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Functions of several variables of finite variation
and their differentiability

by Dariusz Idczak ( Lódź)

Abstract. Some differentiability properties of functions of several variables of finite
variation are investigated.

1. Introduction. In the paper, nondecreasing functions of several vari-
ables and functions of several variables of finite variation on the closed unit
interval are considered. A theorem on the Jordan decomposition and theo-
rems on the measurability and differentiability of these functions are proved.

Nondecreasing functions of several variables, defined on the whole space,
were studied in [1], [5]. A theorem on the nature of the set of discontinuity
points of such functions was obtained in [1]. In [2] it was proved that a
function nondecreasing with respect to each variable separately and defined
on the whole space is differentiable a.e.

The definitions of a nondecreasing function of several variables and a
function of several variables of finite variation, adopted in this paper, are
analogous to the definition of an absolutely continuous function of several
variables (cf. [6]). Our method of proof, similar to that in [6], is more ele-
mentary and shorter than that in [2].

To simplify notation, we consider the case of a function of two variables.
In the last section the definitions of a nondecreasing function of n variables
and a function of n variables of finite variation for n > 2 are given. All
theorems (with proofs) obtained for n = 2 carry over to the case n > 2.

2. Nondecreasing functions of two variables. Let f be a real func-
tion of two real variables, defined on the interval

[0, 1]× [0, 1] = {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1}

1991 Mathematics Subject Classification: 26B05, 26B30.
Key words and phrases: functions of several variables, nondecreasing functions, func-

tions of finite variation, Fréchet differentiability.
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and let Ff be the interval function defined by

Ff (P ) = f(x, y)− f(x, y)− f(x, y) + f(x, y)

where P = [x, x] × [y, y] ⊂ [0, 1] × [0, 1]. The function Ff is said to be
associated with f .

We shall say that an interval function F defined on intervals P ⊂ [0, 1]×
[0, 1] is additive if

F (P ∪Q) = F (P ) + F (Q)

for all intervals P,Q ⊂ [0, 1] × [0, 1] such that P ∪ Q is an interval and
IntP ∩ IntQ = ∅. Moreover, F has a bounded variation if

sup
{ n∑
i=1

|F (Pi)| :
n⋃
i=1

Pi = [0, 1]× [0, 1], n ≥ 1
}
<∞

where Pi, i = 1, . . . , n, are intervals such that IntPi ∩ IntPj = ∅ for i 6= j.
Finally, F has a derivative at x ∈ [0, 1]× [0, 1] if the limit

lim
δ(Q)→0
x∈Q

F (Q)
|Q|

exists, where Q ⊂ [0, 1]× [0, 1] denotes a cube, δ(Q) the diameter of Q and
|Q| the volume of Q.

In [3], it is proved that every nonnegative additive interval function
and, consequently (by the Jordan decomposition), every interval function
of bounded variation has a finite derivative a.e. on [0, 1]× [0, 1].

Definition 1. A function f : [0, 1] × [0, 1] → R will be called nonde-
creasing if f(·, 0), f(0, ·) are nondecreasing and the associated function Ff
is nonnegative.

From the above definition we directly obtain

Proposition 1. Let f : [0, 1] × [0, 1] → R be nondecreasing. Then
f(x1, y1) ≤ f(x2, y2) for any 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1.

P r o o f. Let 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤ 1. We have

f(x1, y1) = Ff ([0, x1]× [0, y1]) + f(0, y1) + f(x1, 0)− f(0, 0)
≤ Ff ([0, x2]× [0, y2]) + f(0, y2) + f(x2, 0)− f(0, 0)
= f(x2, y2).

This proposition immediately yields

Corollary 1. Every nondecreasing function f : [0, 1] × [0, 1] → R is
bounded.
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The condition in the conclusion of Proposition 1 is equivalent to the
following: for any x, y ∈ [0, 1], the functions f(x, ·), f(·, y) are nondecreasing.
However, it does not imply that Ff is nonnegative.

Now, we show that a nondecreasing function of two variables is measur-
able. This follows from Proposition 1 and

Theorem 1. If f : [0, 1] × [0, 1] → R is nondecreasing with respect to
each variable separately , then it is measurable.

R e m a r k. This is a particular case of [4, Th. 2]. Here we give a direct
proof.

P r o o f o f T h e o r e m 1. Let a ∈ R. We show that the set

A = {(x, y) ∈ [0, 1]× [0, 1] : f(x, y) < a}
is measurable. Suppose that it is nonempty. Let

B =
⋃

x∈[0,1]

{x} × [0, supx]

where supx = sup{y ∈ [0, 1] : f(x, y) < a}. Then

x1 < x2 ⇒ supx1
≥ supx2

.

Indeed, if supx1
< supx2

, then there would exist a constant α such that
supx1

< α < supx2
and, consequently, a ≤ f(x1, α) ≤ f(x2, α) < a.

Thus the function l : [0, 1] 3 x 7→ supx ∈ [0, 1] is nonincreasing and,
consequently, measurable. From this (cf. [7]) it follows that the set

C = {(x, l(x)) : x ∈ [0, 1]}
has measure zero and the set B is measurable.

Now, let (x0, y0) ∈ A, i.e. f(x0, y0) < a. Hence y0 ∈ [0, supx0
], that is,

(x0, y0) ∈ {x0} × [0, supx0
] ⊂ B. Thus A ⊂ B.

On the other hand, if

B̃ =
⋃

x∈[0,1]

{x} × [0, supx[,

then B̃ ⊂ A. Indeed, let (x0, y0) ∈ B̃. Then y0 ∈ [0, supx0
[, that is, f(x0, y0)

< a, whence (x0, y0) ∈ A.
We have thus proved that B̃ ⊂ A ⊂ B, and the measurability of A

follows from the relations

A = B̃ ∪ (A \ B̃), B̃ = B \ C, A \ B̃ ⊂ B \ B̃ = C.

From the above theorem and Proposition 1 we have

Corollary 2. Every nondecreasing function f : [0, 1] × [0, 1] → R is
measurable.
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3. Differentiability of nondecreasing functions. In this section we
show that every nondecreasing function of two variables has the partial
derivatives and the total differential a.e. We begin with the following

Lemma 1. Let f : [0, 1]→ R be nondecreasing , and m ≥ 3 and k ≥ m be
fixed positive integers. Then, for each x ∈ ]1/m, 1− 1/m[,

inf
0<|h|<1/k

f(x+ h)− f(x)
h

= inf
0<|h|<1/k, h∈Q

f(x+ h)− f(x)
h

where Q denotes the set of rational numbers, and the same holds with inf
replaced by sup.

P r o o f. It is sufficient to prove the inequality ≥. Let

a := inf
0<|h|<1/k

f(x+ h)− f(x)
h

.

There exists a sequence (hn)n∈N of numbers such that 0 < |hn| < 1/k,
n ∈ N, and

a = lim
n→∞

f(x+ hn)− f(x)
hn

.

We shall show that, for any n ∈ N, there exists a rational number hqn such
that 0 < |hqn| < 1/k and

(1)
f(x+ hqn)− f(x)

hqn
≤ f(x+ hn)− f(x)

hn
+

1
n
.

First, assume that hn > 0. If x+ hn is a left continuity point of f , then
there exists a rational number hqn such that 0 < hqn ≤ hn and (1) holds. So,
assume that

ε := f(x+ hn)− lim
h→h−n

f(x+ h) > 0.

Let hqn ∈ Q be such that

(2) 0 ≤ hn
f(x+ hn)− f(x)

f(x+ hn)− f(x) + ε
< hqn ≤ hn.

Since f is nondecreasing, by the monotonicity of t 7→ t/(t+ ε) we have

f(x+ hqn)− f(x)
f(x+ hqn)− f(x) + ε

≤ f(x+ hn)− f(x)
f(x+ hn)− f(x) + ε

.

Now (2) gives

hn
f(x+ hqn)− f(x)

f(x+ hqn)− f(x) + ε
≤ hn

f(x+ hn)− f(x)
f(x+ hn)− f(x) + ε

< hqn ≤ hn.
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We may assume that 0 < f(x + hqn) − f(x) since otherwise (1) is obvious.
Consequently,

f(x+ hqn)− f(x)
hqn

≤ f(x+ hqn)− f(x)

hn
f(x+ hqn)− f(x)

f(x+ hqn)− f(x) + ε

=
f(x+ hqn)− f(x) + ε

hn
≤ f(x+ hn)− f(x)

hn

where the last inequality follows from the definition of ε. Thus (1) is satisfied.
Now, let hn < 0. If x + hn is a right continuity point of f , then there

exists a rational number hqn such that hn≤ hqn< 0 and (1) holds. So, assume
that

δ := lim
h̄→h+

n

f(x+ h)− f(x+ hn) > 0.

Let hqn ∈ Q be such that

(3) hn ≤ hqn < hn
f(x+ hn)− f(x)

f(x+ hn)− f(x)− δ
≤ 0.

Since f is nondecreasing, by the monotonicity of t 7→ t/(t− δ) we have

f(x+ hqn)− f(x)
f(x+ hqn)− f(x)− δ

≤ f(x+ hn)− f(x)
f(x+ hn)− f(x)− δ

.

Now (3) yields

hn ≤ hqn < hn
f(x+ hn)− f(x)

f(x+ hn)− f(x)− δ
≤ hn

f(x+ hqn)− f(x)
f(x+ hqn)− f(x)− δ

.

We may assume that f(x + hqn) − f(x) < 0 since otherwise (1) is obvious.
Consequently,

f(x+ hqn)− f(x)
hqn

=
−f(x+ hqn) + f(x)

|hqn|
≤ −f(x+ hqn) + f(x)

|hn|
f(x+ hqn)− f(x)

f(x+ hqn)− f(x)− δ

=
f(x+ hqn)− f(x)− δ

−|hn|
=
−f(x+ hqn) + f(x) + δ

|hn|

≤ −f(x+ hn) + f(x)
|hn|

=
f(x+ hn)− f(x)

hn

where the last inequality follows from the definition of δ. Thus condition (1)
is satisfied.

Of course, by the definition of a, for any n ∈ N,

a ≤ f(x+ hqn)− f(x)
hqn

.



52 D. Idczak

So, (1) gives

lim
n→∞

f(x+ hqn)− f(x)
hqn

= a.

Thus

inf
0<|h|<1/k, h∈Q

f(x+ h)− f(x)
h

≤ a.

The proof of the “sup” version is analogous.

Now, we have

Proposition 2. Let f : [0, 1] × [0, 1] → R be measurable. If it is non-
decreasing with respect to the first variable, then ∂f

∂x (x, y) exists a.e. on
[0, 1]× [0, 1].

P r o o f. We show that ∂f
∂x (x, y) exists a.e. on ]0, 1[×[0, 1]. For any

m ≥ 3, and k = m,m+ 1, . . . , we define

φmk : ]1/m, 1− 1/m[×[0, 1] 3 (x, y) 7→ inf
0<|h|<1/k

f(x+ h, y)− f(x, y)
h

∈ R,

ψmk : ]1/m, 1− 1/m[×[0, 1] 3 (x, y) 7→ sup
0<|h|<1/k

f(x+ h, y)− f(x, y)
h

∈ R.

It is easy to see that the set of all points (x, y) ∈ ]1/m, 1− 1/m[× [0, 1] at
which ∂f

∂x (x, y) exists is equal to

Em = {(x, y) ∈ ]1/m, 1− 1/m[× [0, 1] :
−∞ < lim

k→∞
φmk (x, y) = lim

k→∞
ψmk (x, y) <∞}.

From Lemma 1 it follows that the infimum and supremum in the definitions
of φmk and ψmk can be restricted to rational h. Since f is measurable and Q
is countable, this means that Em is measurable.

Since the set Ẽ of all points of ]0, 1[× [0, 1] at which ∂f
∂x (x, y) exists is

equal to
⋃
m≥3E

m, it follows that Ẽ is measurable.
Since f(·, y) is nondecreasing for every y and, consequently, is differen-

tiable a.e. on [0, 1], all y-sections of Ẽ have full measure. This shows that Ẽ
has full measure.

From Proposition 2 and Theorem 1 we obtain

Theorem 2. If f : [0, 1]×[0, 1]→ R is nondecreasing with respect to each
variable separately , then ∂f

∂x (x, y) and ∂f
∂y (x, y) exist a.e. on [0, 1]× [0, 1].

This theorem and Proposition 1 yield

Corollary 3. If f : [0, 1] × [0, 1] → R is nondecreasing , then ∂f
∂x (x, y)

and ∂f
∂y (x, y) exist a.e. on [0, 1]× [0, 1].

Now, we shall prove
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Theorem 3. If f : [0, 1] × [0, 1] → R is nondecreasing , then it has the
total differential a.e. on [0, 1]× [0, 1].

P r o o f. Denote by E the set (of full measure) of all points at which
∂f
∂x (x, y), ∂f∂y (x, y) and DFf (x, y) all exist. Let (x, y) ∈ E and put

A1 =
∂f

∂x
(x, y), A2 =

∂f

∂y
(x, y).

We show that

f(x+ h1, y + h2)− f(x, y)−A1h1 −A2h2

|(h1, h2)|
→ 0 as (h1, h2)→ 0.

Without loss of generality we may assume that h1 6= 0 and h2 6= 0 (if h1 = 0
or h2 = 0, then the convergence follows from the existence of the partial
derivatives at (x, y)). Thus

f(x+ h1, y + h2)− f(x, y)−A1h1 −A2h2

|(h1, h2)|

=
f(x+ h1, y + h2)− f(x, y)− f(x+ h1, y) + f(x, y)

|(h1, h2)|

+
α(x, h1)h1 − f(x, y + h2) + f(x, y) + β(y, h2)h

|(h1, h2)|

2

=
f(x+ h1, y + h2)− f(x+ h1, y)− f(x, y + h2) + f(x, y)√

(h1)2 + (h2)2

+
α(x, h1)h1√
(h1)2 + (h2)2

+
β(y, h2)h2√
(h1)2 + (h2)2

=
Ff ([x, x+ h1]× [y, y + h2])√

(h1)2 + (h2)2
+

α(x, h1)h1√
(h1)2 + (h2)2

+
β(y, h2)h2√
(h1)2 + (h2)2

where α(x, h1)→ 0 as h1 → 0, and β(y, h2)→ 0 as h2 → 0.
Since

|α(x, h1)h1|√
(h1)2 + (h2)2

≤ |α(x, h1)| → 0,

|β(y, h2)h2|√
(h1)2 + (h2)2

→ 0,
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and
|h1||h2|√

(h1)2 + (h2)2
≤

√
(h1)2 + (h2)2

√
(h1)2 + (h2)2√

(h1)2 + (h2)2
→ 0,

as (h1, h2)→ 0, it suffices to show that

Ff ([x, x+ h1]× [y, y + h2])√
(h1)2 + (h2)2

→ 0 as (h1, h2)→ 0.

Indeed, let K ⊂ [0, 1]× [0, 1] be any cube containing [x, x+h1]× [y, y+h2],
with edge length max(|h1|, |h2|). Then

0 ≤ Ff ([x, x+ h1]× [y, y + h2])√
(h1)2 + (h2)2

≤ Ff (K)√
(h1)2 + (h2)2

=
Ff (K)

(max(|h1|, |h2|))2
· (max(|h1|, |h2|))2√

(h1)2 + (h2)2

=
Ff (K)
|K|

· (max(|h1|, |h2|))2√
(h1)2 + (h2)2

≤ Ff (K)
|K|

·
(
√

(h1)2 + (h2)2)2√
(h1)2 + (h2)2

→ DFf (x, y) · 0

as (h1, h2)→ 0. Hence f is differentiable at (x, y) with total differential

R2 3 (h1, h2) 7→ ∂f

∂x
(x, y)h1 +

∂f

∂y
(x, y)h2.

4. Functions of two variables of finite variation. In this section we
give a definition of a function of two variables of finite variation. We show
that, as in the case of one variable, such a function can be written as the
difference of two nondecreasing functions. This yields the a.e. existence of
the total differential of such functions.

Definition 2. A function f : [0, 1] × [0, 1] → R is said to be of finite
variation if f(·, 0), f(0, ·) are of finite variation and the associated function
Ff has a finite variation.

The proof of the next theorem is based on Jordan’s decomposition of
a function of one variable of finite variation and of an interval function of
finite variation.

Theorem 4. A function f : [0, 1] × [0, 1] → R has a finite variation if
and only if there exist nondecreasing functions g, h : [0, 1]× [0, 1]→ R such
that f = g − h.

P r o o f. Necessity. Let f have a finite variation. Then

f(x, y) = f(x, 0) + f(0, y)− f(0, 0) + Ff ([0, x]× [0, y])
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for (x, y) ∈ [0, 1]× [0, 1]. Let g1, h1, g2, h2 be nondecreasing functions of one
variable such that

f(x, 0) = g1(x)− h1(x), x ∈ [0, 1],

f(0, y) = g2(y)− h2(y), y ∈ [0, 1],

and G,H additive nonnegative interval functions such that

Ff (P ) = G(P )−H(P ), P ⊂ [0, 1]× [0, 1].

Put

g(x, y) = g1(x) + g2(y)− 1
2f(0, 0) +G([0, x]× [0, y]),

h(x, y) = h1(x) + h2(y) + 1
2f(0, 0) +H([0, x]× [0, y]),

for (x, y)∈ [0, 1]× [0, 1]. Thus f(x, y) = g(x, y)− h(x, y) for (x, y) ∈ [0, 1]×
[0, 1].

The functions g, h are nondecreasing. Indeed, since

g(0, y) = g1(0) + g2(y)− 1
2f(0, 0),

g(x, 0) = g1(x) + g2(0)− 1
2f(0, 0)

for (x, y) ∈ [0, 1]× [0, 1] and, by the definition of Fg,

Fg(P ) = G(P )

for any interval P ⊂ [0, 1] × [0, 1], it follows that g is nondecreasing. The
proof for h is similar.

Sufficiency. In this case,

f(0, y) = g(0, y)− h(0, y), y ∈ [0, 1],
f(x, 0) = g(x, 0)− h(x, 0), x ∈ [0, 1],
Ff (P ) = Fg(P )− Fh(P ), P ⊂ [0, 1]× [0, 1],

and the assertion is obvious.

The above theorem and the results of Sections 1–3 yield the following
results:

Every function f : [0, 1]× [0, 1]→ R of finite variation is bounded.
If f : [0, 1] × [0, 1] → R has a finite variation, then, for any x, y ∈ [0, 1],

the functions f(x, ·), f(·, y) are of finite variation.
Every function f : [0, 1]× [0, 1]→ R of finite variation is measurable.
If f : [0, 1] × [0, 1] → R is of finite variation, then ∂f

∂x (x, y) and ∂f
∂y (x, y)

exist a.e. on [0, 1]× [0, 1].

Theorem 5. If f : [0, 1] × [0, 1] → R is of finite variation, then it has
the total differential a.e. on [0, 1]× [0, 1].

This is an extension of the theorem on the differentiability a.e. of an
absolutely continuous function of two variables (cf. [6]).
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5. The case n > 2. Our definitions of a nondecreasing function and of
a function of finite variation can be extended by induction to the case of
n variables, n > 2. Without going into details, it can be said that a real
function f is nondecreasing (resp. of finite variation) on

Kn = {x = (x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1, i = 1, . . . , n}
if the associated function Ff (P ), P ⊂ Kn (cf.[3]), is nonnegative (resp.
of finite variation) and each of the functions f(0, x2, . . . , xn), f(x1, 0, x3, . . .
. . . , xn), . . . , f(x1, . . . , xn−1, 0) is a nondecreasing function of n−1 variables
(resp. a function of n− 1 variables of finite variation).

As mentioned in the introduction, the above definitions allow us to easily
carry over all the theorems (with proofs) obtained in the paper to the case
n > 2.
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