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Markov inequality on sets with polynomial
parametrization

by MIROSEAW BARAN (Krakéw)

Abstract. The main result of this paper is the following: if a compact subset E of
R™ is UPC in the direction of a vector v € S”~! then E has the Markov property in the
direction of v. We present a method which permits us to generalize as well as to improve
an earlier result of Pawlucki and Plesniak [PP1].

1. Introduction. Let E be a compact subset of R™ with nonempty
interior. Consider the following two classical problems for polynomials:

e (Bernstein’s problem) Estimate the derivatives of polynomials at inte-
rior points of F;

e (Markov’s problem) Estimate the derivatives of polynomials at all
points of E.

For Markov’s problem, the most interesting situation is when E has the
Markov property.

A set F is said to have the Markov property if there exist positive con-
stants M and r such that the following Markov inequality holds:

lgrad p(z)| < M (degp)"|pl £,

for every x € E and every polynomial p : R — R. (Here ||p||g stands for
sup |p|(EF) and | - | denotes the Euclidean norm in R™.)

Markov’s inequality plays an important role in the constructive theory
of functions. Pawtucki and Ple$niak have shown connections between the
Markov property and the construction of a continuous linear extension op-
erator L : C>*(E) — C*(R") (see [PP2]). Plesniak [P] has proved that
if Fis a C* determining compact set in R™ then the existence of such an
operator is equivalent to the Markov property. Pawtucki and Plesniak [PP1]
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showed that the closure of a fat subanalytic subset of R has the Markov
property. They introduced a class of uniformly polynomially cuspidal subsets
of R™ (briefly, UPC) and proved Markov’s inequality for them. There are
several classes of sets which are UPC. In particular, compact convex sub-
sets of R™ with nonempty interior, fat subanalytic subsets of R™ and sets in
Goetgheluck’s paper [G] (where a first example of Markov’s inequality on
sets with cusps was proved) belong to this class.

The UPC sets are compact sets which have a polynomial parametrization
satisfying some additional (geometrical) conditions. These conditions imply
Markov’s inequality.

In this paper we present a new approach to the notion of UPC sets.
Observe that

lgrad p(x)| = sup{| Dyp(x)] : v € 5"},
where S”~1 is the unit Euclidean sphere in R", and D,p denotes the deriva-
tive of p in the direction of the vector v. We shall say that a compact set £

has the Markov property in the direction of v € S"~! if there exist positive
constants M and r such that

[1Dup(2)||e < ME"|]pl|£

for all polynomials of degree < k. It is clear that having the Markov property
is equivalent to the Markov property in n linearly independent directions.
It can happen that a set E' has the Markov property only in k, 1 < k < n,
linearly independent directions (see Example 4.1). Hence the new notion is
indeed more general.

In our investigations a crucial role is played by the following result which
is strictly connected with Bernstein’s problem.

1.1. PropoSITION ([B1], [B4], see also [B2]). Let E be a compact subset
of R™. Then for allz€ E, allv € S"~1 and all polynomials p of degree < k,

% - D2 if p e Rlwy, ...,z
Dyp(x)| € kDy Vi(z {(HPHE p(:r) ) Z p 15 yinly
[Dp(@) +Ve(@) Ip| & if p€Clay,... 2.
Here Vg is the extremal function defined by
Ve(2) = sup{u(z) 1 u € L,up <0} for z € C",

where £ is the Lelong class of all plurisubharmonic functions in C"* with
logarithmic growth: u(z) < const. + log(1 + |z|) (see [S]), and
N | .
Dy, Vg(x) = hgﬂéﬂf EVE(x + iev)

(see [B1], [B4]). The above Dini derivatives of the extremal function play an
important role in applications to Markov’s problem. In the classical situa-
tion of E = [—1,1], Proposition 1.1 reduces to the Bernstein (if p is a real
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polynomial) and Markov—Bernstein (if p is a complex polynomial) inequal-
ities.

The paper is organized as follows: in Section 2 we prove the Bernstein
and Markov inequalities on a polynomial curve; in Section 3 we define UPC
sets in the direction of a vector v and give a Markov type inequality in the
direction of v—this is the main result of this paper. In the special case of a
convex symmetric subset with nonempty interior we obtain another proof of
a sharp result which was earlier obtained in [B4]. In Section 4 we give some
examples where we apply the results of Sections 2 and 3.

2. Bernstein and Markov inequalities on a polynomial curve.
Fix v € 8", For a given subset E of R” and € E, we define the distance
of x from R™ \ E in the direction of v by

ou(z) = disty (2, R" \ E) :=sup{t > 0 : [x — tv,x + tv] C E}.

One can easily verify that if F is compact then g, is upper semicontinuous
on E. Moreover,

00(z) > o(x) := dist(z,R"\ E) and o(x) = inf{o,(z) : v € S"7'}.
The following result plays a crucial role in this section.
2.1. PROPOSITION. Let E be a compact subset of R™ and let ¢ : R — R"™

be a polynomial mapping such that ¢([0,1]) C E. Put d = max(1,dega).
Then

r(l—r)

D,V t) <2d sup Y———>

+Ve(9(1)) 0921 0u(p(rt))
for0<t<1andve S

Proof. Fixt € [0,1), e > 0 and R > 1. Assume that the right hand
side of the inequality is finite. Denote by ¢ the natural extension of ¢ to
the whole plane C. Define

10 =3 3atla0) + 1) + 3¢~ ¢ e

for [¢| > 1, where g(¢) = (¢ + ¢7') is the Joukowski function and a =

2/(9(R)+1),b=2/(R—-R").
Assume for the moment that

f(SYH) c E.

Then, by the maximum principle for subharmonic functions and by the
definition of Vg, we obtain Vg(f(¢)) < dlog|(| for |¢| > 1. In particular,

Ve(¢(t) + iev) < dlog R.
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Now notice that
f(e) = ¢<;at(cosﬁ + 1)> — sin Obev
and the condition f(S') C E is equivalent to

¢(atr) £2y/r(1 —r)bev € E for each 0 <r < 1.
This condition will be satisfied if

2/r(1 —7) be < ou(¢(atr)),

or equivalently,

b osup VA=) 1
OSTI;I ov(@(atr)) — e
We have
2/r(l-n) b 2Var(l—an)
boilrlgl o0v(¢(atr)) : \/&02{21 ov(@(atr))

< b 2y/r(1—r)

<— sup ————--.

Vao<r<t 00(9(tr))

Since the right-hand side tends to 0 as R — oo, and to co as R — 1+, we
may choose R = R(e) > 1 such that

2 T(l—?") \/a(R—R_l).

oere1 ou(d(tr)) | 2¢

It is clear that the condition f(S') C E is satisfied, and R — 1 as € — 0+
Now, observe that

: _ p-ly-1 _
RILI?+2(R R™) " logR=1.

By the definition of D, Vg we have

DysVi(o(t) <d tim Llog R(e) = a tim Y(R(e) - R(e)™)

B 2y/r(l—r)
=S D)

This completes the proof.
2.2. COROLLARY. If z € int(FE), then
Dy Ve(z) < 1/0v(z).

Using a similar argument to that of the proof of Proposition 2.1 one can
also prove the following
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2.3. PROPOSITION. Let §2 be a bounded, star-shaped (with respect to the
origin) and symmetric domain in R"™ and let E = (2. Then

2

Dy Ve(x) < sup

or x € int(F),
0<r<1 QU(Tx) f ( )

with equality in the case where E is convex.

Proof. A star-shaped symmetric set has a natural parametrization t —
tz, t € [-1,1], x € E. The inequality in Proposition 2.3 is obtained by a
similar argument to that of Proposition 2.1 applied to the mapping

i _
£(Q) = ag(Q)z + (¢ = ¢ pev,
where g(¢) and b have been defined in the proof of Proposition 2.1 and

a=1/g(R).
Now consider the case where E is convex. Then
E={zeR":2-w<1,Vwe E"},
where E* denotes the polar of E. It is easy to see that

ou(r) =t {

ST
v~ wl
Hence
sup 1_72<Sup{ |U'w|
o<r<t Ou(ra) T (1—(z-w)?)1/2
It was proved by the author (see [B1], [B4]) that the right-hand side of this
inequality is equal to D, Vg(x). This completes the proof.

:wEE*}.

We need the following lemma, which is a generalization of the well-known
lemma of Pélya and Szegé (see [C]).

2.4. LEMMA. Let p be a polynomial in one variable of degree < k—1. If
P <@ —1)7  forte (-1,1),
where o > 1/2 is fized, then
Ipllj—1,1) < K>

Proof. For @ = 1/2 we obtain the Pdlya-Szegd lemma. The general
case reduces to the case @ = 1/2 in the following way. Let X = {p € C[t] :
degp <k —1}. For a > 0 we define a norm || - ||, in X} by

Iplle = sup{(1 — £*)*Ip(t)| : ¢ € [-1,1]}.
For o > 1/2, we have [|p[la < |Iplli/2 < |lpllo = [|pll[=1,1- Observe that the

Pélya-Szegd lemma is equivalent to the inequality ||p[lo < k[p||1/2. Since
(Xk, || - [l1/2) is an interpolation space between (X, || - ||o) and (X, || - [lo) of
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exact exponent 6 = 1—-1/(2a), i.e. [|p[l1/2 < |[pl|5?[Ip|l§, by the Pélya-Szegd
lemma we obtain ||p||s = < k||p||L~¢, which completes the proof.

Now we can formulate the main result of this section.

2.5. PROPOSITION. Let E be a compact subset of R™ and let ¢ : R —
R™ be a polynomial mapping of degree d > 1 such that ¢([0,1]) C E. Fix
v € 8"t and assume that dist,(¢(t),R* \ E) > M (1 —t)™ for 0 <t <1,
where M > 0 and m > 1 are constants. If p € C[zy,...,xz,] and degp < k,
then

Dup(6(0)] < 32> pllp for0<e<1,

Proof. By Proposition 2.1 we obtain
2d

Dyt VE(9(t) < — sup /r(l—r)(1—rt)™™
M o<r<1
2d
<570- £y~ m=1/2 for 0 <t < 1.
It follows from Proposition 1.1 that
2dk

[Dup(o(t)] < S F (1= 1272l

for [t| < 1. Since D,p(¢(t?)) is a polynomial of degree < 2d(k—1), combining
the last inequality with Lemma 2.4 gives our assertion.

3. Markov inequality on UPC sets. Our considerations suggest a
modification of the notion of a UPC set introduced in [PP1].

Let E be a compact subset of R” and let m > 1. Given v € S™ !, we
shall say that E is m-UPC in the direction of v if there exist £y C E, a
positive constant M and a positive integer d such that for each x € Ej one
can choose a polynomial map ¢, : R — R" of degree at most d satisfying

¢.([0,1)) C E and ¢.(1) ==z,
0u(Pe(t)) > M(1—t)™ forall z € Ey and t € [0,1],
U ¢-(l0,1)) = E.
zEEO

Applying Propositions 2.1, 2.5 and 1.1 we obtain the following

3.1. THEOREM. Let E be an m-UPC subset of R™ in the direction of v.
Then for every p € Clxy,...,z,]| with degp < k we have

IDuplle < CE*™|Ip]l &,
where C' = 57 (2d)*™.
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3.2. Remark. In the special case where E = {(z,y) € R? : 0 < x <
1, 0 <y < 2P} with p > 1, Theorem 3.1 was proved by Goetgheluck [G].

3.3. COROLLARY. Assume that there exist n linearly independent vec-
tors v; € S™ ! such that E is UPC in the direction of each v; (with a
constant m;). Then there exists a constant C = C(E) such that for each
p € Clxy,...,x,] with degp < k the following Markov inequality holds:

lgrad p(z)| < Ck*™|plls ~ for all x € E,
where m = max;—1

-----

3.4. Remark. If E is a UPC set in the direction of each v€S™"~! with
Ey = FE, with the same family of polynomial mappings ¢, and with the
same constants M and m, for each v, then

dist(¢,(t),R"\ E) > M(1—¢t)™ forallte0,1], x € E.
This is equivalent to the fact that £ is UPC. In this case, by Theorem 3.1
we obtain
3.5. COROLLARY. If FE is an m-UPC subset of R", then
lgradp(z)| < Ck*™|plle
for all p € Clzxq,...,z,] with degp < k, where C' = %(2602’”.

This corollary improves Pawhucki and Plesniak’s result from [PP1] where
the Markov inequality for UPC sets was proved with constant 2m + 2.

We finish this section by proving a version of the Markov inequality for
star-shaped sets.

3.6. THEOREM. Let §2 be a bounded, star-shaped (with respect to the
origin) and symmetric domain in R™ and let E = (2. Assume that

ou(tz) > M(1—|t)™  forte[-1,1], x € OF,

where M > 0 and m > 1 are constants. If p € Clxy,...,z,] and degp < k,
then

|Dyp(z)] < V2 MY kg ()~ CmD|pl|p  for z € int(E)

and

1\™m 12, -1/2
Dypllp < (2- =
Il (2-2) T

Proof. If x € int(E), then x = toxo, where ¢y € [0,1) and zy € OF.
Thus we get o, (tx) > M(1 — [t|tg)™ > M2~ (/1 — t2)?™ which implies

sup /1 —12 o, (rz) "L < V2 MM g, (2) =11/ 2m),
0<r<1

K" lpll -
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Applying Propositions 1.1 and 2.3 we obtain the first assertion of the theo-
rem. We also have

1 m—1/2
sup /172 (1 rlt)™ < <2 - > m=V/2(1  g2)=(m=1/2)
0<r<1 m

for t € (—1,1). Hence we obtain, for all polynomials p with degp < k,

m—1/2 1 m—1/2
Daptea)] <7 (2= 1) 2

Applying Lemma 2.4 completes the proof.

3.7. COROLLARY. Let E = {x € R": f(x) < 1}, where f is a norm in
R™. If v € S™ ! and p is a polynomial of degree < k, then

1Duplle < f(0)k?(IplE.
Proof. Let x € 0F, t € [-1,1] and 7 € R. If [¢t| + f(v)|7] < 1, i.e.

< 2l
=T

then f(tz + 7v) < 1. So we have
1
f()

Ov (tx) >

(1 —1t)
and we can apply Theorem 3.6.

3.8. Remark. It follows from the proof of Theorem 3.6 that the follow-
ing implication holds: if there exist constants M > 0 and m > 1 such that
ou(tx) > M(1 — |t])™ for t € [-1,1] and = € OF, then there exist constants
C >0 and 1/2 < a < 1 such that supge,«; V1 — t20,(rz)~t < Co,(z)~2
for x € int(E). -

The converse implication is also true.

3.9. PROPOSITION. Let E be a compact, fat (int(E) = E), star-shaped
and symmetric (with respect to the origin) subset of R™. Assume that

sup V1 —120,(rz)"t < Cou(x)™  for z € int(E),
0<r<1

where C >0 and 1/2 < a < 1 are constants. Then
oo(tz) > C72m272m (1 _ {\™  forte [~1,1], = € OF,
with m =1/(2(1 — «)).
Proof. Fix x € int(£). By the assumptions,
1 a

o0u(t22) > é 1— t20,(tx)* > %\/1 2 5\/1 — t20,(2)"] ,
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which implies

Qv(tl') > Cf(1+a)2f(1+a)/2( /1 - t2)1+a9y(.%‘)a27

and, by recurrence,

- V1 —t2
Qv(tl’) > 27(1+20¢+3a2+...+kak Hka®)/2 ( Qv(x)a

1+ot...+ar
=)
Letting & — oo gives
ou(tz) > C72m272m% (1 — 2)m > =22 (] — |¢|)™

for z € int(F) and t € [—1,1]. Since g, is upper semicontinuous, this in-
equality also holds for « € OFE. The proof is complete.

4. Examples

4.1. EXAMPLE. Let E = {(z,y) € R2 : |z| < 1, |y| < e~ —l2D7"1
{(-1,0),(1,0)}. If v = (1,0), (z,y) € OF and ¢(t) = t(z,y), then easy
calculations show that

1—t] = 0u(&(1)) =

By Theorem 3.6 we obtain

(1 —[t])-

N =

ID1plle < 2K |plls,

where p is a polynomial of degree < k. However, applying a similar argument
to that for Zerner’s example [Z] one can prove that Markov’s inequality on
FE does not hold for any positive constant m.

4.2. EXAMPLE. Let a = (aq,...,a,) where a; > 1,7 =1,...,n. Define
Ey={z eR": ||V + ... + |z, |/ <1}.

Let eq,...,e, be the standard orthonormal basis in R”. Then
n Qi
e@) = (1= D2 Joyf) "~ fal.
j=1j#i
Let 8; = max;4; aj,i=1,...,n. We have
n
oesltw) = (1= D7 fagl o1/ ) ™ — Jelfe
J=Lj#i
n o n o
2 (L= 3T ) (1 T fagler)
J=1j#1 j=1,j#i

> (1= [ty = A= ),
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with A; = (maxjz; o) %,i = 1,...,n, for t € [-1,1] and z € E,. By
Theorem 3.6 we obtain

1 Olifl/Q 1/9
Dl < (20 ) o e B bl i=Lon

. (2
(2

for all polynomials p of degree < k.

This inequality is sharp in the case where a3y = ... = o, = 1 and
generalizes the classical Markov inequality (see [B4]).

An easy calculation shows that we also have

3, 1/2
oiul<)1 1— 12, (rz)~* < max <1’ <Z) >Qei (x)—(l—l/(zai))

for x € int(E,), i = 1,...,n. Thus, we obtain the following Bernstein—
Markov inequality:

1 1/2 o |
Dipta)] < max (1. (- maxay ) Yo o) 0 pl,
fori=1,...,n, x € int(E,), and p € C[zy,...,z,] with degp < k.

4.3. EXAMPLE. Let

—1
1
p={ner << |ios |
Let e; = (1,0),e2 = (0,1). One can check the following estimates:

0er (t(,)) > = (1 — [t])

O |

and

—1
1
o)) = (1= ) |14 10g |
for t € [-1,1] and (z,y) € OF. The first inequality implies

ID1plle < 2k2||p]| e
for any polynomial p of degree < k. By the second inequality, we obtain

De,+ VE(t(z,y)) < sup V1 —1r2(1-— 7"|t|)_1 [1 + log

0<r<1

1
1—r|t
1
<(1-t3)""2[1+1log2 + log ——
<( ) +log2+log ;3
1
S<1_t2)_1/2|:1+\/5+10g1t2:|

< (1 _ t2)—1/2(1 + \/5)(1 . t2)—1/(1+\/5)’
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for t € (—1,1) and (z,y) € OE. We now have, for every polynomial p with
degp <k,

| Dop(t(z,y))| < (1+ V5)k2HH ATV |p||

fort € (—1,1) and (z,y) € OF, and
[ Dap(t(z,y))|

1
X min <1 +v5+ log 12 (1+ \/5)k1+2/(1+x/5)(1 _ t2)1/2> Ipll e

< k(1= 2(1+ VB)(1 +log k) |pll -

Thus, we obtain ||Dop||z < (1 4+ v/5)k2(1 4 logk)||p|l&-
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