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Abstract. The main result of this paper is the following: if a compact subset E of
Rn is UPC in the direction of a vector v ∈ Sn−1 then E has the Markov property in the
direction of v. We present a method which permits us to generalize as well as to improve
an earlier result of Paw lucki and Pleśniak [PP1].

1. Introduction. Let E be a compact subset of Rn with nonempty
interior. Consider the following two classical problems for polynomials:

• (Bernstein’s problem) Estimate the derivatives of polynomials at inte-
rior points of E;
• (Markov’s problem) Estimate the derivatives of polynomials at all

points of E.

For Markov’s problem, the most interesting situation is when E has the
Markov property.

A set E is said to have the Markov property if there exist positive con-
stants M and r such that the following Markov inequality holds:

|grad p(x)| ≤M(deg p)r‖p‖E ,
for every x ∈ E and every polynomial p : Rn → R. (Here ‖p‖E stands for
sup |p|(E) and | · | denotes the Euclidean norm in Rn.)

Markov’s inequality plays an important role in the constructive theory
of functions. Paw lucki and Pleśniak have shown connections between the
Markov property and the construction of a continuous linear extension op-
erator L : C∞(E) → C∞(Rn) (see [PP2]). Pleśniak [P] has proved that
if E is a C∞ determining compact set in Rn then the existence of such an
operator is equivalent to the Markov property. Paw lucki and Pleśniak [PP1]
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showed that the closure of a fat subanalytic subset of Rn has the Markov
property. They introduced a class of uniformly polynomially cuspidal subsets
of Rn (briefly, UPC) and proved Markov’s inequality for them. There are
several classes of sets which are UPC. In particular, compact convex sub-
sets of Rn with nonempty interior, fat subanalytic subsets of Rn and sets in
Goetgheluck’s paper [G] (where a first example of Markov’s inequality on
sets with cusps was proved) belong to this class.

The UPC sets are compact sets which have a polynomial parametrization
satisfying some additional (geometrical) conditions. These conditions imply
Markov’s inequality.

In this paper we present a new approach to the notion of UPC sets.
Observe that

|grad p(x)| = sup{|Dvp(x)| : v ∈ Sn−1},
where Sn−1 is the unit Euclidean sphere in Rn, and Dvp denotes the deriva-
tive of p in the direction of the vector v. We shall say that a compact set E
has the Markov property in the direction of v ∈ Sn−1 if there exist positive
constants M and r such that

‖Dvp(x)‖E ≤Mkr‖p‖E
for all polynomials of degree ≤ k. It is clear that having the Markov property
is equivalent to the Markov property in n linearly independent directions.
It can happen that a set E has the Markov property only in k, 1 ≤ k < n,
linearly independent directions (see Example 4.1). Hence the new notion is
indeed more general.

In our investigations a crucial role is played by the following result which
is strictly connected with Bernstein’s problem.

1.1. Proposition ([B1], [B4], see also [B2]). Let E be a compact subset
of Rn. Then for all x∈E, all v ∈ Sn−1 and all polynomials p of degree ≤ k,

|Dvp(x)| ≤ kDv+VE(x)
{

(‖p‖2E − p(x)2)1/2 if p ∈ R[x1, . . . , xn],
‖p‖E if p ∈ C[x1, . . . , xn].

Here VE is the extremal function defined by

VE(z) = sup{u(z) : u ∈ L, u|E ≤ 0} for z ∈ Cn,

where L is the Lelong class of all plurisubharmonic functions in Cn with
logarithmic growth: u(z) ≤ const.+ log(1 + |z|) (see [S]), and

Dv+VE(x) = lim inf
ε→0+

1
ε
VE(x+ iεv)

(see [B1], [B4]). The above Dini derivatives of the extremal function play an
important role in applications to Markov’s problem. In the classical situa-
tion of E = [−1, 1], Proposition 1.1 reduces to the Bernstein (if p is a real
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polynomial) and Markov–Bernstein (if p is a complex polynomial) inequal-
ities.

The paper is organized as follows: in Section 2 we prove the Bernstein
and Markov inequalities on a polynomial curve; in Section 3 we define UPC
sets in the direction of a vector v and give a Markov type inequality in the
direction of v—this is the main result of this paper. In the special case of a
convex symmetric subset with nonempty interior we obtain another proof of
a sharp result which was earlier obtained in [B4]. In Section 4 we give some
examples where we apply the results of Sections 2 and 3.

2. Bernstein and Markov inequalities on a polynomial curve.
Fix v ∈ Sn−1. For a given subset E of Rn and x ∈ E, we define the distance
of x from Rn \ E in the direction of v by

%v(x) = distv(x,Rn \ E) := sup{t ≥ 0 : [x− tv, x+ tv] ⊂ E}.

One can easily verify that if E is compact then %v is upper semicontinuous
on E. Moreover,

%v(x) ≥ %(x) := dist(x,Rn \ E) and %(x) = inf{%v(x) : v ∈ Sn−1}.

The following result plays a crucial role in this section.

2.1. Proposition. Let E be a compact subset of Rn and let φ : R→ Rn
be a polynomial mapping such that φ([0, 1]) ⊂ E. Put d = max(1,deg φ).
Then

Dv+VE(φ(t)) ≤ 2d sup
0≤r≤1

√
r(1− r)

%v(φ(rt))

for 0 ≤ t < 1 and v ∈ Sn−1.

P r o o f. Fix t ∈ [0, 1), ε > 0 and R > 1. Assume that the right hand
side of the inequality is finite. Denote by φ̃ the natural extension of φ to
the whole plane C. Define

f(ζ) = φ̃

(
1
2
at(g(ζ) + 1)

)
+

i
2

(ζ − ζ−1)bεv

for |ζ| ≥ 1, where g(ζ) = 1
2 (ζ + ζ−1) is the Joukowski function and a =

2/(g(R) + 1), b = 2/(R−R−1).
Assume for the moment that

f(S1) ⊂ E.

Then, by the maximum principle for subharmonic functions and by the
definition of VE , we obtain VE(f(ζ)) ≤ d log |ζ| for |ζ| ≥ 1. In particular,

VE(φ(t) + iεv) ≤ d logR.
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Now notice that

f(eiθ) = φ

(
1
2
at(cos θ + 1)

)
− sin θbεv

and the condition f(S1) ⊂ E is equivalent to

φ(atr)± 2
√
r(1− r) bεv ∈ E for each 0 ≤ r ≤ 1.

This condition will be satisfied if

2
√
r(1− r) bε ≤ %v(φ(atr)),

or equivalently,

b sup
0≤r≤1

2
√
r(1− r)

%v(φ(atr))
≤ 1
ε
.

We have

b sup
0≤r≤1

2
√
r(1− r)

%v(φ(atr))
≤ b√

a
sup

0≤r≤1

2
√
ar(1− ar)

%v(φ(atr))

≤ b√
a

sup
0≤r≤1

2
√
r(1− r)

%v(φ(tr))
.

Since the right-hand side tends to 0 as R → ∞, and to ∞ as R → 1+, we
may choose R = R(ε) > 1 such that

sup
0≤r≤1

2
√
r(1− r)

%v(φ(tr))
=
√
a

2ε
(R−R−1).

It is clear that the condition f(S1) ⊂ E is satisfied, and R→ 1 as ε→ 0+.
Now, observe that

lim
R→1+

2(R−R−1)−1 logR = 1.

By the definition of Dv+VE we have

Dv+VE(φ(t)) ≤ d lim
ε→0+

1
ε

logR(ε) = d lim
ε→0+

√
a

2ε
(R(ε)−R(ε)−1)

= d sup
0≤r≤1

2
√
r(1− r)

%v(φ(rt))
.

This completes the proof.

2.2. Corollary. If x ∈ int(E), then

Dv+VE(x) ≤ 1/%v(x).

Using a similar argument to that of the proof of Proposition 2.1 one can
also prove the following
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2.3. Proposition. Let Ω be a bounded , star-shaped (with respect to the
origin) and symmetric domain in Rn and let E = Ω. Then

Dv+VE(x) ≤ sup
0≤r≤1

√
1− r2
%v(rx)

for x ∈ int(E),

with equality in the case where E is convex.

P r o o f. A star-shaped symmetric set has a natural parametrization t→
tx, t ∈ [−1, 1], x ∈ E. The inequality in Proposition 2.3 is obtained by a
similar argument to that of Proposition 2.1 applied to the mapping

f(ζ) = ag(ζ)x+
i
2

(ζ − ζ−1)bεv,

where g(ζ) and b have been defined in the proof of Proposition 2.1 and
a = 1/g(R).

Now consider the case where E is convex. Then

E = {x ∈ Rn : x · w ≤ 1,∀w ∈ E∗},
where E∗ denotes the polar of E. It is easy to see that

%v(rx) = inf
{

1− |r||x · w|
|v · w|

: w ∈ E∗
}
.

Hence

sup
0≤r≤1

√
1− r2
%v(rx)

≤ sup
{

|v · w|
(1− (x · w)2)1/2

: w ∈ E∗
}
.

It was proved by the author (see [B1], [B4]) that the right-hand side of this
inequality is equal to Dv+VE(x). This completes the proof.

We need the following lemma, which is a generalization of the well-known
lemma of Pólya and Szegö (see [C]).

2.4. Lemma. Let p be a polynomial in one variable of degree ≤ k− 1. If

|p(t)| ≤ (1− t2)−α for t ∈ (−1, 1),

where α ≥ 1/2 is fixed , then

‖p‖[−1,1] ≤ k2α.

P r o o f. For α = 1/2 we obtain the Pólya–Szegö lemma. The general
case reduces to the case α = 1/2 in the following way. Let Xk = {p ∈ C[t] :
deg p ≤ k − 1}. For α ≥ 0 we define a norm ‖ · ‖α in Xk by

‖p‖α := sup{(1− t2)α|p(t)| : t ∈ [−1, 1]}.
For α > 1/2, we have ‖p‖α ≤ ‖p‖1/2 ≤ ‖p‖0 = ‖p‖[−1,1]. Observe that the
Pólya–Szegö lemma is equivalent to the inequality ‖p‖0 ≤ k‖p‖1/2. Since
(Xk, ‖ · ‖1/2) is an interpolation space between (Xk, ‖ · ‖α) and (Xk, ‖ · ‖0) of
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exact exponent θ = 1−1/(2α), i.e. ‖p‖1/2 ≤ ‖p‖1−θα ‖p‖θ0, by the Pólya–Szegö
lemma we obtain ‖p‖1−θ0 ≤ k‖p‖1−θα , which completes the proof.

Now we can formulate the main result of this section.

2.5. Proposition. Let E be a compact subset of Rn and let φ : R →
Rn be a polynomial mapping of degree d ≥ 1 such that φ([0, 1]) ⊂ E. Fix
v ∈ Sn−1 and assume that distv(φ(t),Rn \ E) ≥ M(1 − t)m for 0 ≤ t ≤ 1,
where M > 0 and m ≥ 1 are constants. If p ∈ C[x1, . . . , xn] and deg p ≤ k,
then

|Dvp(φ(t))| ≤ 1
M

(2dk)2m‖p‖E for 0 ≤ t ≤ 1.

P r o o f. By Proposition 2.1 we obtain

Dv+VE(φ(t)) ≤ 2d
M

sup
0≤r≤1

√
r(1− r) (1− rt)−m

≤ 2d
M

(1− t)−(m−1/2) for 0 ≤ t < 1.

It follows from Proposition 1.1 that

|Dvp(φ(t2))| ≤ 2dk
M

(1− t2)−(m−1/2)‖p‖E

for |t| < 1. SinceDvp(φ(t2)) is a polynomial of degree≤ 2d(k−1), combining
the last inequality with Lemma 2.4 gives our assertion.

3. Markov inequality on UPC sets. Our considerations suggest a
modification of the notion of a UPC set introduced in [PP1].

Let E be a compact subset of Rn and let m ≥ 1. Given v ∈ Sn−1, we
shall say that E is m-UPC in the direction of v if there exist E0 ⊂ E, a
positive constant M and a positive integer d such that for each x ∈ E0 one
can choose a polynomial map φx : R→ Rn of degree at most d satisfying

φx([0, 1]) ⊂ E and φx(1) = x,

%v(φx(t)) ≥M(1− t)m for all x ∈ E0 and t ∈ [0, 1],⋃
x∈E0

φx([0, 1]) = E.

Applying Propositions 2.1, 2.5 and 1.1 we obtain the following

3.1. Theorem. Let E be an m-UPC subset of Rn in the direction of v.
Then for every p ∈ C[x1, . . . , xn] with deg p ≤ k we have

‖Dvp‖E ≤ Ck2m‖p‖E ,

where C = 1
M (2d)2m.
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3.2. R e m a r k. In the special case where E = {(x, y) ∈ R2 : 0 ≤ x ≤
1, 0 ≤ y ≤ xp} with p ≥ 1, Theorem 3.1 was proved by Goetgheluck [G].

3.3. Corollary. Assume that there exist n linearly independent vec-
tors vi ∈ Sn−1 such that E is UPC in the direction of each vi (with a
constant mi). Then there exists a constant C = C(E) such that for each
p ∈ C[x1, . . . , xn] with deg p ≤ k the following Markov inequality holds:

|grad p(x)| ≤ Ck2m‖p‖E for all x ∈ E,

where m = maxi=1,...,nmi.

3.4. R e m a r k. If E is a UPC set in the direction of each v∈Sn−1 with
E0 = E, with the same family of polynomial mappings φx and with the
same constants M and m, for each v, then

dist(φx(t),Rn \ E) ≥M(1− t)m for all t ∈ [0, 1], x ∈ E.

This is equivalent to the fact that E is UPC. In this case, by Theorem 3.1
we obtain

3.5. Corollary. If E is an m-UPC subset of Rn, then

|grad p(x)| ≤ Ck2m‖p‖E

for all p ∈ C[x1, . . . , xn] with deg p ≤ k, where C =
√

2
M (2d)2m.

This corollary improves Paw lucki and Pleśniak’s result from [PP1] where
the Markov inequality for UPC sets was proved with constant 2m+ 2.

We finish this section by proving a version of the Markov inequality for
star-shaped sets.

3.6. Theorem. Let Ω be a bounded , star-shaped (with respect to the
origin) and symmetric domain in Rn and let E = Ω. Assume that

%v(tx) ≥M(1− |t|)m for t ∈ [−1, 1], x ∈ ∂E,

where M > 0 and m ≥ 1 are constants. If p ∈ C[x1, . . . , xn] and deg p ≤ k,
then

|Dvp(x)| ≤
√

2M−1/(2m)k%v(x)−(1−1/(2m))‖p‖E for x ∈ int(E)

and

‖Dvp‖E ≤
(

2− 1
m

)m−1/2
m−1/2

M
k2m‖p‖E .

P r o o f. If x ∈ int(E), then x = t0x0, where t0 ∈ [0, 1) and x0 ∈ ∂E.
Thus we get %v(tx) ≥ M(1− |t|t0)m ≥M2−m(

√
1− t2)2m, which implies

sup
0≤r≤1

√
1− t2 %v(rx)−1 ≤

√
2M−1/m%v(x)−(1−1/(2m)).
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Applying Propositions 1.1 and 2.3 we obtain the first assertion of the theo-
rem. We also have

sup
0≤r≤1

√
1− r2 (1− r|t|)m ≤

(
2− 1

m

)m−1/2

m−1/2(1− t2)−(m−1/2)

for t ∈ (−1, 1). Hence we obtain, for all polynomials p with deg p ≤ k,

|Dvp(tx)| ≤ km
−1/2

M

(
2− 1

m

)m−1/2

(1− t2)−(m−1/2)‖p‖E .

Applying Lemma 2.4 completes the proof.

3.7. Corollary. Let E = {x ∈ Rn : f(x) ≤ 1}, where f is a norm in
Rn. If v ∈ Sn−1 and p is a polynomial of degree ≤ k, then

‖Dvp‖E ≤ f(v)k2‖p‖E .

P r o o f. Let x ∈ ∂E, t ∈ [−1, 1] and τ ∈ R. If |t|+ f(v)|τ | ≤ 1, i.e.

|τ | ≤ 1− |t|
f(v)

,

then f(tx+ τv) ≤ 1. So we have

%v(tx) ≥ 1
f(v)

(1− |t|)

and we can apply Theorem 3.6.

3.8. R e m a r k . It follows from the proof of Theorem 3.6 that the follow-
ing implication holds: if there exist constants M > 0 and m ≥ 1 such that
%v(tx) ≥M(1− |t|)m for t ∈ [−1, 1] and x ∈ ∂E, then there exist constants
C > 0 and 1/2 ≤ α < 1 such that sup0≤r≤1

√
1− t2%v(rx)−1 ≤ C%v(x)−α

for x ∈ int(E).
The converse implication is also true.

3.9. Proposition. Let E be a compact , fat (int(E) = E), star-shaped
and symmetric (with respect to the origin) subset of Rn. Assume that

sup
0≤r≤1

√
1− r2%v(rx)−1 ≤ C%v(x)−α for x ∈ int(E),

where C > 0 and 1/2 ≤ α < 1 are constants. Then

%v(tx) ≥ C−2m2−2m2
(1− |t|)m for t ∈ [−1, 1], x ∈ ∂E,

with m = 1/(2(1− α)).

P r o o f. Fix x ∈ int(E). By the assumptions,

%v(t2x) ≥ 1
C

√
1− t2%v(tx)α ≥ 1

C

√
1− t2

[
1
C

√
1− t2%v(x)α

]α
,
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which implies

%v(tx) ≥ C−(1+α)2−(1+α)/2(
√

1− t2)1+α%v(x)α
2
,

and, by recurrence,

%v(tx) ≥ 2−(1+2α+3α2+...+kαk−1+kαk)/2

(√
1− t2
C

)1+α+...+αk

%v(x)α
k+1

.

Letting k →∞ gives

%v(tx) ≥ C−2m2−2m2
(1− t2)m ≥ C−2m2−2m2

(1− |t|)m

for x ∈ int(E) and t ∈ [−1, 1]. Since %v is upper semicontinuous, this in-
equality also holds for x ∈ ∂E. The proof is complete.

4. Examples

4.1. Example. Let E = {(x, y) ∈ R2 : |x| < 1, |y| ≤ e−(1−|x|)−1} ∪
{(−1, 0), (1, 0)}. If v = (1, 0), (x, y) ∈ ∂E and φ(t) = t(x, y), then easy
calculations show that

1− |t| ≥ %v(φ(t)) ≥ 1
2

(1− |t|).

By Theorem 3.6 we obtain

‖D1p‖E ≤ 2k2‖p‖E ,

where p is a polynomial of degree≤ k. However, applying a similar argument
to that for Zerner’s example [Z] one can prove that Markov’s inequality on
E does not hold for any positive constant m.

4.2. Example. Let α = (α1, . . . , αn) where αi ≥ 1, i = 1, . . . , n. Define

Eα = {x ∈ Rn : |x1|1/α1 + . . .+ |xn|1/αn ≤ 1}.

Let e1, . . . , en be the standard orthonormal basis in Rn. Then

%ei(x) =
(

1−
n∑

j=1,j 6=i

|xj |1/αj
)αi
− |xi|.

Let βi = maxj 6=i αj , i = 1, . . . , n. We have

%ei(tx) =
(

1−
n∑

j=1,j 6=i

|xj |1/αj |t|1/αj
)αi
− |t||xi|

≥
(

1− |t|1/βi
n∑

j=1,j 6=i

|xj |1/αj
)αi
− |t|1/βi

(
1−

n∑
j=1,j 6=i

|xj |1/αj
)αi

≥ (1− |t|1/βi)αi ≥ Ai(1− |t|)αi ,
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with Ai = (maxj 6=i αj)−αi , i = 1, . . . , n, for t ∈ [−1, 1] and x ∈ Eα. By
Theorem 3.6 we obtain

‖Dip‖Eα ≤
(

2− 1
αi

)αi−1/2

α
−1/2
i (max

j 6=i
αj)αik2αi‖p‖Eα , i = 1, . . . , n,

for all polynomials p of degree ≤ k.
This inequality is sharp in the case where α1 = . . . = αn = 1 and

generalizes the classical Markov inequality (see [B4]).
An easy calculation shows that we also have

sup
0≤r≤1

√
1− r2%ei(rx)−1 ≤ max

(
1,
(
βi
αi

)1/2)
%ei(x)−(1−1/(2αi))

for x ∈ int(Eα), i = 1, . . . , n. Thus, we obtain the following Bernstein–
Markov inequality:

|Dip(x)| ≤ max
(

1,
(

1
αi

max
j 6=i

αj

)1/2)
k%ei(x)−(1−1/(2αi))‖p‖Eα

for i = 1, . . . , n, x ∈ int(Eα), and p ∈ C[x1, . . . , xn] with deg p ≤ k.

4.3. Example. Let

E =
{

(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ (1− |x|)
[
1 + log

1
1− |x|

]−1}
.

Let e1 = (1, 0), e2 = (0, 1). One can check the following estimates:

%e1(t(x, y)) ≥ 1
2

(1− |t|)

and

%e2(t(x, y)) ≥ (1− |t|)
[
1 + log

1
1− |t|

]−1

,

for t ∈ [−1, 1] and (x, y) ∈ ∂E. The first inequality implies

‖D1p‖E ≤ 2k2‖p‖E
for any polynomial p of degree ≤ k. By the second inequality, we obtain

De2+VE(t(x, y)) ≤ sup
0≤r≤1

√
1− r2(1− r|t|)−1

[
1 + log

1
1− r|t|

]
≤ (1− t2)−1/2

[
1 + log 2 + log

1
1− t2

]
≤ (1− t2)−1/2

[
1 +
√

5 + log
1

1− t2

]
≤ (1− t2)−1/2(1 +

√
5)(1− t2)−1/(1+

√
5),
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for t ∈ (−1, 1) and (x, y) ∈ ∂E. We now have, for every polynomial p with
deg p ≤ k,

|D2p(t(x, y))| ≤ (1 +
√

5)k2+2/(1+
√

5)‖p‖E
for t ∈ (−1, 1) and (x, y) ∈ ∂E, and

|D2p(t(x, y))|
≤ k(1− t2)−1/2

×min
(

1 +
√

5 + log
1

1− t2
, (1 +

√
5)k1+2/(1+

√
5)(1− t2)1/2

)
‖p‖E

≤ k(1− t2)−1/2(1 +
√

5)(1 + log k)‖p‖E .

Thus, we obtain ‖D2p‖E ≤ (1 +
√

5)k2(1 + log k)‖p‖E .
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