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Extremal selections of multifunctions
generating a continuous flow

by Alberto Bressan and Graziano Crasta (Trieste)

Abstract. Let F : [0, T ] × Rn → 2Rn be a continuous multifunction with compact,
not necessarily convex values. In this paper, we prove that, if F satisfies the following
Lipschitz Selection Property:

(LSP) For every t, x, every y ∈ coF (t, x) and ε > 0, there exists a Lipschitz selection
φ of coF , defined on a neighborhood of (t, x), with |φ(t, x)− y| < ε,

then there exists a measurable selection f of extF such that, for every x0, the Cauchy
problem

ẋ(t) = f(t, x(t)), x(0) = x0,

has a unique Carathéodory solution, depending continuously on x0.
We remark that every Lipschitz multifunction with compact values satisfies (LSP).

Another interesting class for which (LSP) holds consists of those continuous multifunctions
F whose values are compact and have convex closure with nonempty interior.

1. Introduction. Let F : [0, T ] × Rn → 2Rn be a continuous mul-
tifunction with compact, not necessarily convex values. If F is Lipschitz
continuous, it was shown in [5] that there exists a measurable selection f of
F such that, for every x0, the Cauchy problem

ẋ(t) = f(t, x(t)), x(0) = x0,

has a unique Carathéodory solution, depending continuously on x0.
In this paper, we prove that the above selection f can be chosen so that

f(t, x) ∈ extF (t, x) for all t, x. More generally, the result remains valid if F
satisfies the following Lipschitz Selection Property:

(LSP) For every t, x, every y ∈ coF (t, x) and ε > 0, there exists a Lip-
schitz selection φ of coF , defined on a neighborhood of (t, x), with
|φ(t, x)− y| < ε.
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We remark that, by [10, 12], every Lipschitz multifunction with compact
values satisfies (LSP). Another interesting class for which (LSP) holds con-
sists of those continuous multifunctions F whose values are compact and
have convex closure with nonempty interior. Indeed, for any given t, x, y, ε,
choosing y′ ∈ int coF (t, x) with |y′ − y| < ε, the constant function φ ≡ y′ is
a local selection from coF satisfying the requirements.

In the following, Ω ⊆ Rn is an open set, B(0,M) is the closed ball
centered at the origin with radius M , B(D,MT ) is the closed neighbor-
hood of radius MT around the set D, while AC is the Sobolev space of
all absolutely continuous functions u : [0, T ] → Rn, with norm ‖u‖AC =∫ T
0

(|u(t)|+ |u̇(t)|) dt.

Theorem 1. Let F : [0, T ]×Ω → 2Rn be a bounded continuous multifunc-
tion with compact values, satisfying (LSP). Assume that F (t, x) ⊆ B(0,M)
for all t, x and let D be a compact set such that B(D,MT ) ⊂ Ω. Then there
exists a measurable function f with

(1.1) f(t, x) ∈ extF (t, x) ∀t, x,

such that , for every (t0, x0) ∈ [0, T ]×D, the Cauchy problem

(1.2) ẋ(t) = f(t, x(t)), x(t0) = x0

has a unique Carathéodory solution x(·) = x(·, t0, x0) on [0, T ], depending
continuously on t0, x0 in the norm of AC.

Moreover , if ε0 > 0 and a Lipschitz continuous selection f0 of coF
are given, then one can construct f with the following additional property :
Denoting by y(·, t0, x0) the unique solution of

(1.3) ẏ(t) = f0(t, y(t)), y(t0) = x0,

for every (t0, x0) ∈ [0, T ]×D one has

(1.4) |y(t, t0, x0)− x(t, t0, x0)| ≤ ε0 ∀t ∈ [0, T ].

The proof of the above theorem, given in Section 3, starts with the
construction of a sequence fn of directionally continuous selections from coF
which are piecewise Lipschitz continuous in the (t, x)-space. For every u :
[0, T ]→ Rn in a class of Lipschitz continuous functions, we then show that
the composed maps t→ fn(t, u(t)) form a Cauchy sequence in L1([0, T ]; Rn)
converging pointwise almost everywhere to a map of the form f(·, u(·)),
taking values within the extreme points of F . This convergence is obtained
through an argument which is considerably different from previous works.
Indeed, it relies on a careful use of the likelihood functional introduced
in [4], interpreted here as a measure of “oscillatory nonconvergence” of a set
of derivatives.
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Among various corollaries, Theorem 1 yields an extension, valid for the
wider class of multifunctions with the property (LSP), of the following re-
sults, proved in [7], [5] and [8], respectively.

(i) Existence of selections from the solution set of a differential inclusion,
depending continuously on the initial data.

(ii) Existence of selections from a multifunction, which generate a con-
tinuous flow.

(iii) Contractibility of the solution sets of ẋ ∈ F (t, x) and ẋ ∈ extF (t, x).

These consequences, together with an application to bang-bang feedback
controls, are described in Section 4. Topological properties of the set of
solutions of nonconvex differential inclusions have been studied in [3, 6]
with the technique of directionally continuous selections and in [8, 9, 13]
using the method of Baire category.

2. Preliminaries. As customary, A and coA denote here the closure
and the closed convex hull of A respectively, while A\B indicates a set-
theoretic difference. The Lebesgue measure of a set J ⊂ R is m(J). The
characteristic function of a set A is written as χA.

In the following, Kn denotes the family of all nonempty compact convex
subsets of Rn, endowed with Hausdorff metric. A key technical tool used in
our proofs will be the function h : Rn ×Kn → R ∪ {−∞} defined by

(2.1) h(y,K)

.= sup
{( 1∫

0

|w(ξ)− y|2 dξ
)1/2

;w : [0, 1]→ K,
1∫

0

w(ξ) dξ = y
}

with the understanding that h(y,K) = −∞ if y 6∈ K. Observe that h2(y,K)
can be interpreted as the maximum variance among all random variables
supported inside K whose mean value is y. The following results were proved
in [4]:

Lemma 1. The map (y,K) 7→ h(y,K) is upper semicontinuous in both
variables; for each fixed K ∈ Kn the function y 7→ h(y,K) is strictly concave
down on K. Moreover , one has

h(y,K) = 0 if and only if y ∈ extK,(2.2)
h2(y,K) ≤ r2(K)− |y − c(K)|2,(2.3)

where c(K) and r(K) denote the Chebyshev center and the Chebyshev radius
of K, respectively.

R e m a r k 1. By the above lemma, the function h has all the qualita-
tive properties of the Choquet function dF considered, for example, in [9,
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Proposition 2.6]. It could thus be used within any argument based on Baire
category. Moreover, the likelihood functional

L(u) .=
( T∫

0

h2(u̇(t), F (t, u(t))) dt
)1/2

provides an upper bound to the distance ‖v̇− u̇‖L2 between derivatives, for
solutions of v̇ ∈ F (t, v) which remain close to u uniformly on [0, T ]. This
additional quantitative property of the function h will be a crucial ingredient
in our proof.

For the basic theory of multifunctions and differential inclusions we refer
to [1]. As in [2], given a map g : [0, T ]×Ω → Rn, we say that g is directionally
continuous along the directions of the cone ΓN = {(s, y) ; |y| ≤ Ns} if

g(t, x) = lim
k→∞

g(tk, xk)

for every (t, x) and every sequence (tk, xk) in the domain of g such that
tk → t and |xk−x| ≤ N(tk−t) for every k. Equivalently, g is ΓN -continuous
iff it is continuous w.r.t. the topology generated by the family of all half-open
cones of the form

(2.4) {(s, y) ; t̂ ≤ s < t̂+ ε, |y − x̂| ≤ N(s− t)}
with (t̂, x̂) ∈ R×Rn, ε > 0. A set of the form (2.4) will be called an N -cone.

Under the assumptions on Ω,D made in Theorem 1, consider the set of
Lipschitzean functions

Y
.= {u : [0, T ]→ B(D,MT ) ; |u(t)− u(s)| ≤M |t− s| ∀t, s}.

The Picard operator of a map g : [0, T ]×Ω → Rn is defined as

Pg(u)(t) .=
t∫

0

g(s, u(s)) ds, u ∈ Y.

The distance between two Picard operators will be measured by

(2.5) ‖Pf − Pg‖

= sup
{∣∣∣ t∫

0

[f(s, u(s))− g(s, u(s))] ds
∣∣∣ ; t ∈ [0, T ], u ∈ Y

}
.

The next lemma will be useful in order to prove the uniqueness of solutions
of the Cauchy problems (1.2).

Lemma 2. Let f be a measurable map from [0, T ]×Ω into B(0,M), with
Pf continuous on Y . Let D be compact , with B(D,MT ) ⊂ Ω, and assume
that the Cauchy problem

(2.6) ẋ(t) = f(t, x(t)), x(t0) = x0, t ∈ [0, T ],

has a unique solution, for each (t0, x0) ∈ [0, T ]×D.
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Then, for every ε > 0, there exists δ > 0 with the following property. If
g : [0, T ]×Ω → B(0,M) satisfies ‖Pg − Pf‖ ≤ δ, then for every (t0, x0) ∈
[0, T ]×D, any solution of the Cauchy problem

(2.7) ẏ(t) = g(t, y(t)), y(t0) = x0, t ∈ [0, T ],

has distance < ε from the corresponding solution of (2.6). In particular , the
solution set of (2.7) has diameter ≤ 2ε in C0([0, T ]; Rn).

P r o o f. If the conclusion fails, then there exist sequences of times tν , t′ν ,
maps gν with ‖Pgν − Pf‖ → 0, and couples of solutions xν , yν : [0, T ] →
B(D,MT ) of

(2.8) ẋν(t) = f(t, xν(t)), ẏν(t) = gν(t, yν(t)), t ∈ [0, T ],

with

(2.9) xν(tν) = yν(tν) ∈ D, |xν(t′ν)− yν(t′ν)| ≥ ε ∀ν.
By taking subsequences, we can assume that tν → t0, t′ν → τ , xν(t0)→ x0,
while xν → x and yν → y uniformly on [0, T ]. From (2.8) it follows that

(2.10)
∣∣∣y(t)− x0 −

t∫
t0

f(s, y(s)) ds
∣∣∣ ≤ |y(t)− yν(t)|+ |x0 − yν(t0)|

+
∣∣∣ t∫
t0

[f(s, y(s))− f(s, yν(s))] ds
∣∣∣+
∣∣∣ t∫
t0

[f(s, yν(s))− gν(s, yν(s))] ds
∣∣∣.

As ν →∞, the right hand side of (2.10) tends to zero, showing that y(·) is
a solution of (2.6). By the continuity of Pf , x(·) is also a solution of (2.6),
distinct from y(·) because

|x(τ)− y(τ)| = lim
ν→∞

|xν(τ)− yν(τ)| = lim
ν→∞

|xν(t′ν)− yν(t′ν)| ≥ ε.

This contradicts the uniqueness assumption, proving the lemma.

3. Proof of the main theorem. Observing that extF (t, x) =
ext coF (t, x) for every compact set F (t, x), it is clearly not restrictive to
prove Theorem 1 under the additional assumption that all values of F are
convex. Moreover, the bounds on F and D imply that no solution of the
Cauchy problem

ẋ(t) ∈ F (t, x(t)), x(t0) = x0, t ∈ [0, T ],

with x0 ∈ D, can escape from the set B(D,MT ). Therefore, it suffices
to construct the selection f on the compact set Ω† .= [0, T ] × B(D,MT ).
Finally, since every convex-valued multifunction satisfying (LSP) admits a
globally defined Lipschitz selection, it suffices to prove the second part of
the theorem, with f0 and ε0 > 0 assigned.
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We shall define a sequence of directionally continuous selections of F ,
converging a.e. to a selection from extF . The basic step of our constructive
procedure will be provided by the next lemma.

Lemma 3. Fix any ε > 0. Let S be a compact subset of [0, T ] × Ω and
let φ : S → Rn be a continuous selection of F such that

(3.1) h(φ(t, x), F (t, x)) < η ∀(t, x) ∈ S,

with h as in (2.1). Then there exists a piecewise Lipschitz selection g : S →
Rn of F with the following properties:

(i) There exists a finite covering {Γi}i=1,...,ν , consisting of ΓM+1-cones,
such that , if we define the pairwise disjoint sets ∆i .= Γi \

⋃
l<i Γl,

then on each ∆i the following holds:
(a) There exist Lipschitzean selections ψij : ∆i → Rn, j = 0, . . . , n,

such that

(3.2) g|∆i =
n∑
j=0

ψijχAij ,

where each Aij is a finite union of strips of the form ([t′, t′′)×Rn)
∩∆i.

(b) For every j = 0, . . . , n there exists an affine map ϕij(·) = 〈aij , ·〉+bij
such that

(3.3) ϕij(ψ
i
j(t, x)) ≤ ε, ϕij(z) ≥ h(z, F (t, x)), ∀(t, x) ∈ ∆i, z ∈ F (t, x).

(ii) For every u ∈ Y and every interval [τ, τ ′] such that (s, u(s)) ∈ S for
τ ≤ s < τ ′, the following estimates hold :

(3.4)
∣∣∣ τ ′∫
τ

[φ(s, u(s))− g(s, u(s))] ds
∣∣∣ ≤ ε,

(3.5)
τ ′∫
τ

|φ(s, u(s))− g(s, u(s))| ds ≤ ε+ η(τ ′ − τ).

R e m a r k 2. Thinking of h(y,K) as a measure for the distance of y from
the extreme points of K, the above lemma can be interpreted as follows.
Given any selection φ of F , one can find a ΓM+1-continuous selection g
whose values lie close to the extreme points of F and whose Picard operator
Pg, by (3.4), is close to Pφ. Moreover, if the values of φ are near the extreme
points of F , i.e. if η in (3.1) is small, then g can be chosen close to φ. The
estimate (3.5) will be a direct consequence of the definition (2.1) of h and
of Hölder’s inequality.
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R e m a r k 3. Since h is only upper semicontinuous, the two assumptions
yν → y and h(yν ,K) → 0 do not necessarily imply h(y,K) = 0. As a con-
sequence, the a.e. limit of a convergent sequence of approximately extremal
selections fν of F need not take values inside extF . To overcome this diffi-
culty, the estimates in (3.3) provide upper bounds for h in terms of the affine
maps ϕij . Since each ϕij is continuous, limits of the form ϕij(yν) → ϕij(y)
will be straightforward.

P r o o f o f L e m m a 3. For every (t, x) ∈ S there exist values yj(t, x)
∈ F (t, x) and coefficients θj(t, x) ≥ 0 with

φ(t, x) =
n∑
j=0

θj(t, x)yj(t, x),
n∑
j=0

θj(t, x) = 1,

h(yj(t, x), F (t, x)) < ε/2.

By the concavity and the upper semicontinuity of h, for every j = 0, . . . , n
there exists an affine function ϕ

(t,x)
j (·) = 〈a(t,x)

j , ·〉+ b
(t,x)
j such that

ϕ
(t,x)
j (yj(t, x)) < h(yj(t, x), F (t, x)) + ε/2 < ε,

ϕ
(t,x)
j (z) > h(z, F (t, x)) ∀z ∈ F (t, x).

By (LSP) and the continuity of each ϕ
(t,x)
j , there exists a neighborhood U

of (t, x) together with Lipschitzean selections ψ(t,x)
j : U → Rn such that, for

every j and every (s, y) ∈ U ,

|ψ(t,x)
j (s, y)− yj(t, x)| < ε

4T
,(3.6)

ϕ
(t,x)
j (ψ(t,x)

j (s, y)) < ε.(3.7)

Using again the upper semicontinuity of h, we can find a neighborhood U ′
of (t, x) such that

(3.8) ϕ
(t,x)
j (z) ≥ h(z, F (s, y)) ∀z ∈ F (s, y), (s, y) ∈ U ′, j = 0, . . . , n.

Choose a neighborhood Γt,x of (t, x), contained in U ∩ U ′, such that, for
every point (s, y) in the closure Γ t,x, one has

(3.9) |φ(s, y)− φ(t, x)| < ε

4T
.

It is not restrictive to assume that Γt,x is an (M + 1)-cone, i.e. it has the
form (2.4) with N = M+1. By the compactness of S we can extract a finite
subcovering {Γ i ; 1 ≤ i ≤ ν}, with Γi

.= Γti,xi . Define ∆i .= Γi \
⋃
j<i Γj

and set θij = θj(ti, xi), yij = yj(ti, xi), ψij = ψ
(ti,xi)
j , ϕij = ϕj

(ti,xi). Choose
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an integer N such that

(3.10) N >
8Mν2T

ε

and divide [0, T ] into N equal subintervals J1, . . . , JN , with

(3.11) Jk = [tk−1, tk), tk =
kT

N
.

For each i, k such that (Jk × Rn) ∩ ∆i 6= ∅, we then split Jk into n + 1
subintervals J ik,0, . . . , J

i
k,n with lengths proportional to θi0, . . . , θ

i
n, by setting

J ik,j = [tk,j−1, tk,j), tk,j =
T

N

(
k +

j∑
l=0

θil

)
, tk,−1 =

Tk

N
.

For any point (t, x) ∈ ∆i we now set

(3.12)
{
gi(t, x) .= ψij(t, x)
gi(t, x) = yij

if t ∈
N⋃
k=1

J ik,j .

The piecewise Lipschitz selection g and a piecewise constant approximation
g of g can now be defined as

(3.13) g =
ν∑
i=1

giχ∆i , g =
ν∑
i=1

giχ∆i .

By construction, recalling (3.7) and (3.8), the conditions (a), (b) in (i) clearly
hold.

It remains to show that the estimates in (ii) hold as well. Let τ, τ ′ ∈ [0, T ]
and u ∈ Y be such that (t, u(t)) ∈ S for every t ∈ [τ, τ ′], and define

Ei = {t ∈ I ; (t, u(t)) ∈ ∆i}, i = 1, . . . , ν.

From our previous definition ∆i .= Γi\
⋃
j<i Γj , where each Γj is an (M+1)-

cone, it follows that every Ei is the union of at most i disjoint intervals. We
can thus write

Ei =
( ⋃
Jk⊂Ei

Jk

)
∪ Êi,

with Jk given by (3.11) and

(3.14) m(Êi) ≤ 2iT
N
≤ 2νT

N
.

Since

(3.15) φ(ti, xi) =
n∑
j=0

θijy
i
j ,
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the definition of g in (3.12), (3.13) implies∫
Jk

[φ(ti, xi)− g(s, u(s))] ds = m(Jk)
[
φ(ti, xi)−

n∑
j=0

θijy
i
j

]
= 0.

Therefore, from (3.9) and (3.6) it follows that∣∣∣ ∫
Jk

[φ(s, u(s))− g(s, u(s))] ds
∣∣∣

≤
∣∣∣ ∫
Jk

[φ(s, u(s))− φ(ti, xi)] ds
∣∣∣

+
∣∣∣ ∫
Jk

[φ(ti, xi)− g(s, u(s))] ds
∣∣∣+
∣∣∣ ∫
Jk

[g(s, u(s))− g(s, u(s))] ds
∣∣∣

≤ m(Jk)
[
ε

4T
+ 0 +

ε

4T

]
= m(Jk)

ε

2T
.

The choice of N in (3.10) and the bound (3.14) thus imply∣∣∣ τ ′∫
τ

[φ(s, u(s))− g(s, u(s))] ds
∣∣∣ ≤ 2Mm

( ν⋃
i=1

Êi
)

+ (τ ′ − τ)
ε

2T

≤ 2Mν
2νT
N

+
ε

2
≤ ε,

proving (3.4).
We next consider (3.5). For a fixed i ∈ {1, . . . , ν}, let Ei be as before

and define

ξ−1 = 0, ξj =
j∑
l=0

θil , wi(ξ) =
n∑
j=0

yijχ[ξj−1,ξj ].

Recalling (3.15), the definition of h at (2.1) and Hölder’s inequality together
imply

h(φ(ti, xi), F (ti, xi)) ≥
( 1∫

0

|φ(ti, xi)− wi(ξ)|2 dξ
)1/2

≥
1∫

0

|φ(ti, xi)− wi(ξ)| dξ

=
n∑
j=0

θij |φ(ti, xi)− yij |.
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Using this inequality we obtain∫
Jk

|φ(ti, xi)− g(s, u(s))| ds = m(Jk)
n∑
j=0

θij |φ(ti, xi)− yij |

≤ m(Jk) · h(φ(ti, xi), F (ti, xi)) ≤ ηm(Jk),

and therefore, by (3.9) and (3.6),∫
Jk

|φ(s, u(s))− g(s, u(s))| ds

≤
∫
Jk

|φ(s, u(s))− φ(ti, xi)| ds+
∫
Jk

|g(s, u(s))− g(s, u(s))| ds

+
∫
Jk

|φ(ti, xi)− g(s, u(s))|,

≤ m(Jk)
[
ε

4T
+

ε

4T
+ η

]
= m(Jk)

(
ε

2T
+ η

)
.

Using again (3.14) and (3.10), we conclude that
τ ′∫
τ

|φ(s, u(s))− g(s, u(s))| ds ≤ (τ ′ − τ)
(
ε

2T
+ η

)
+ 2Mν

2νT
N

≤ ε+ (τ ′ − τ)η.

which finishes the proof of Lemma 3.

Using Lemma 3, given any continuous selection f̃ of F on Ω†, and any
sequence (εk)k≥1 of strictly positive numbers, we can generate a sequence
(fk)k≥1 of selections from F as follows.

To construct f1, we apply the lemma with S = Ω†, φ = f0, ε = ε1.
This yields a partition {Ai1; i = 1, . . . , ν1} of Ω† and a piecewise Lipschitz
selection f1 of F of the form

f1 =
ν1∑
i=1

f i1χAi1 .

In general, at the beginning of the kth step we are given a partition of
Ω†, say {Aik ; i = 1, . . . , νk}, and a selection

fk =
νk∑
i=1

f ikχAik ,

where each f ik is Lipschitz continuous and satisfies

h(fk(t, x), F (t, x)) ≤ εk ∀(t, x) ∈ Aik.
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We then apply Lemma 3 separately to each Aik, choosing S = Aik, ε = εk,
φ = f ik. This yields a partition {Aik+1; i = 1, . . . , νk+1} of Ω† and functions
of the form

fk+1 =
νk+1∑
i=1

f ik+1χAik+1
, ϕik+1(·) = 〈aik+1, ·〉+ bik+1,

where each f ik+1 : Aik+1 → Rn is a Lipschitz continuous selection from F ,
satisfying the following estimates:

ϕik+1(z) > h(z, F (t, x)) ∀(t, x) ∈ Aik+1,(3.16)

ϕik+1(f ik+1(t, x)) ≤ εk+1 ∀(t, x) ∈ Aik+1,(3.17) ∣∣∣ τ ′∫
τ

[fk+1(s, u(s))− fk(s, u(s))] ds
∣∣∣ ≤ εk+1,(3.18)

τ ′∫
τ

|fk+1(s, u(s))− fk(s, u(s))| ds ≤ εk+1 + εk(τ ′ − τ),(3.19)

for every u ∈ Y and every τ, τ ′, as long as the values (s, u(s)) remain inside
a single set Aik, for s ∈ [τ, τ ′).

Observe that, according to Lemma 3, each Aik is closed-open in the
finer topology generated by all (M + 1)-cones. Therefore, each fk is ΓM+1-
continuous. By Theorem 2 in [2], the substitution operator Sfk : u(·) 7→
fk(·, u(·)) is continuous from the set Y defined in (2.5) into L1([0, T ]; Rn).
The Picard map Pfk is thus continuous as well.

Furthermore, there exists an integer Nk with the following property.
Given any u ∈ Y , there exists a finite partition of [0, T ] with nodes 0 = τ0 <
τ1 < . . . < τn(u) = T , with n(u) ≤ Nk, such that, as t ranges in any [τl−1, τl),
the point (t, u(t)) remains inside one single set Aik. Otherwise stated, the
number of times the curve t 7→ (t, u(t)) crosses a boundary between two
distinct sets Aik, Ajk is smaller than Nk, for every u ∈ Y . The construction
of the Aik in terms of (M + 1)-cones implies that all these crossings are
transversal. Since the restriction of fk to each Aik is Lipschitz continuous,
it is clear that every Cauchy problem

ẋ(t) = fk(t, x(t)), x(t0) = x0,

has a unique solution, depending continuously on the initial data (t0, x0) ∈
[0, T ]×D.

From (3.18), (3.19) and the property of Nk it follows that

(3.20)
∣∣∣ t∫
0

[fk+1(s, u(s))− fk(s, u(s))] ds
∣∣∣

≤
L∑
l=1

∣∣∣ τl∫
τl−1

[fk+1(s, u(s))− fk(s, u(s))] ds
∣∣∣ ≤ Nkεk+1,
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where 0 = τ0 < τ1 < . . . < τL = t are the times at which the map s 7→
(s, u(s)) crosses a boundary between two distinct sets Aik, Ajk. Since (3.20)
holds for every t ∈ [0, T ], we conclude that

(3.21) ‖Pfk+1 − Pfk‖ ≤ Nkεk+1.

Similarly, for every u ∈ Y one has

(3.22)
∥∥∥fk+1(·, u(·))− fk(·, u(·))

∥∥∥
L1([0,T ];Rn)

≤
n(u)∑
l=1

τl∫
τl−1

|fk+1(s, u(s))− fk(s, u(s))| ds

≤
n(u)∑
l=1

[εk+1 + εk(τl − τl−1)] ≤ Nkεk+1 + εkT.

Now consider the functions ϕk : Rn ×Ω† → R with

(3.23) ϕk(y, t, x) .= 〈aik, y〉+ bik if (t, x) ∈ Aik.

From (3.16), (3.17) it follows that

ϕk(y, t, x) ≥ h(y, F (t, x)) ∀(t, x) ∈ Ω†, y ∈ F (t, x),(3.24)
ϕk(fk(t, x), t, x) ≤ εk ∀(t, x) ∈ Ω†.(3.25)

For every u ∈ Y , (3.18) and the linearity of ϕk in y imply

(3.26)
∣∣∣ T∫
0

[ϕk(fk+1(s, u(s)), s, u(s))− ϕk(fk(s, u(s)), s, u(s))] ds
∣∣∣

≤
n(u)∑
l=1

max{|a1
k|, . . . , |a

νk
k |}

∣∣∣ τl∫
τl−1

[fk+1(s, u(s))− fk(s, u(s))] ds
∣∣∣

≤ Nk max{|a1
k|, . . . , |a

νk
k |}εk+1.

Moreover, for every l ≥ k, from (3.19) it follows that

(3.27)
T∫

0

∣∣∣ϕk(fl+1(s, u(s)), s, u(s))− ϕk(fl(s, u(s)), s, u(s))
∣∣∣ ds

≤ max{|a1
k|, . . . , |a

νk
k |}

T∫
0

|fl+1(s, u(s))− fl(s, u(s))| ds

≤ max{|a1
k|, . . . , |a

νk
k |} · (Nlεl+1 + εlT ).

Observe that all of the above estimates hold regardless of the choice of the
εk. We now introduce an inductive procedure for choosing the constants εk,
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which will yield the convergence of the sequence fk to a function f with the
desired properties.

Given f0 and ε0, by Lemma 2 there exists δ0 > 0 such that, if g : Ω† →
B(0,M) and ‖Pg − Pf0‖ ≤ δ0, then, for each (t0, x0) ∈ [0, T ] × D, every
solution of (2.7) remains ε0-close to the unique solution of (1.3). We then
choose ε1 = δ0/2.

By induction on k, assume that the functions f1, . . . , fk have been con-
structed, together with the linear functions ϕil(·) = 〈ail, ·〉+ bil and the inte-
gers Nl, l = 1, . . . , k. Let the values δ0, δ1, . . . , δk > 0 be inductively chosen,
satisfying

(3.28) δl ≤ δl−1/2, l = 1, . . . , k,

and such that ‖Pg − Pfl‖ ≤ δl implies that for every (t0, x0) ∈ [0, T ] × D
the solution set of (2.7) has diameter ≤ 2−l, for l = 1, . . . , k. This is possible
again because of Lemma 2. For k ≥ 1 we then choose

(3.29) εk+1
.= min

{
δk

2Nk
,

2−k

Nk
,

2−k

Nk max{|ail|; 1 ≤ l ≤ k, 1 ≤ i ≤ νl}

}
.

Using (3.28), (3.29) in (3.21), with N0
.= 1, we now obtain

(3.30)
∞∑
k=p

‖Pfk+1 − Pfk‖ ≤
∞∑
k=p

Nk
δk

2Nk
≤
∞∑
k=p

2p−kδp
2

≤ δp

for every p ≥ 0. From (3.22) and (3.29) we further obtain

∞∑
k=1

‖fk+1(·, u(·))− fk(·, u(·))‖L1 ≤
∞∑
k=1

(
Nk

2−k

Nk
+

21−kT

Nk

)
(3.31)

≤
∞∑
k=1

(2−k + 21−kT ) ≤ 1 + 2T.

Define

(3.32) f(t, x) .= lim
k→∞

fk(t, x)

for all (t, x) ∈ Ω† at which the sequence fk converges. By (3.31), for every
u∈Y the sequence fk(·, u(·)) converges in L1([0, T ]; Rn) and a.e. on [0, T ].
In particular, considering the constant functions u ≡ x ∈ B(D,MT ), by
Fubini’s theorem we conclude that f is defined a.e. on Ω†. Moreover, the
substitution operators Sfk : u(·) 7→ fk(·, u(·)) converge to the operator
Sf : u(·) 7→ f(·, u(·)) uniformly on Y . Since each Sfk is continuous, Sf is
also continuous. Clearly, the Picard map Pf is continuous as well. By (3.30)
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we have

‖Pf − Pfk‖ ≤
∞∑
k=p

‖Pfk+1 − Pfk‖ ≤ δp ∀p ≥ 1.

Recalling the property of δp, this implies that, for every p, the solution
set of (2.7) has diameter ≤ 2−p. Since p is arbitrary, for every (t0, x0) ∈
[0, T ]×D the Cauchy problem can have at most one solution. On the other
hand, the existence of such a solution is guaranteed by Schauder’s theorem.
The continuous dependence of this solution on the initial data t0, x0, in the
norm of AC, is now an immediate consequence of uniqueness and of the
continuity of the operators Sf , Pf . Furthermore, for p = 0, (3.30) yields
‖Pf − Pf0‖ ≤ δ0. The choice of δ0 thus implies (1.4).

It now remains to prove (1.1). Since every set F (t, x) is closed, it is clear
that f(t, x) ∈ F (t, x). For every u ∈ Y and k ≥ 1, by (3.24)–(3.27) the
choices of εk at (3.29) yield

T∫
0

h(f(s, u(s)), F (s, u(s))) ds(3.33)

≤
T∫

0

ϕk(f(s, u(s)), s, u(s)) ds

≤
T∫

0

ϕk(fk(s, u(s)), s, u(s)) ds

+
∣∣∣ T∫
0

[ϕk(fk+1(s, u(s)), s, u(s))− ϕk(fk(s, u(s)), s, u(s))] ds
∣∣∣

+
∞∑

l=k+1

T∫
0

|ϕk(fl+1((s, u(s)), s, u(s))− ϕk(fl(s, u(s)), s, u(s))| ds

≤ 21−kT + 2−k +
∞∑

l=k+1

(2−l + 21−lT ).

Observing that the right hand side of (3.33) approaches zero as k →∞, we
conclude that

T∫
0

h(f(t, u(t)), F (t, u(t))) dt = 0.

By (2.2), given any u ∈ Y , this implies f(t, u(t)) ∈ extF (t, u(t)) for almost
every t ∈ [0, T ]. By possibly redefining f on a set of measure zero, this
yields (1.1).
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4. Applications. Throughout this section we make the following as-
sumptions:

(H) F : [0, T ]×Ω → B(0,M) is a bounded continuous multifunction with
compact values satisfying (LSP), while D is a compact set such that
B(D,MT ) ⊂ Ω.

An immediate consequence of Theorem 1 is

Corollary 1. Let the hypotheses (H) hold. Then there exists a contin-
uous map (t0, x0) 7→ x(·, t0, x0) from [0, T ]×D into AC such that{

ẋ(t, t0, x0) ∈ extF (t, x(t, t0, x0)) ∀t ∈ [0, T ],
x(t0, t0, x0) = x0 ∀t0, x0.

Another consequence of Theorem 1 is the contractibility of the sets of
solutions of certain differential inclusions. We recall here that a metric space
X is contractible if there exist a point ũ ∈ X and a continuous mapping
Φ : X × [0, 1]→ X such that

Φ(v, 0) = ũ, Φ(v, 1) = v, ∀v ∈ X.
The map Φ is then called a null homotopy of X.

Corollary 2. Let the assumptions (H) hold. Then, for any x ∈ D, the
sets M, Mext of solutions of

x(0) = x, ẋ(t) ∈ F (t, x(t)), t ∈ [0, T ],
x(0) = x, ẋ ∈ extF (t, x(t)), t ∈ [0, T ],

are both contractible in AC.

P r o o f. Let f be a selection from extF with the properties stated in
Theorem 1. As usual, we denote by x(·, t0, x0) the unique solution of the
Cauchy problem (1.2). Define the null homotopy Φ :M× [0, 1]→M by

Φ(v, λ)(t) .=
{
v(t) if t ∈ [0, λT ],
x(t, λT, v(λT )) if t ∈ [λT, T ].

By Theorem 1, Φ is continuous. Moreover, setting ũ(·) .= u(·, 0, x), we obtain

Φ(v, 0) = ũ, Φ(v, 1) = v, Φ(v, λ) ∈M ∀v ∈M,

proving that M is contractible. We now observe that, if v ∈ Mext, then
Φ(v, λ) ∈Mext for every λ. Therefore, Mext is contractible as well.

Our last application is concerned with feedback controls. Let Ω ⊆ Rn be
open, U ⊂ Rm compact, and let g : [0, T ] × Ω × U → Rn be a continuous
function. By a well-known theorem of Filippov [11], the solutions of the
control system

(4.1) ẋ = g(t, x, u), u ∈ U,
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correspond to the trajectories of the differential inclusion

(4.2) ẋ ∈ F (t, x) .= {g(t, x, ω); ω ∈ U}.
In connection with (4.1), one can consider the “relaxed” system

(4.3) ẋ = g#(t, x, u#), u# ∈ U#,

whose trajectories are precisely those of the differential inclusion

ẋ ∈ F#(t, x) .= coF (t, x).

The control system (4.3) is obtained by defining the compact set

U# .= U × . . .× U ×∆n = Un+1 ×∆n,

where

∆n
.=
{
θ = (θ0, . . . , θn) ;

n∑
i=0

θi = 1, θi ≥ 0 ∀i
}

is the standard simplex in Rn+1, and by setting

g#(t, x, u#) = g#(t, x, (u0, . . . , un, (θ0, . . . , θn))) .=
n∑
i=0

θif(t, x, ui).

Generalized controls of the form u# = (u0, . . . , un, θ) taking values in the
set Un+1 ×∆n are called chattering controls.

Corollary 3. Consider the control system (4.1), with g : [0, T ] × Ω ×
U → B(0,M) Lipschitz continuous. Let D be a compact set with B(D;MT )
⊂ Ω. Let u#(t, x) ∈ U# be a chattering feedback control such that the
mapping

(t, x) 7→ g#(t, x, u#(t, x)) .= f0(t, x)
is Lipschitz continuous.

Then for every ε0 > 0 there exists a measurable feedback control u =
u(t, x) with the following properties:

(a) for every (t, x), one has g(t, x, u(t, x))∈ extF (t, x), with F as in (4.2),
(b) for every (t0, x0) ∈ [0, T ]×D, the Cauchy problem

ẋ(t) = g(t, x(t), u(t, x(t))), x(t0) = x0,

has a unique solution x(·, t0, x0),
(c) if y(·, t0, x0) denotes the (unique) solution of the Cauchy problem

ẏ = f0(t, y(t)), y(t0) = x0,

then for every (t0, x0) one has

|x(t, t0, x0)− y(t, t0, x0)| < ε0 ∀t ∈ [0, T ].

P r o o f. The Lipschitz continuity of g implies that the multifunction F
in (4.2) is Lipschitz continuous in the Hausdorff metric, hence it satisfies
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(LSP). We can thus apply Theorem 1, and obtain a suitable selection f of
extF , in connection with f0, ε0. For every (t, x), the set

W (t, x) .= {ω ∈ U ; g(t, x, ω) = f(t, x)} ⊂ Rm

is a compact nonempty subset of U . Let u(t, x) ∈ W (t, x) be the lexico-
graphic selection. Then the feedback control u is measurable, and it is trivial
to check that u has all the required properties.
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Révisé le 10.11.1993


