Markov inequality on sets with polynomial parametrization

by Mirosław Baran (Kraków)

Abstract. The main result of this paper is the following: if a compact subset E of \mathbb{R}^n is UPC in the direction of a vector $v \in S^{n-1}$ then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].

- 1. Introduction. Let E be a compact subset of \mathbb{R}^n with nonempty interior. Consider the following two classical problems for polynomials:
- (Bernstein's problem) Estimate the derivatives of polynomials at interior points of E;
- ($Markov's\ problem$) Estimate the derivatives of polynomials at all points of E.

For Markov's problem, the most interesting situation is when E has the Markov property.

A set E is said to have the Markov property if there exist positive constants M and r such that the following Markov inequality holds:

$$|\operatorname{grad} p(x)| \le M(\operatorname{deg} p)^r ||p||_E,$$

for every $x \in E$ and every polynomial $p : \mathbb{R}^n \to \mathbb{R}$. (Here $||p||_E$ stands for $\sup |p|(E)$ and $|\cdot|$ denotes the Euclidean norm in \mathbb{R}^n .)

Markov's inequality plays an important role in the constructive theory of functions. Pawłucki and Pleśniak have shown connections between the Markov property and the construction of a continuous linear extension operator $L: C^{\infty}(E) \to C^{\infty}(\mathbb{R}^n)$ (see [PP2]). Pleśniak [P] has proved that if E is a C^{∞} determining compact set in \mathbb{R}^n then the existence of such an operator is equivalent to the Markov property. Pawłucki and Pleśniak [PP1]

 $^{1991\} Mathematics\ Subject\ Classification \colon 32F05,\ 41A17.$

 $Key\ words\ and\ phrases:$ extremal function, Markov inequality.

Research partially supported by the KBN Grant 2 1077 91 01 (Poland) and by the Postdoctoral Grant CRM Bellaterra (Spain).

showed that the closure of a fat subanalytic subset of \mathbb{R}^n has the Markov property. They introduced a class of uniformly polynomially cuspidal subsets of \mathbb{R}^n (briefly, UPC) and proved Markov's inequality for them. There are several classes of sets which are UPC. In particular, compact convex subsets of \mathbb{R}^n with nonempty interior, fat subanalytic subsets of \mathbb{R}^n and sets in Goetgheluck's paper [G] (where a first example of Markov's inequality on sets with cusps was proved) belong to this class.

The UPC sets are compact sets which have a polynomial parametrization satisfying some additional (geometrical) conditions. These conditions imply Markov's inequality.

In this paper we present a new approach to the notion of UPC sets. Observe that

$$|\operatorname{grad} p(x)| = \sup\{|D_v p(x)| : v \in S^{n-1}\},\$$

where S^{n-1} is the unit Euclidean sphere in \mathbb{R}^n , and $D_v p$ denotes the derivative of p in the direction of the vector v. We shall say that a compact set E has the Markov property in the direction of $v \in S^{n-1}$ if there exist positive constants M and r such that

$$||D_v p(x)||_E \le Mk^r ||p||_E$$

for all polynomials of degree $\leq k$. It is clear that having the Markov property is equivalent to the Markov property in n linearly independent directions. It can happen that a set E has the Markov property only in k, $1 \leq k < n$, linearly independent directions (see Example 4.1). Hence the new notion is indeed more general.

In our investigations a crucial role is played by the following result which is strictly connected with Bernstein's problem.

1.1. PROPOSITION ([B1], [B4], see also [B2]). Let E be a compact subset of \mathbb{R}^n . Then for all $x \in E$, all $v \in S^{n-1}$ and all polynomials p of degree $\leq k$,

$$|D_v p(x)| \le k D_{v+} V_E(x) \begin{cases} (\|p\|_E^2 - p(x)^2)^{1/2} & \text{if } p \in \mathbb{R}[x_1, \dots, x_n], \\ \|p\|_E & \text{if } p \in \mathbb{C}[x_1, \dots, x_n]. \end{cases}$$

Here V_E is the extremal function defined by

$$V_E(z) = \sup\{u(z) : u \in \mathcal{L}, u_{|E} \le 0\}$$
 for $z \in \mathbb{C}^n$,

where \mathcal{L} is the Lelong class of all plurisubharmonic functions in \mathbb{C}^n with logarithmic growth: $u(z) \leq \text{const.} + \log(1+|z|)$ (see [S]), and

$$D_{v+}V_E(x) = \liminf_{\varepsilon \to 0+} \frac{1}{\varepsilon}V_E(x+i\varepsilon v)$$

(see [B1], [B4]). The above Dini derivatives of the extremal function play an important role in applications to Markov's problem. In the classical situation of E = [-1, 1], Proposition 1.1 reduces to the Bernstein (if p is a real

polynomial) and Markov–Bernstein (if p is a complex polynomial) inequalities

The paper is organized as follows: in Section 2 we prove the Bernstein and Markov inequalities on a polynomial curve; in Section 3 we define UPC sets in the direction of a vector v and give a Markov type inequality in the direction of v—this is the main result of this paper. In the special case of a convex symmetric subset with nonempty interior we obtain another proof of a sharp result which was earlier obtained in [B4]. In Section 4 we give some examples where we apply the results of Sections 2 and 3.

2. Bernstein and Markov inequalities on a polynomial curve. Fix $v \in S^{n-1}$. For a given subset E of \mathbb{R}^n and $x \in E$, we define the distance of x from $\mathbb{R}^n \setminus E$ in the direction of v by

$$\varrho_v(x) = \operatorname{dist}_v(x, \mathbb{R}^n \setminus E) := \sup\{t \ge 0 : [x - tv, x + tv] \subset E\}.$$

One can easily verify that if E is compact then ϱ_v is upper semicontinuous on E. Moreover,

$$\varrho_v(x) \ge \varrho(x) := \operatorname{dist}(x, \mathbb{R}^n \setminus E) \quad \text{and} \quad \varrho(x) = \inf\{\varrho_v(x) : v \in S^{n-1}\}.$$

The following result plays a crucial role in this section.

2.1. PROPOSITION. Let E be a compact subset of \mathbb{R}^n and let $\phi : \mathbb{R} \to \mathbb{R}^n$ be a polynomial mapping such that $\phi([0,1]) \subset E$. Put $d = \max(1, \deg \phi)$. Then

$$D_{v+}V_E(\phi(t)) \le 2d \sup_{0 \le r \le 1} \frac{\sqrt{r(1-r)}}{\varrho_v(\phi(rt))}$$

for $0 \le t < 1$ and $v \in S^{n-1}$.

Proof. Fix $t \in [0,1)$, $\varepsilon > 0$ and R > 1. Assume that the right hand side of the inequality is finite. Denote by $\widetilde{\phi}$ the natural extension of ϕ to the whole plane \mathbb{C} . Define

$$f(\zeta) = \widetilde{\phi}\left(\frac{1}{2}at(g(\zeta)+1)\right) + \frac{i}{2}(\zeta-\zeta^{-1})b\varepsilon v$$

for $|\zeta| \ge 1$, where $g(\zeta) = \frac{1}{2}(\zeta + \zeta^{-1})$ is the Joukowski function and $a = 2/(g(R)+1), b = 2/(R-R^{-1}).$

Assume for the moment that

$$f(S^1) \subset E$$
.

Then, by the maximum principle for subharmonic functions and by the definition of V_E , we obtain $V_E(f(\zeta)) \leq d \log |\zeta|$ for $|\zeta| \geq 1$. In particular,

$$V_E(\phi(t) + i\varepsilon v) \le d\log R.$$

Now notice that

$$f(e^{i\theta}) = \phi\left(\frac{1}{2}at(\cos\theta + 1)\right) - \sin\theta b\varepsilon v$$

and the condition $f(S^1) \subset E$ is equivalent to

$$\phi(atr) \pm 2\sqrt{r(1-r)}b\varepsilon v \in E$$
 for each $0 \le r \le 1$.

This condition will be satisfied if

$$2\sqrt{r(1-r)}b\varepsilon \leq \rho_v(\phi(atr)),$$

or equivalently,

$$b \sup_{0 \le r \le 1} \frac{2\sqrt{r(1-r)}}{\varrho_v(\phi(atr))} \le \frac{1}{\varepsilon}.$$

We have

$$\begin{split} b \sup_{0 \leq r \leq 1} \frac{2\sqrt{r(1-r)}}{\varrho_v(\phi(atr))} & \leq \frac{b}{\sqrt{a}} \sup_{0 \leq r \leq 1} \frac{2\sqrt{ar(1-ar)}}{\varrho_v(\phi(atr))} \\ & \leq \frac{b}{\sqrt{a}} \sup_{0 \leq r \leq 1} \frac{2\sqrt{r(1-r)}}{\varrho_v(\phi(tr))}. \end{split}$$

Since the right-hand side tends to 0 as $R \to \infty$, and to ∞ as $R \to 1+$, we may choose $R = R(\varepsilon) > 1$ such that

$$\sup_{0 \le r \le 1} \frac{2\sqrt{r(1-r)}}{\varrho_{\nu}(\phi(tr))} = \frac{\sqrt{a}}{2\varepsilon} (R - R^{-1}).$$

It is clear that the condition $f(S^1) \subset E$ is satisfied, and $R \to 1$ as $\varepsilon \to 0+$. Now, observe that

$$\lim_{R \to 1+} 2(R - R^{-1})^{-1} \log R = 1.$$

By the definition of $D_{v+}V_E$ we have

$$D_{v+}V_{E}(\phi(t)) \leq d \lim_{\varepsilon \to 0+} \frac{1}{\varepsilon} \log R(\varepsilon) = d \lim_{\varepsilon \to 0+} \frac{\sqrt{a}}{2\varepsilon} (R(\varepsilon) - R(\varepsilon)^{-1})$$
$$= d \sup_{0 \leq r \leq 1} \frac{2\sqrt{r(1-r)}}{\varrho_{v}(\phi(rt))}.$$

This completes the proof.

2.2. COROLLARY. If $x \in \text{int}(E)$, then

$$D_{v+}V_E(x) \leq 1/\varrho_v(x)$$
.

Using a similar argument to that of the proof of Proposition 2.1 one can also prove the following

2.3. PROPOSITION. Let Ω be a bounded, star-shaped (with respect to the origin) and symmetric domain in \mathbb{R}^n and let $E = \overline{\Omega}$. Then

$$D_{v+}V_E(x) \le \sup_{0 \le r \le 1} \frac{\sqrt{1-r^2}}{\varrho_v(rx)}$$
 for $x \in \text{int}(E)$,

with equality in the case where E is convex.

Proof. A star-shaped symmetric set has a natural parametrization $t \rightarrow tx$, $t \in [-1,1]$, $x \in E$. The inequality in Proposition 2.3 is obtained by a similar argument to that of Proposition 2.1 applied to the mapping

$$f(\zeta) = ag(\zeta)x + \frac{i}{2}(\zeta - \zeta^{-1})b\varepsilon v,$$

where $g(\zeta)$ and b have been defined in the proof of Proposition 2.1 and a = 1/g(R).

Now consider the case where E is convex. Then

$$E = \{ x \in \mathbb{R}^n : x \cdot w \le 1, \forall w \in E^* \},$$

where E^* denotes the polar of E. It is easy to see that

$$\varrho_v(rx) = \inf \left\{ \frac{1 - |r||x \cdot w|}{|v \cdot w|} : w \in E^* \right\}.$$

Hence

$$\sup_{0 \le r \le 1} \frac{\sqrt{1 - r^2}}{\varrho_v(rx)} \le \sup \left\{ \frac{|v \cdot w|}{(1 - (x \cdot w)^2)^{1/2}} : w \in E^* \right\}.$$

It was proved by the author (see [B1], [B4]) that the right-hand side of this inequality is equal to $D_{v+}V_E(x)$. This completes the proof.

We need the following lemma, which is a generalization of the well-known lemma of Pólya and Szegö (see [C]).

2.4. Lemma. Let p be a polynomial in one variable of degree $\leq k-1$. If

$$|p(t)| \le (1-t^2)^{-\alpha}$$
 for $t \in (-1,1)$,

where $\alpha \geq 1/2$ is fixed, then

$$||p||_{[-1,1]} \le k^{2\alpha}.$$

Proof. For $\alpha=1/2$ we obtain the Pólya–Szegö lemma. The general case reduces to the case $\alpha=1/2$ in the following way. Let $X_k=\{p\in\mathbb{C}[t]:\deg p\leq k-1\}$. For $\alpha\geq 0$ we define a norm $\|\cdot\|_{\alpha}$ in X_k by

$$||p||_{\alpha} := \sup\{(1-t^2)^{\alpha}|p(t)| : t \in [-1,1]\}.$$

For $\alpha > 1/2$, we have $||p||_{\alpha} \le ||p||_{1/2} \le ||p||_0 = ||p||_{[-1,1]}$. Observe that the Pólya–Szegő lemma is equivalent to the inequality $||p||_0 \le k||p||_{1/2}$. Since $(X_k, ||\cdot||_{1/2})$ is an interpolation space between $(X_k, ||\cdot||_{\alpha})$ and $(X_k, ||\cdot||_0)$ of

exact exponent $\theta=1-1/(2\alpha)$, i.e. $\|p\|_{1/2}\leq \|p\|_{\alpha}^{1-\theta}\|p\|_{0}^{\theta}$, by the Pólya–Szegö lemma we obtain $\|p\|_{0}^{1-\theta}\leq k\|p\|_{\alpha}^{1-\theta}$, which completes the proof.

Now we can formulate the main result of this section.

2.5. PROPOSITION. Let E be a compact subset of \mathbb{R}^n and let $\phi: \mathbb{R} \to \mathbb{R}^n$ be a polynomial mapping of degree $d \geq 1$ such that $\phi([0,1]) \subset E$. Fix $v \in S^{n-1}$ and assume that $\operatorname{dist}_v(\phi(t),\mathbb{R}^n \setminus E) \geq M(1-t)^m$ for $0 \leq t \leq 1$, where M>0 and $m \geq 1$ are constants. If $p \in \mathbb{C}[x_1,\ldots,x_n]$ and $\deg p \leq k$, then

$$|D_v p(\phi(t))| \le \frac{1}{M} (2dk)^{2m} ||p||_E \quad \text{for } 0 \le t \le 1.$$

Proof. By Proposition 2.1 we obtain

$$D_{v+}V_E(\phi(t)) \le \frac{2d}{M} \sup_{0 \le r \le 1} \sqrt{r(1-r)} (1-rt)^{-m}$$

$$\le \frac{2d}{M} (1-t)^{-(m-1/2)} \quad \text{for } 0 \le t < 1.$$

It follows from Proposition 1.1 that

$$|D_v p(\phi(t^2))| \le \frac{2dk}{M} (1 - t^2)^{-(m-1/2)} ||p||_E$$

for |t| < 1. Since $D_v p(\phi(t^2))$ is a polynomial of degree $\leq 2d(k-1)$, combining the last inequality with Lemma 2.4 gives our assertion.

3. Markov inequality on UPC sets. Our considerations suggest a modification of the notion of a UPC set introduced in [PP1].

Let E be a compact subset of \mathbb{R}^n and let $m \geq 1$. Given $v \in S^{n-1}$, we shall say that E is m-UPC in the direction of v if there exist $E_0 \subset E$, a positive constant M and a positive integer d such that for each $x \in E_0$ one can choose a polynomial map $\phi_x : \mathbb{R} \to \mathbb{R}^n$ of degree at most d satisfying

$$\phi_x([0,1]) \subset E \quad \text{and} \quad \phi_x(1) = x,$$

$$\varrho_v(\phi_x(t)) \ge M(1-t)^m \quad \text{for all } x \in E_0 \text{ and } t \in [0,1],$$

$$\bigcup_{x \in E_0} \phi_x([0,1]) = E.$$

Applying Propositions 2.1, 2.5 and 1.1 we obtain the following

3.1. THEOREM. Let E be an m-UPC subset of \mathbb{R}^n in the direction of v. Then for every $p \in \mathbb{C}[x_1, \ldots, x_n]$ with deg $p \leq k$ we have

$$||D_v p||_E \le Ck^{2m} ||p||_E,$$

where $C = \frac{1}{M} (2d)^{2m}$.

- 3.2. Remark. In the special case where $E = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 1, 0 \le y \le x^p\}$ with $p \ge 1$, Theorem 3.1 was proved by Goetgheluck [G].
- 3.3. COROLLARY. Assume that there exist n linearly independent vectors $v_i \in S^{n-1}$ such that E is UPC in the direction of each v_i (with a constant m_i). Then there exists a constant C = C(E) such that for each $p \in \mathbb{C}[x_1, \ldots, x_n]$ with deg $p \leq k$ the following Markov inequality holds:

$$|\operatorname{grad} p(x)| \le Ck^{2m} ||p||_E \quad \text{for all } x \in E,$$

where $m = \max_{i=1,\dots,n} m_i$.

3.4. Remark. If E is a UPC set in the direction of each $v \in S^{n-1}$ with $E_0 = E$, with the same family of polynomial mappings ϕ_x and with the same constants M and m, for each v, then

$$\operatorname{dist}(\phi_x(t), \mathbb{R}^n \setminus E) \ge M(1-t)^m$$
 for all $t \in [0, 1], \ x \in E$.

This is equivalent to the fact that E is UPC. In this case, by Theorem 3.1 we obtain

3.5. COROLLARY. If E is an m-UPC subset of \mathbb{R}^n , then

$$|\operatorname{grad} p(x)| \le Ck^{2m} ||p||_E$$

for all $p \in \mathbb{C}[x_1, \ldots, x_n]$ with $\deg p \leq k$, where $C = \frac{\sqrt{2}}{M}(2d)^{2m}$.

This corollary improves Pawłucki and Pleśniak's result from [PP1] where the Markov inequality for UPC sets was proved with constant 2m + 2.

We finish this section by proving a version of the Markov inequality for star-shaped sets.

3.6. THEOREM. Let Ω be a bounded, star-shaped (with respect to the origin) and symmetric domain in \mathbb{R}^n and let $E = \overline{\Omega}$. Assume that

$$\varrho_v(tx) \ge M(1-|t|)^m \quad \text{for } t \in [-1,1], \ x \in \partial E,$$

where M > 0 and $m \ge 1$ are constants. If $p \in \mathbb{C}[x_1, \ldots, x_n]$ and $\deg p \le k$,

$$|D_v p(x)| \le \sqrt{2} M^{-1/(2m)} k \varrho_v(x)^{-(1-1/(2m))} ||p||_E \quad \text{for } x \in \text{int}(E)$$

and

$$||D_v p||_E \le \left(2 - \frac{1}{m}\right)^{m-1/2} \frac{m^{-1/2}}{M} k^{2m} ||p||_E.$$

Proof. If $x \in \text{int}(E)$, then $x = t_0 x_0$, where $t_0 \in [0, 1)$ and $x_0 \in \partial E$. Thus we get $\varrho_v(tx) \geq M(1 - |t|t_0)^m \geq M2^{-m}(\sqrt{1 - t^2})^{2m}$, which implies

$$\sup_{0 \le r \le 1} \sqrt{1 - t^2} \, \varrho_v(rx)^{-1} \le \sqrt{2} \, M^{-1/m} \varrho_v(x)^{-(1 - 1/(2m))}.$$

Applying Propositions 1.1 and 2.3 we obtain the first assertion of the theorem. We also have

$$\sup_{0 \le r \le 1} \sqrt{1 - r^2} \left(1 - r |t| \right)^m \le \left(2 - \frac{1}{m} \right)^{m - 1/2} m^{-1/2} (1 - t^2)^{-(m - 1/2)}$$

for $t \in (-1,1)$. Hence we obtain, for all polynomials p with $\deg p \leq k$,

$$|D_v p(tx)| \le k \frac{m^{-1/2}}{M} \left(2 - \frac{1}{m}\right)^{m-1/2} (1 - t^2)^{-(m-1/2)} ||p||_E.$$

Applying Lemma 2.4 completes the proof.

3.7. COROLLARY. Let $E = \{x \in \mathbb{R}^n : f(x) \le 1\}$, where f is a norm in \mathbb{R}^n . If $v \in S^{n-1}$ and p is a polynomial of degree $\le k$, then

$$||D_v p||_E \le f(v)k^2||p||_E.$$

Proof. Let $x \in \partial E$, $t \in [-1,1]$ and $\tau \in \mathbb{R}$. If $|t| + f(v)|\tau| \le 1$, i.e.

$$|\tau| \le \frac{1 - |t|}{f(v)},$$

then $f(tx + \tau v) \leq 1$. So we have

$$\varrho_v(tx) \ge \frac{1}{f(v)}(1 - |t|)$$

and we can apply Theorem 3.6.

3.8. Remark. It follows from the proof of Theorem 3.6 that the following implication holds: if there exist constants M>0 and $m\geq 1$ such that $\varrho_v(tx)\geq M(1-|t|)^m$ for $t\in [-1,1]$ and $x\in \partial E$, then there exist constants C>0 and $1/2\leq \alpha<1$ such that $\sup_{0\leq r\leq 1}\sqrt{1-t^2}\varrho_v(rx)^{-1}\leq C\varrho_v(x)^{-\alpha}$ for $x\in \mathrm{int}(E)$.

The converse implication is also true.

3.9. Proposition. Let E be a compact, fat $(\overline{\operatorname{int}(E)} = E)$, star-shaped and symmetric (with respect to the origin) subset of \mathbb{R}^n . Assume that

$$\sup_{0 \le r \le 1} \sqrt{1 - r^2} \varrho_v(rx)^{-1} \le C \varrho_v(x)^{-\alpha} \quad \text{for } x \in \text{int}(E),$$

where C > 0 and $1/2 \le \alpha < 1$ are constants. Then

$$\varrho_v(tx) \ge C^{-2m} 2^{-2m^2} (1-|t|)^m$$
 for $t \in [-1,1], \ x \in \partial E,$ with $m = 1/(2(1-\alpha)).$

Proof. Fix $x \in \text{int}(E)$. By the assumptions,

$$\varrho_v(t^2x) \ge \frac{1}{C}\sqrt{1-t^2}\varrho_v(tx)^{\alpha} \ge \frac{1}{C}\sqrt{1-t^2}\left[\frac{1}{C}\sqrt{1-t^2}\varrho_v(x)^{\alpha}\right]^{\alpha},$$

which implies

$$\varrho_v(tx) \ge C^{-(1+\alpha)} 2^{-(1+\alpha)/2} (\sqrt{1-t^2})^{1+\alpha} \varrho_v(x)^{\alpha^2},$$

and, by recurrence,

$$\varrho_v(tx) \ge 2^{-(1+2\alpha+3\alpha^2+\ldots+k\alpha^{k-1}+k\alpha^k)/2} \left(\frac{\sqrt{1-t^2}}{C}\right)^{1+\alpha+\ldots+\alpha^k} \varrho_v(x)^{\alpha^{k+1}}.$$

Letting $k \to \infty$ gives

$$\varrho_v(tx) \ge C^{-2m} 2^{-2m^2} (1-t^2)^m \ge C^{-2m} 2^{-2m^2} (1-|t|)^m$$

for $x \in \text{int}(E)$ and $t \in [-1, 1]$. Since ϱ_v is upper semicontinuous, this inequality also holds for $x \in \partial E$. The proof is complete.

4. Examples

4.1. Example. Let $E = \{(x,y) \in \mathbb{R}^2 : |x| < 1, |y| \le e^{-(1-|x|)^{-1}}\} \cup \{(-1,0),(1,0)\}$. If $v = (1,0),(x,y) \in \partial E$ and $\phi(t) = t(x,y)$, then easy calculations show that

$$1 - |t| \ge \varrho_v(\phi(t)) \ge \frac{1}{2}(1 - |t|).$$

By Theorem 3.6 we obtain

$$||D_1p||_E \le 2k^2||p||_E$$

where p is a polynomial of degree $\leq k$. However, applying a similar argument to that for Zerner's example [Z] one can prove that Markov's inequality on E does not hold for any positive constant m.

4.2. EXAMPLE. Let
$$\alpha = (\alpha_1, \dots, \alpha_n)$$
 where $\alpha_i \ge 1$, $i = 1, \dots, n$. Define $E_{\alpha} = \{x \in \mathbb{R}^n : |x_1|^{1/\alpha_1} + \dots + |x_n|^{1/\alpha_n} \le 1\}$.

Let e_1, \ldots, e_n be the standard orthonormal basis in \mathbb{R}^n . Then

$$\varrho_{e_i}(x) = \left(1 - \sum_{j=1, j \neq i}^{n} |x_j|^{1/\alpha_j}\right)^{\alpha_i} - |x_i|.$$

Let $\beta_i = \max_{j \neq i} \alpha_j, i = 1, \dots, n$. We have

$$\varrho_{e_i}(tx) = \left(1 - \sum_{j=1, j \neq i}^{n} |x_j|^{1/\alpha_j} |t|^{1/\alpha_j}\right)^{\alpha_i} - |t||x_i|$$

$$\geq \left(1 - |t|^{1/\beta_i} \sum_{j=1, j \neq i}^{n} |x_j|^{1/\alpha_j}\right)^{\alpha_i} - |t|^{1/\beta_i} \left(1 - \sum_{j=1, j \neq i}^{n} |x_j|^{1/\alpha_j}\right)^{\alpha_i}$$

$$\geq (1 - |t|^{1/\beta_i})^{\alpha_i} \geq A_i (1 - |t|)^{\alpha_i},$$

with $A_i = (\max_{j \neq i} \alpha_j)^{-\alpha_i}, i = 1, \dots, n$, for $t \in [-1, 1]$ and $x \in E_{\alpha}$. By Theorem 3.6 we obtain

$$||D_i p||_{E_{\alpha}} \le \left(2 - \frac{1}{\alpha_i}\right)^{\alpha_i - 1/2} \alpha_i^{-1/2} (\max_{j \ne i} \alpha_j)^{\alpha_i} k^{2\alpha_i} ||p||_{E_{\alpha}}, \quad i = 1, \dots, n,$$

for all polynomials p of degree $\leq k$.

This inequality is sharp in the case where $\alpha_1 = \ldots = \alpha_n = 1$ and generalizes the classical Markov inequality (see [B4]).

An easy calculation shows that we also have

$$\sup_{0 \le r \le 1} \sqrt{1 - r^2} \varrho_{e_i}(rx)^{-1} \le \max\left(1, \left(\frac{\beta_i}{\alpha_i}\right)^{1/2}\right) \varrho_{e_i}(x)^{-(1 - 1/(2\alpha_i))}$$

for $x \in \text{int}(E_{\alpha})$, i = 1, ..., n. Thus, we obtain the following Bernstein-Markov inequality:

$$|D_i p(x)| \le \max\left(1, \left(\frac{1}{\alpha_i} \max_{j \ne i} \alpha_j\right)^{1/2}\right) k \varrho_{e_i}(x)^{-(1-1/(2\alpha_i))} ||p||_{E_\alpha}$$

for $i = 1, ..., n, x \in \text{int}(E_{\alpha})$, and $p \in \mathbb{C}[x_1, ..., x_n]$ with deg $p \leq k$.

4.3. Example. Let

$$E = \left\{ (x, y) \in \mathbb{R}^2 : |x| \le 1, |y| \le (1 - |x|) \left[1 + \log \frac{1}{1 - |x|} \right]^{-1} \right\}.$$

Let $e_1 = (1,0), e_2 = (0,1)$. One can check the following estimates:

$$\varrho_{e_1}(t(x,y)) \ge \frac{1}{2}(1-|t|)$$

and

$$\varrho_{e_2}(t(x,y)) \ge (1-|t|) \left[1 + \log \frac{1}{1-|t|} \right]^{-1},$$

for $t \in [-1, 1]$ and $(x, y) \in \partial E$. The first inequality implies

$$||D_1p||_E \leq 2k^2||p||_E$$

for any polynomial p of degree $\leq k$. By the second inequality, we obtain

$$D_{e_2+}V_E(t(x,y)) \le \sup_{0 \le r \le 1} \sqrt{1 - r^2} (1 - r|t|)^{-1} \left[1 + \log \frac{1}{1 - r|t|} \right]$$

$$\le (1 - t^2)^{-1/2} \left[1 + \log 2 + \log \frac{1}{1 - t^2} \right]$$

$$\le (1 - t^2)^{-1/2} \left[1 + \sqrt{5} + \log \frac{1}{1 - t^2} \right]$$

$$\le (1 - t^2)^{-1/2} (1 + \sqrt{5})(1 - t^2)^{-1/(1 + \sqrt{5})},$$

for $t \in (-1,1)$ and $(x,y) \in \partial E$. We now have, for every polynomial p with $\deg p \leq k$,

$$|D_2 p(t(x,y))| \le (1+\sqrt{5})k^{2+2/(1+\sqrt{5})} ||p||_E$$
 for $t \in (-1,1)$ and $(x,y) \in \partial E$, and
$$|D_2 p(t(x,y))|$$

$$\le k(1-t^2)^{-1/2}$$

$$\times \min\left(1+\sqrt{5}+\log\frac{1}{1-t^2},(1+\sqrt{5})k^{1+2/(1+\sqrt{5})}(1-t^2)^{1/2}\right) ||p||_E$$

$$\le k(1-t^2)^{-1/2}(1+\sqrt{5})(1+\log k)||p||_E.$$

Thus, we obtain $||D_2p||_E \le (1+\sqrt{5})k^2(1+\log k)||p||_E$.

References

- [B1] M. Baran, Bernstein type theorems for compact sets in \mathbb{R}^n , J. Approx. Theory 69 (1992), 156–166.
- [B2] —, Complex equilibrium measure and Bernstein type theorems for compact sets in \mathbb{R}^n , Proc. Amer. Math. Soc., to appear.
- [B3] —, Plurisubharmonic extremal function and complex foliation for a complement of a convex subset of \mathbb{R}^n , Michigan Math. J. 39 (1992), 395–404.
- [B4] —, Bernstein type theorems for compact sets in \mathbb{R}^n revisited, J. Approx. Theory, to appear.
- [C] E. W. Cheney, Introduction to Approximation Theory, New York, 1966.
- [G] P. Goetgheluck, Inégalité de Markov dans les ensembles effilés, J. Approx. Theory 30 (1980), 149–154.
- [PP1] W. Pawłucki and W. Pleśniak, Markov's inequality and C^{∞} functions with polynomial cusps, Math. Ann. 275 (1986), 467–480.
- [PP2] —, —, Extension of C^{∞} functions from sets with polynomial cusps, Studia Math. 88 (1989), 279–287.
 - [P] W. Pleśniak, Markov's inequality and the existence of an extension operator for C[∞] functions, J. Approx. Theory 61 (1990), 106–117.
 - [S] J. Siciak, Extremal plurisubharmonic functions in \mathbb{C}^n , Ann. Polon. Math. 39 (1981), 175–211.
 - [Z] M. Zerner, Développement en série de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220.

INSTITUTE OF MATHEMATICS UNIVERSITY OF MINING AND METALLURGY AL. MICKIEWICZA 30 30-059 KRAKÓW, POLAND Current address:
INSTITUTE OF MATHEMATICS
JAGIELLONIAN UNIVERSITY
REYMONTA 4
30-059 KRAKÓW, POLAND
E: mail: BARAN@IM.UJ.EDU.PL