t € G,
(ii) completely unstable iff each = € X is wandering, i.e.
x & Ju(t,x) forevery t € G,
(iii) Poisson unstable iff for each x € X,
x & Ay(t,x) forevery t € G,
(iv) Lagrange unstable iff for each x € X,
ult,z]  is not compact for every t € G,

(v) Lagrange stable iff for each x € X,

wlt,x]  is compact for every ¢t € G.

We can define corresponding weak notions by replacing “for every t € G”
by “there is t € G”. For example:

DEFINITION 3.2. A pseudo-process (X, G, H, u) is called weakly disper-
sive iff for each z € X there is t € G such that J,(¢,z) = 0.

If we replace the set J,(t,z) by J.(t,x) we get the definition of (i)-
dispersive or (i)-weakly dispersive pseudo-processes (i = 1,2).

These definitions agree with the analogous ones for dynamical systems
(see [1], [8]).



Some families of pseudo-processes 39

Let (X, G, H, i) be a pseudo-process and suppose p does not depend on
the first variable. Put

(3.1) m(s,x):= u(t,z,s) for (t,z,s) € G x X x H.

The pseudo-dynamical system (X, H,7) defined in this way is dispersive,
completely unstable, Poisson unstable, Lagrange unstable or Lagrange sta-
ble if and only if so is the pseudo-process (X, G, H, 11).

We introduce the families of all maps g for which the corresponding
pseudo-processes have one of these properties:

(3.2) D:={peF:(X,G, H,pu) is dispersive},

(3.3) K:={peF:(X,G,H, ) is completely unstable},
(3.4) P:={peF:(X,G, H,p) is Poisson unstable},
(3.5) L:={peF: (X, G H,pu)is Lagrange unstable},
(3.6) L:={peF:(X,G,H,pu) is Lagrange stable}.

Remark 3.1. Directly from the definitions (3.2)—(3.4) it follows that
DcCcKCP.

Remark 3.2. K\Z#@ , 80 the inclusion P C L is not true in the theory
of pseudo-processes, in contrast to the theory of dynamical systems (see [5]).

ExAMPLE 3.1. Let (R, R, R, 1) be the pseudo-process generated by the

equation
bt
= 5 (a,b>0).
(t2 4+ a)(1 4+ In"(t%2 + a))

Then plt,z] is compact for every (t,z) € R2. However, x ¢ A(t,z) =
J(t,z) # 0 for all (t,z) € R?, sop € KNL # O (see (3.3), (3.6)). Such
a situation is impossible in the theory of dynamical systems.

Remark 3.3. We also have
Dy C Ky C Pow and Ky N Ly # 0,
where (w) denotes a weak condition. For example,
Ky :={peF:(X,G, H,u) is weakly completely unstable}.

Remark 3.4. The inclusions D C E, Dy, C EW are evident because for
(t,z) € G x X such that p[t,z] is compact we get A, (¢, z) # 0.

We have the same results for the families corresponding to the (i)-
prolongational limit sets (i = 1,2):

D' :={ueF:(X,G, H,u)is (i)-dispersive}.
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IV. A classification of pseudo-processes. Let X = R". In the set
F (see (2.8)) we introduce an equivalence relation S. If p,v € F then
(4.1) (1, v) € S & o(p,v) < o0,

where o is defined by (2.12). We denote by F), the S-equivalence class of
uweF, ie.

F)S ={F,: neF}.

Remark 4.1. If F, C F and g, := 9|r, gives a metric in F; then
F, C F, for every jn € F,. That is, for every u € F the S-equivalence class
F, is the largest subset F, of F (in the sense of inclusion) for which the
restriction o, is a metric and u € Fi.

THEOREM 4.1. The spaces F and F; (i = 1,2,3) endowed with the uni-
form convergence topology are not connected (see (2.8)—(2.11)).

Proof Let pe€F and B(u,r) :={v € F: o(p,v) < r}. Then F, =
U{B(v,1) :v e F,} and F\F,, = |{F, : v & F,}. So F}, is open and closed
in the space (F, p1), where g, is defined by (2.13). The set F,, N F; is open
and closed in the space (F;, 01) (1 = 1,2,3) (see Lemma 2.1). This finishes
the proof.

Let {xtz C F : (t,x) € G x X} be a family satisfying the condition
(C) (1 € Xt © Fy C Xta) for every (t,2) € G x X.

LEMMA 4.1. Let (t,z) € Gx X, T C G,Y C X. The sets xtz, [ {U{ Xtz :
teTt:xzeY} and U{(Hxtz :t €T} : 2 € Y} are open and closed in
(f7 Ql)

This follows from condition (C) and the fact that the set F), is open.
Analogously to the theory of dynamical systems we show that the fami-
lies
Pip:={peF:xeA,tz)} (tz)elGxX,
C\Kiz :={peF:zeJ,(tx)}, (t,z)eGxX,
do not satisfy condition (C).
For other examples we refer the reader to [5].
By Theorem 2.2 we deduce that the families

(4.2) Ay ={p € F: plt,z] compact}, (t,z) € G x X,
(4.3) By :={peF:J,(x)#0}, (t,z) e G x X,
satisfy condition (C).
From the above we obtain some important results on the families of
pseudo-processes defined in the third section.
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THEOREM 4.2. Let W := D, Dy, L, Loy, L, Loy, D' or Di (i =1,2). The
set W is both open and closed in the space F endowed with the uniform
convergence topology.

Proof. This follows directly from (4.2) and (4.3). We have, for example,
F\D =| J{Bis : (t,2) € G x X},

KW:ﬂ{U{Am:tEG}:xGX}.

In view of Lemma 4.1 this proves closedness and openness of the sets D
and L. The proof for the remaining sets is similar.

COROLLARY 4.1. The set D is not dense in K because D # K.

In virtue of theorems of Baire category theory (see [4]) and from
Lemma 2.1 we get

THEOREM 4.3. Let W := D, Dy, L, Loy, L, Loy, D or D, (j =1,2). The
set W N F; is of the second Baire category in the space (F;, 01) but it is not
residual in this space (i =1,2,3).

COROLLARY 4.2. Let W = K, Ky, K7, KI, P or Py (j = 1,2). The set
W N F; is of the second Baire category in (F;, 01) (1 = 1,2,3).

We can prove that pseudo-processes are either dispersive (Lagrange un-
stable, Lagrange stable) for all functions belonging to F}, or are not disper-
sive (Lagrange unstable, Lagrange stable) for all these functions. We have

THEOREM 4.4. Let F, C F and suppose that o, := o|p, gives a metric
in F,. Then

FENW#0eF,CcW
Jor W := D, Dy, L, Loy, L, Loy, D and Di, (i = 1,2).

Proof. We prove this assertion for W := L. The other cases are similar.
Let € Fy and pu & L. By (4.2) we have

f\EW:U{m{.Am:tEG}:$€X}.

Hence there is zp € X such that pu € Ay, for every t € G. In view of
Remark 4.1, i € F,, C F), and because Ay, satisfies condition (C), F,, C Ay,

for every t € G. So F, C F\ZW, which finishes the proof for W := L.

COROLLARY 4.3. Let W := D,E,L. In the quotient set F/S we can
introduce the following equivalence relation:

F,(W)F, & pveW orpvgW.
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Of course, we can also define in F/S other relations of this type. For
example,

FMNFV<:>M,V6£OT;L,V€ZOT,LL,I/QEUZ.

From Theorem 4.4 it follows that these relations are well defined, i.e. their
definitions are independent of the choice of representatives of the classes
F, F,.

V. Examples. The results of Section IV can be applied to processes
generated by differential equations.

DEFINITION 5.1. We say that a process (R™, R, R, ) (we will write
briefly p) is generated by a differential equation

if for every (to,zog) € RxR™ there exists exactly one, saturated to the right,
solution ¢(tg, zg, -) of the Cauchy problem

(5.2) o' = f(t,x), x(ty) = zo,
defined on the interval [to, c0) and
(5.3) u(t, @, 7) = p(t,z,t + 1)

for every (t,z) e Rx R™, 7 € R;.

ExaMPLE 5.1. We consider the differential equation

(¢) ' = f.(t,x),
where f.(t,z) = ¢ for every (t,x) € R? (¢ € Ry). We have sup{|f-(t,z) —
fo(t,z)| : (t,z) € R?} = ¢, but for the process p. generated by the equation

(e) we get o(pe, po) = oo for e # 0. It is easily seen that g € DN L for
e # 0 but A, (t,x) = J, (t,x) = polt, z] = {x} for every (t,z) € R2

The above example shows that a small change of the right hand side of
a differential equation can change the type of the process generated by this
equation. This difficulty exists even for dynamical systems.

However, we can change the right hand side of a differential equation in
a special way.

Let z,z €e R"™ and « = (z1,...,Zm), T = (T1,...,Tm). We will write

<z if zx<apfork=1,...,m,

and for every fixed i € {1,...,m},

i
r<z if z<zanduz =2z
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DEFINITION 5.2 (see [9]). A function f = (f1,..., fi) from RxR™ to R™
is said to satisfy condition (W) if for every i € {1,...,m} and z,7 € R™,
(W) z <F= fi(t,x) < fi(t,F) for t € R.

LEMMA 5.1 (see [9]). Assume that f: R x R™ — R™ is continuous and
satisfies condition (W) and p is the process generated by the differential
equation (5.1). Let (tg,zo) € R x R™, set

(1) = ultorzo,t —to)  for every t > to

and suppose a function ¥ from R into R™ is differentiable and satisfies the
initial condition ¢ (ty) = xo. Then

() @'(1) < F(6(8) for t > to = $(t) < p(t) for t > T,
(i) ¥/(t) = F(t,0(1)) for t > to = ¥(t) = @(t) fort > to.

From the above we get

THEOREM 5.1. Assume that f; (i = 1,2,3) are continuous functions from
R x R™ into R™, f; (i = 1,2) satisfy condition (Wy) and
filt,x) < fs(t,z) < fa(t,z), (t,x) e R x R™.

Denote by p; the process generated by the differential equation x' = f;(t, x)
(1=1,2,3). Then

p € Fuy = Fuy = Fuy = Fy,.
Proof. This will be proved by showing that
/jfl(t7x77-) < /,L3(t,$,7') < MQ(tava)

for every (t,x) e Rx R™ 7 € R,.
Fix (tg,z0) € R x R™ and 7 € Ry. Denote by ¢;(tg, o, ) the solution
of the Cauchy problem 2’ = f;(t, ), x(ty) = x¢. By Lemma 5.1,

©1(to, xo,t) < @3(to, o, t) < @alto, zo,t) for every t > to.
In view of the definition of the process p; (see (5.3)) we have
wito, xo, 7) = wi(to, o, T +to) (i=1,2,3),
which finishes the proof.

COROLLARY 5.1. Assume that f : RxR™ — R™ is continuous and there
exist continuous functions g, f1, fo from R into R™ for which

() < f(t,2) = g(t) < folt)  Jor every (t,z) € R x R

and the function o — foa fi(s)ds is bounded (i = 1,2). Denote by p,v
the processes generated by the differential equations x' = f(t,x),2’ = g(t)
respectively. Then p € F,.
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EXAMPLE 5.2. Let a,b,¢; € R™ (i =1,...,m). Denote by u,v the pro-
cesses generated by the differential equations

¥ = f(t, ) <Zc1cosmz>(1+t2) +a+ bsint,

' =g(t) == a+ bsint
respectively. There is k& € R™ such that for every (t,z) € R x R™ we have
—k k
< f(t —g(t) < .
< f0) — g <

According to Corollary 5.1 we get p € F),. So,if a # 0 then p € DN £ and
if a =0 then pu € L.

Define
(5.4) P:={peF:(X,G,H,u)is Poisson stable, i.e.
x € Ay(t,x) for every (t,z) € G x X}.

Remark 5.1. Let the assumptions of Theorem 5.1 be satisfied and sup-
pose that for every (t,z) € R x R™ there exists a sequence {7,(¢,z)} C Ry
such that 7, (¢, x) — oo and p;(t, =z, 7, (t,z)) — = (i = 1,2) as n — oo. Then
w13 € P.

EXAMPLE 5.3. Let a > 1, b € R, v be a continuous bounded function
from R into R ,

w(t):=ct’+...+ct+c (R, i=1,...,s s€N),
g(t) : = w'(t)e™,
bu(z) cost
t,x):= 4 gt
ft.2) (1 +In®(sint 4 a))(sint + a) 9()
for t,z € R. There exist k; € R (i = 1,2) such that for

k; cost

(1) =
filt) (1+ln2(sint+a))(sint+a)
we have
fi(t) < f(t,x) —g(t) < fo(t)  fort,z € R.
Denote by p, v, p; (i = 1,2) the processes generated by the differential equa-
tions

= f(t,x), ' =gt), 2'=fi{t) (i=1,2)
respectively. Because the assumptions of Corollary 5.1 are satisfied we get
uw € F,. So, for s # 0, ¢cs > 0 we have

& J,(t,x) = A, (t,x) # 0,
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henceve KNLand pe F, C L. If s #0, ¢ <0thenuEFuCDﬂ£~. For
s =0 we get g = 0. Now we see that u; € LNP (see (5.4)) and

wi(t,x,2nm) — &  as n — oo,

for every (t,7) € R% i = 1,2. In view of Theorem 5.1 and Remark 5.1 we
have € LN P for s = 0.

Remark 5.2. If a process p does not depend on the first variable we

have the dynamical system (X, H, 7) defined by (3.1). In this case for other
examples we refer the reader to [5].
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