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Existence theorems for a semilinear elliptic
boundary value problem

by Salvatore A. Marano (Catania)

Abstract. Let Ω be a bounded domain in Rn, n ≥ 3, with a smooth boundary ∂Ω;
let L be a linear, second order, elliptic operator; let f and g be two real-valued functions
defined on Ω × R such that f(x, z) ≤ g(x, z) for almost every x ∈ Ω and every z ∈ R. In
this paper we prove that, under suitable assumptions, the problem{

f(x, u) ≤ Lu ≤ g(x, u) in Ω,
u = 0 on ∂Ω,

has at least one strong solution u ∈W 2,p(Ω)∩W 1,p
0 (Ω). Next, we present some remarkable

special cases.

Introduction. Let Ω be a bounded domain in Rn, n≥3, with a smooth
boundary ∂Ω; let L be a linear, second order, elliptic differential operator;
let f and g be two real-valued functions defined on Ω×R such that f(x, z) ≤
g(x, z) for almost every x ∈ Ω and every z ∈ R.

Consider the problem

(P)
{
f(x, u) ≤ Lu ≤ g(x, u) in Ω,
u = 0 on ∂Ω.

A function u : Ω → R is said to be a strong solution of (P) if u ∈W 2,p(Ω)∩
W 1,p

0 (Ω), p ∈ ]n/2,∞[, and, for almost every x ∈ Ω, one has f(x, u(x)) ≤
Lu(x) ≤ g(x, u(x)).

Remarkable special cases of problem (P) are those where f(x, z) =
g(x, z), (x, z) ∈ Ω × R, or, roughly speaking, f(x, z) = lim infw→z ϕ(x,w)
and g(x, z) = lim supw→z ϕ(x,w), (x, z) ∈ Ω ×R, with ϕ a locally bounded
real-valued function defined on Ω ×R. Both have been extensively studied,
mainly by variational methods [6], [11], [15], or topological methods [5], [17],
or sub- and super-solution arguments [9], [14].
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Our approach is quite different and follows that introduced in [10] with
regard to the Dirichlet problem for ordinary differential inclusions. In this
way, we obtain an existence result (Theorem 2.1) for strong solutions to
problem (P) where rather general conditions on the functions f and g are
assumed. For instance, we do not need that the functions x → f(x, z),
x → g(x, z), x ∈ Ω, are measurable for all z ∈ R, but only for z in a dense
subset of R. Afterwards, we emphasize two special cases of Theorem 2.1
(Theorems 2.2 and 2.3). Theorem 2.2 has an overlap with Theorem 5.1 of [6].
As a simple consequence of Theorem 2.3, we obtain a result (Theorem 2.4)
which improves, in several concrete cases, Theorem 3.3 of [17], dealing with
an elliptic problem with critical Sobolev exponent.

The main tools we use to establish our results are Theorem 1 of [13] and
Theorem 3.1 of [2].

1. Preliminaries. Let X and Y be two nonempty sets. A multifunction
Φ from X into Y (briefly, Φ : X → 2Y ) is a function from X into the family
of all subsets of Y . The graph of Φ is the set {(x, y) ∈ X × Y : y ∈ Φ(x)}.
If W ⊆ Y , we set Φ−(W ) = {x ∈ X : Φ(x) ∩ W 6= ∅}. If (X,F) is a
measurable space and Y is a topological space, we say that Φ is measurable
if Φ−(W ) ∈ F for every open set W ⊆ Y . If X and Y are two topological
spaces, we say that Φ is upper semicontinuous if, for every closed set W ⊆ Y ,
the set Φ−(W ) is closed in X. If (X, d) is a metric space, for every x ∈ X
and every nonempty set W ⊆ X, we define d(x,W ) = infz∈W d(x, z).

In the sequel we shall apply the following proposition, whose simple proof
follows immediately from Theorem 3.5 of [8].

Proposition 1.1. Let (X,F) be a measurable space and let ϕ be a mea-
surable real-valued function defined on X. Then the multifunctions x →
]−∞, ϕ(x)] and x→ [ϕ(x),∞[, x ∈ X, are measurable.

We shall also use the following proposition, which can be easily verified.

Proposition 1.2. Let X be a topological space and let ϕ be an upper
(resp. lower) semicontinuous real-valued function defined on X. Then the
multifunction x→ ]−∞, ϕ(x)] (resp. x→ [ϕ(x),∞[), x∈X, is upper semi-
continuous.

Let n be a positive integer and let Rn be the real Euclidean n-space. A
nonempty set Ω ⊆ Rn is said to be a domain if it is open and connected.
By Ω (resp. ∂Ω) we denote the closure (resp. the boundary) of Ω in Rn.

As regards the function spaces we shall use in the sequel, our notations
are standard; we refer for instance to [1], [7].

For the reader’s convenience, we report now the statement of Theorem 1
in [13], which will be applied in the sequel.
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Theorem 1.1. Let (T,F , µ) be a finite, nonatomic, complete measure
space; let V be a nonempty set ; let (X, ‖·‖X) and (Y, ‖·‖Y ) be two separable
real Banach spaces, with Y finite-dimensional ; let p, q, s ∈ [1,∞], with q <
∞ and q ≤ p ≤ s; let Ψ : V → Ls(T, Y ) be a surjective and one-to-one
operator ; let Φ : V → L1(T,X) be an operator such that , for every v ∈
Ls(T, Y ) and every sequence {vn} in Ls(T, Y ), weakly converging to v in
Lq(T, Y ), the sequence {Φ(Ψ−1(vn))} converges strongly to Φ(Ψ−1(v)) in
L1(T,X); let ϕ : [0,∞[→ [0,∞] be a nondecreasing function such that

ess sup
t∈T

‖Φ(u)(t)‖X ≤ ϕ(‖Ψ(u)‖Lp(T,Y ))

for all u ∈ V . Further , let F : T × X → 2Y be a multifunction, with
nonempty , convex , closed values, satisfying the following conditions:

(i) For µ-almost every t ∈ T , the multifunction F (t, ·) has closed graph.
(ii) The set {x ∈ X : F (·, x) is F-measurable } is dense in X.
(iii) There exists a real number r > 0 such that the function

t→ sup
‖x‖X≤ϕ(r)

d(0Y , F (t, x))

belongs to Ls(T ) and its norm in Lp(T ) is less than or equal to r (d is the
metric induced by ‖ · ‖Y and 0Y denotes the zero vector of Y ).

Under these assumptions, there exists ũ ∈ V such that

Ψ(ũ)(t) ∈ F (t, Φ(ũ)(t)) and ‖Ψ(ũ)(t)‖Y ≤ sup
‖x‖X≤ϕ(r)

d(0Y , F (t, x))

µ-almost everywhere in T .

2. Results. Let Ω be a bounded domain in Rn, n ≥ 3, with a C1,1-
boundary, and let L be the linear elliptic operator

Lu = −
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

n∑
i=1

bi(x)
∂u

∂xi
+ c(x)u,

where: aij ∈ C1(Ω), aij = aji for every i, j = 1, . . . , n, and
∑n
i,j=1 aij(x)ξiξj

≥ ξ21 + . . . + ξ2n for all x ∈ Ω, (ξ1, . . . , ξn) ∈ Rn; bi ∈ L∞(Ω) for every
i = 1, . . . , n; c ∈ L∞(Ω) and c(x) ≥ 0 for almost all x ∈ Ω.

It is well known that, for any p ∈ ]1,∞[, L is a one-to-one operator from
W 2,p(Ω) ∩W 1,p

0 (Ω) onto Lp(Ω) (see, for instance, [7, Theorem 9.15]).
Denote by ωn the volume of the unit ball in Rn and set

β = ess sup
x∈Ω

[ n∑
i=1

(
bi(x) +

n∑
j=1

∂aij(x)
∂xj

)2]1/2
.
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When p > n/2, owing to Theorem 3.1 of [2], for every u ∈W 2,p(Ω)∩W 1,p
0 (Ω)

one has
ess sup
x∈Ω

|u(x)| ≤ B‖Lu‖Lp(Ω),

where

B =
1

n2ω
2/n
n

(1)

×
[m(Ω)∫

0

(
e−β(r/ωn)1/n

m(Ω)∫
r

s−2+2/neβ(s/ωn)1/n

ds
)p/(p−1)

dr
]1−1/p

;

if β = 0, then a simple computation shows that the constant B becomes [16,
Theorem 2]

B = [m(Ω)]2/n−1/p Γ (1 + n/2)2/n

n(n− 2)π
(1)′

×
[
Γ (1 + p/(p− 1))Γ (n/(n− 2)− p/(p− 1))

Γ (n/(n− 2))

]1−1/p

(‖ · ‖Lp(Ω) denotes the usual norm of Lp(Ω), m(Ω) is the Lebesgue measure
of Ω and Γ is the Gamma function).

The main result of this paper is the following

Theorem 2.1. Let f and g be two real-valued functions defined on Ω×R.
Assume that :

(i1) For almost every x ∈ Ω and every z ∈ R, one has f(x, z) ≤ g(x, z).
(i2) For almost every x ∈ Ω the function z → f(x, z) is lower semicon-

tinuous and the function z → g(x, z) is upper semicontinuous.
(i3) There exists a set D ⊆ R, with D = R, such that , for each z ∈ D,

the functions x→ f(x, z) and x→ g(x, z) are measurable.
(i4) There exist p ∈ ]n/2,∞[ and r > 0 such that the function

x→ sup
|z|≤Br

max{−g(x, z),max{0, f(x, z)}},

where B is given by (1), belongs to Lp(Ω) and its norm in Lp(Ω) is less
than or equal to r.

Then problem (P) has at least one strong solution u ∈ W 2,p(Ω) ∩
W 1,p

0 (Ω). Moreover , for almost every x ∈ Ω, one has

|Lu(x)| ≤ sup
|z|≤Br

max{−g(x, z),max{0, f(x, z)}}.

P r o o f. Let us apply Theorem 1.1. To this end, choose: T = Ω with the
Lebesgue measure structure (LΩ ,m); V = W 2,p(Ω)∩W 1,p

0 (Ω); X = Y = R;
q = s = p; Ψ(u) = Lu for all u ∈ V ; Φ(u) = u for all u ∈ V ; ϕ(λ) = Bλ for
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all λ ∈ [0,∞[, where B is given by (1). From Theorem 9.15 of [7] it follows
that Ψ is a one-to-one operator from V onto Lp(Ω). Let v ∈ Lp(Ω) and let
{vk} be a sequence in Lp(Ω) weakly converging to v in Lp(Ω). Bearing in
mind that Ψ−1 is a continuous, linear operator from Lp(Ω) into W 2,p(Ω)
(see, for instance, [7, Lemma 9.17]), we deduce that {Ψ−1(vk)} converges
weakly to Ψ−1(v) in W 2,p(Ω). Therefore, by the Rellich–Kondrachov The-
orem [1, Theorem 6.2], it also converges to Ψ−1(v) in C0(Ω). This implies
limk→∞ Φ(Ψ−1(vk)) = Φ(Ψ−1(v)) in L1(Ω).

Next, observe that, owing to Theorem 3.1 of [2], for every u ∈ V one has

ess sup
x∈Ω

|Φ(u)(x)| ≤ ϕ(‖Ψ(u)‖Lp(Ω)).

Now, let Ω1 ∈ LΩ be such that m(Ω1) = 0 and (i1), (i2) hold for all
x ∈ Ω \Ω1. For every (x, z) ∈ Ω × R, we define

F (x, z) = R if x ∈ Ω1, F (x, z) = [f(x, z), g(x, z)] if x ∈ Ω \Ω1.

Obviously, the multifunction F : Ω × R → 2R so defined is nonempty,
convex, closed-valued. Let us prove that F satisfies the assumptions (i)–(iii)
of Theorem 1.1. To this end, fix x ∈ Ω \ Ω1. By (i2) and Proposition 1.2,
the multifunctions z → [f(x, z),∞[ and z → ]−∞, g(x, z)], z ∈ R, are upper
semicontinuous. So, by Theorems 1.3.2 and 1.2.12 in [4], the multifunction
z → [f(x, z), g(x, z)] has closed graph. Next, fix z ∈ D. Owing to (i3) and
Proposition 1.1, the multifunctions x→ ]−∞, g(x, z)] and x→ [f(x, z),∞[,
x ∈ Ω \Ω1, are measurable. Hence, by [8, Corollary 4.2], the multifunction
x → [f(x, z), g(x, z)], x ∈ Ω \ Ω1, is measurable. This implies that the
multifunction x→ F (x, z), x ∈ Ω, is measurable.

Finally, observe that, for every x ∈ Ω \Ω1 and every z ∈ R, one has

d(0, F (x, z)) = max{−g(x, z),max{0, f(x, z)}}.

Therefore, by (i4), the function x → sup|z|≤ϕ(r) d(0, F (x, z)) belongs to
Lp(Ω) and its norm in this space is less than or equal to r.

At this point we can apply Theorem 1.1. Thus, there exists u ∈W 2,p(Ω)
∩W 1,p

0 (Ω) such that Lu(x)∈F (x, u(x)) and |Lu(x)|≤ sup|z|≤Br d(0, F (x, z))
for almost every x ∈ Ω. This completes the proof.

R e m a r k 2.1. The assumptions (i2) and (i3) of Theorem 2.1 do not imply
that the functions x → f(x, z) and x → g(x, z), x ∈ Ω, are measurable for
all z ∈ R. In fact, let Ω0 be a nonmeasurable subset of Ω, let D be the set
of all rational numbers and let H be a closed subset of R \ D. For every
(x, z) ∈ Ω × R, we set

f(x, z) =
{
−1 if (x, z) ∈ Ω0 ×H,
0 if (x, z) ∈ (Ω × R) \ (Ω0 ×H), g(x, z) = −f(x, z).
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An easy computation shows that f, g satisfy all the assumptions of The-
orem 2.1. Nevertheless, for every z ∈ H, the functions x → f(x, z) and
x→ g(x, z), x ∈ Ω, are not measurable.

The next result is concerned with an interesting special case of problem
(P). In proving it, we shall use the following lemmas.

Lemma 2.1. Let ϕ be a real-valued function defined on Ω × R. Sup-
pose that the function ϕ(x, ·) is measurable for all x ∈ Ω and one has
sup(x,z)∈Ω×]−%,%[ |ϕ(x, z)| < ∞ for all % > 0. For every (x, z) ∈ Ω × R,
we define

ϕ(x, z) = lim
σ→0+

ess inf
|w−z|<σ

ϕ(x,w), ϕ(x, z) = lim
σ→0+

ess sup
|w−z|<σ

ϕ(x,w).

Then, for any x ∈ Ω, the function z → ϕ(x, z) is lower semicontinuous and
the function z → ϕ(x, z) is upper semicontinuous.

The proof of the preceding lemma is straightforward; so we omit it.

Lemma 2.2. Let Ω be with a C2,α-boundary for some α ∈ ]0, 1[; Ω0 ⊆ Ω
a domain; λ1 the first eigenvalue of −∆ = −

∑n
i=1 ∂

2/∂x2
i with the ho-

mogeneous Dirichlet boundary condition; λ ∈ ]−∞, λ1[. Moreover , let v ∈
W 2,p(Ω0), p > n, be such that

(2)
−∆v(x)− λv(x) ≤ 0 for almost every x ∈ Ω0,

v(x) ≤ 0 for every x ∈ ∂Ω0.

Then v(x) ≤ 0 for every x ∈ Ω0.

P r o o f. Owing to Theorem 1.17 of [3], there is v0 ∈ C2(Ω)∩C1(Ω) such
that −∆v0(x) − λv0(x) = 1, v0(x) > 0 for all x ∈ Ω, and v0(x) = 0 for all
x ∈ ∂Ω. Moreover, by Theorem 36.VI of [12], v0 ∈ C2(Ω). Choose σ > 0
satisfying 1− λσ > 0 and set, for every x ∈ Ω, w(x) = v0(x) + σ. Then one
has

(3) −∆w(x)− λw(x) > 0 for all x ∈ Ω, w(x) > 0 for all x ∈ Ω.
Now, define u(x) = v(x)/w(x), x ∈ Ω0, and observe that u ∈ W 2,p(Ω0)

and that, by (2), for almost every x ∈ Ω0, one has

w(x)∆u(x) +
n∑
i=1

∂w(x)
∂xi

∂u(x)
∂xi

+ (∆w(x) + λw(x))u(x) ≥ 0.

Since Theorems 3.I and 3.V of [12], together with (3), yield maxx∈Ω0
u(x) ≤

0, we obtain v(x) ≤ 0 for every x ∈ Ω0.

We are now in a position to establish the following

Theorem 2.2. Let Ω be with a C2,α-boundary for some α ∈ ]0, 1[ and let
ϕ be a real-valued function defined on Ω × R. Suppose that :
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(j1) The function z → ϕ(x, z) is measurable for all x ∈ Ω.
(j2) For every % > 0 there is k% > 0 such that sup(x,z)∈Ω×]−%,%[ |ϕ(x, z)|

≤ k%.
(j3) The functions x → ϕ(x, z) and x → ϕ(x, z) are measurable for all

z ∈ R (ϕ and ϕ are as in Lemma 2.1).
(j4) lim supz→±∞ ϕ(x, z)/z < λ1 uniformly with respect to x ∈ Ω, where

λ1 is as in Lemma 2.2.

Then the problem{
ϕ(x, u) ≤ −∆u ≤ ϕ(x, u) in Ω,

u = 0 on ∂Ω,

has at least one solution u ∈W 2,p(Ω) ∩W 1,p
0 (Ω), p > n.

P r o o f. It is well known that λ1 > 0. Hence, by (j4), there are ε ∈ ]0, λ1[
and M > 0 such that

(4)
ϕ(x, z) < (λ1 − ε)z +M for every (x, z) ∈ Ω × [0,∞[,
ϕ(x, z) > (λ1 − ε)z −M for every (x, z) ∈ Ω× ]−∞, 0].

Owing to [3, Theorem 1.17], there exists u0 ∈ C2(Ω) ∩ C1(Ω) satisfying

(5)
−∆u0(x) = (λ1 − ε)u0(x) +M, u0(x) > 0 for all x ∈ Ω,

u0(x) = 0 for all x ∈ ∂Ω.

Now, let % = maxx∈Ω |u0(x)|. For every (x, z) ∈ Ω × R, we set

f(x, z) =


ϕ(x, %) if z ≥ %,
ϕ(x, z) if |z| < %,
ϕ(x,−%) if z ≤ −%,

g(x, z) =

ϕ(x, %) if z ≥ %,
ϕ(x, z) if |z| < %,
ϕ(x,−%) if z ≤ −%.

Obviously, the functions f, g : Ω×R→ R so defined satisfy the assumption
(i1) of Theorem 2.1. Moreover, by (4), one has

(6)
g(x, z) ≤ (λ1 − ε)z +M for every (x, z) ∈ Ω× ]0,∞[ ,
f(x, z) ≥ (λ1 − ε)z −M for every (x, z) ∈ Ω× ]−∞, 0[ .

Bearing in mind Lemma 2.1, it is a simple matter to see that f, g satisfy
(i2) of Theorem 2.1. Finally, since (i3) of Theorem 2.1, with D = R, follows
immediately from (j3), to apply this result it is sufficient to show that (i4)
holds. Observe that, by (j2), one has

sup
(x,z)∈Ω×R

|f(x, z)| ≤ sup
(x,z)∈Ω×]−%−1,%+1[

|ϕ(x, z)| ≤ k%+1,

sup
(x,z)∈Ω×R

|g(x, z)| ≤ sup
(x,z)∈Ω×]−%−1,%+1[

|ϕ(x, z)| ≤ k%+1.
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So, if we choose p > n and r > k%+1[m(Ω)]1/p, we have( ∫
Ω

( sup
|z|≤Br

max{−g(x, z),max{0, f(x, z)}})pdx
)1/p

≤ k%+1[m(Ω)]1/p < r.

By Theorem 2.1, there exists u ∈W 2,p(Ω) ∩W 1,p
0 (Ω) satisfying

(7) f(x, u(x)) ≤ −∆u(x) ≤ g(x, u(x))

almost everywhere in Ω. Let us prove that u(x) ≤ u0(x) for every x ∈ Ω.
To this end, set Ω1 = {x ∈ Ω : u(x) > 0}. If Ω1 = ∅ our claim is obvious;
otherwise, denoting by Ω∗1 a connected component of Ω1, owing to (5)–(7),
we have

−∆(u(x)− u0(x)) ≤ g(x, u(x))− (λ1 − ε)u0(x)−M
≤ (λ1 − ε)u(x) +M − (λ1 − ε)u0(x)−M
= (λ1 − ε)(u(x)− u0(x))

almost everywhere in Ω∗1 , and u(x) − u0(x) ≤ 0 for every x ∈ ∂Ω∗1 . By
Lemma 2.2, this implies u(x)−u0(x) ≤ 0 for all x ∈ Ω∗1 . Hence, u(x) ≤ u0(x)
for every x ∈ Ω. In a similar way it is possible to verify that u(x) ≥ −u0(x)
for all x ∈ Ω.

Thus, the conclusion follows immediately from (7) and the fact that, for
every x ∈ Ω, one has |u(x)| ≤ %.

R e m a r k 2.2. We observe that, if the function ϕ does not depend on x
and limw→z− ϕ(w) and limw→z+ ϕ(w) exist for each z ∈ R, then Theorem 2.2
and Theorem 5.1 of [6] coincide (see [6], Example 1 and Theorem 5.1).

If f(x, z) = g(x, z), (x, z) ∈ Ω × R, Theorem 2.1 assumes the following
form.

Theorem 2.3. Let f be a real-valued function defined on Ω×R. Assume
that :

(k1) For almost every x ∈ Ω, the function z → f(x, z) is continuous.
(k2) For every z ∈ R, the function x→ f(x, z) is measurable.
(k3) There exist p ∈ ]n/2,∞[ and r > 0 such that the function

x→ sup
|z|≤Br

|f(x, z)|,

where B is given by (1), belongs to Lp(Ω) and its norm in this space is less
than or equal to r.

Then the problem

(P1)
{
Lu = f(x, u) in Ω,
u = 0 on ∂Ω,
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has at least one strong solution u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω). Moreover , for

almost every x ∈ Ω, one has |Lu(x)| ≤ sup|z|≤Br |f(x, z)|.

R e m a r k 2.3. A simple sufficient condition in order that (k3) of Theo-
rem 2.3 holds is the following.

(k′3) There exist p ∈ ]n/2,∞[, γ ∈ ]0,∞[ and α, β ∈ Lp(Ω) such that

(8) |f(x, z)| ≤ α(x) + β(x)|z|γ

for almost every x ∈ Ω and every z ∈ R, and , if ‖β‖Lp(Ω) > 0, then either

B‖β‖Lp(Ω) < 1 or ‖α‖Lp(Ω) ≤
γ − 1
γ

(
1

γBγ‖β‖Lp(Ω)

)1/(γ−1)

,

according to whether γ = 1 or γ > 1.

We verify this only for ‖β‖Lp(Ω) > 0 and γ > 1, since in the other cases
the proof is similar. To this end, choose r = [γBγ‖β‖Lp(Ω)]−1/(γ−1). Then,
by (8), we have( ∫
Ω

( sup
|z|≤Br

|f(x, z)|)pdx
)1/p

≤ ‖α‖Lp(Ω) + (Br)γ‖β‖Lp(Ω)

≤ γ − 1
γ

(
1

γBγ‖β‖Lp(Ω)

)1/(γ−1)

+Bγ‖β‖Lp(Ω)

(
1

γBγ‖β‖Lp(Ω)

)γ/(γ−1)

.

For other existence results for problem (P1) where one assumes that f
satisfies a growth condition like (8), we refer for instance to [11], [17].

In particular, we emphasize that Theorem 3.3 of [17] is improved, in
several concrete cases (pick, for example, n = 4 and p = 3), by the following
result, which is an immediate consequence of Theorem 2.3.

Theorem 2.4. Let p ∈ ]n/2,∞[ and let h ∈ Lp(Ω). Suppose that

‖h‖Lp(Ω) ≤ [m(Ω)]−(n−2)/(4p)B−(n+2)/4 4
n+ 2

(
n− 2
n+ 2

)(n−2)/4

,

where B is given by (1)′. Then the problem{
∆u+ |u|(n+2)/(n−2) + h(x) = 0 in Ω,
u = 0 on ∂Ω,

has at least one strong solution u ∈W 2,p(Ω) ∩W 1,p
0 (Ω).

Finally, we present a very simple example of an application of Theo-
rem 2.3, where it seems that it is impossible to apply any of the results just
cited.
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Example 2.1. Let p ∈ ]n/2,∞[ and let h ∈ Lp(Ω) be such that

(9) ‖h‖Lp(Ω) ≤
1
Be

.

Then the problem {
Lu = h(x)e|u| in Ω,
u = 0 on ∂Ω,

has at least one solution u ∈ W 2,p(Ω) ∩ W 1,p
0 (Ω). Moreover , for almost

every x ∈ Ω, one has |Lu(x)| ≤ e|h(x)|.

P r o o f. For every (x, z) ∈ Ω × R, we set f(x, z) = h(x)e|z|. Obviously,
the function f : Ω × R → R so defined satisfies the assumptions (k1) and
(k2) of Theorem 2.3. Moreover, if we pick r = B−1, then by (9), one has( ∫

Ω

( sup
|z|≤Br

|f(x, z)|)p dx
)1/p

= e‖h‖Lp(Ω) ≤
1
B
.

This implies that (k3) of Theorem 2.3 holds. Hence, by that result, there
exists u ∈ W 2,p(Ω) ∩W 1,p

0 (Ω) such that Lu(x) = h(x)e|u(x)| almost every-
where in Ω, u(x) = 0 for all x ∈ ∂Ω, and |Lu(x)| ≤ e|h(x)| for almost every
x ∈ Ω.
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