Some inequalities involving multivalent functions

by Shigeyoshi Owa (Osaka), Mamoru Nunokawa (Gunma) and Hitoshi Saitoh (Gunma)

Abstract. The object of the present paper is to derive some inequalities involving multivalent functions in the unit disk. One of our results is an improvement and a generalization of a result due to R. M. Robinson [4].

1. Introduction. Let $\mathbb{A}(p)$ be the class of functions of the form

(1.1)
$$f(z) = z^p + \sum_{n=p+1}^{\infty} a_n z^n \quad (p \in \mathbb{N} = \{1, 2, 3, \ldots\})$$

which are analytic in the unit disk $\mathbb{U} = \{z : |z| < 1\}$.

In 1947, Robinson [4] proved the following

Theorem A. Let S(z) and T(z) be analytic in \mathbb{U} , and let $\operatorname{Re}\{zS'(z)/S(z)\} > 0$ $(z \in \mathbb{U})$. If |T'(z)/S'(z)| < 1 $(z \in \mathbb{U})$ and T(0) = 0, then |T(z)/S(z)| < 1 $(z \in \mathbb{U})$.

In the present paper, we derive an improvement and generalization of Theorem A for functions belonging to A(p).

To establish our results, we have to recall the following lemmas.

LEMMA 1 ([1], [2]). Let w(z) be analytic in \mathbb{U} with w(0) = 0. If |w(z)| attains its maximum value in the circle |z| = r < 1 at a point $z_0 \in \mathbb{U}$, then we can write

$$(1.2) z_0 w'(z_0) = k w(z_0),$$

where k is real and $k \geq 1$.

LEMMA 2 ([3]). Let p(z) be analytic in \mathbb{U} with p(0) = 1. If there exists a

 $^{1991\} Mathematics\ Subject\ Classification:\ Primary\ 30C45.$

Key words and phrases: analytic function, unit disk, Jack's lemma.

point $z_0 \in \mathbb{U}$ such that

$$Re(p(z)) > 0 \quad (|z| < |z_0|), \quad Re(p(z_0)) = 0, \quad and \quad p(z_0) \neq 0,$$

then $p(z_0) = ia \ (a \neq 0)$ and

(1.3)
$$\frac{z_0 p'(z_0)}{p(z_0)} = i \frac{k}{2} \left(a + \frac{1}{a} \right),$$

where k is real and $k \geq 1$.

2. Some counterparts of Theorem A. Our first result for functions in the class $\mathbb{A}(p)$ is contained in

THEOREM 1. Let $S(z) \in \mathbb{A}(m)$, $T(z) \in \mathbb{A}(n)$ with $p = n - m \ge 1$. Let S(z) satisfy $\operatorname{Re}\{S(z)/zS'(z)\} > \alpha \ (0 \le \alpha < 1/m)$. If

(2.1)
$$\left| \frac{T'(z)}{S'(z)} \right| < (1 + p\alpha)|z|^{p-1} \quad (z \in \mathbb{U}),$$

then

(2.2)
$$\left| \frac{T(z)}{S(z)} \right| < |z|^{p-1} \quad (z \in \mathbb{U}).$$

Proof. Since $T(z)/S(z)=z^p+\ldots\in\mathbb{A}(p)$, we define the function w(z) by $T(z)=z^{p-1}w(z)S(z)$. Then w(z) is analytic in $\mathbb U$ with w(0)=0. It follows from the definition of w(z) that

$$(2.3) \qquad \frac{T'(z)}{S'(z)} = z^{p-1}w(z) \bigg\{ 1 + \bigg(p - 1 + \frac{zw'(z)}{w(z)} \bigg) \frac{S(z)}{zS'(z)} \bigg\}.$$

If we suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1,$$

then Lemma 1 gives $w(z_0) = e^{i\theta}$ and

$$z_0 w'(z_0) = k w(z_0) \quad (k \ge 1).$$

Therefore,

(2.4)
$$\left| \frac{T'(z_0)}{z_0^{p-1}S'(z_0)} \right| = \left| 1 + \left(p - 1 + \frac{z_0 w'(z_0)}{w(z_0)} \right) \frac{S(z_0)}{z_0 S'(z_0)} \right|$$

$$\geq 1 + (p - 1 + k) \operatorname{Re} \left(\frac{S(z_0)}{z_0 S'(z_0)} \right) > 1 + p\alpha.$$

This contradicts our condition (2.1), so that |w(z)| < 1 for all $z \in \mathbb{U}$. This completes the proof of Theorem 1.

Remark. If we take p=1 and $\alpha=0$ in Theorem 1, then we recover Theorem A due to Robinson [4].

Next, applying Lemma 2, we prove

Theorem 2. Let $S(z) \in \mathbb{A}(m)$, $T(z) \in \mathbb{A}(n)$ with $p = n - m \ge 1$. Let S(z) satisfy $\operatorname{Re}\{S(z)/zS'(z)\} > \alpha \ (0 \le \alpha < 1/m)$ and $-\alpha/p \le \operatorname{Im}\{S(z)/(zS'(z))\}$ $\le \alpha/p \ (0 \le \alpha < 1/m)$. If

(2.5)
$$\operatorname{Re}\left(\frac{T'(z)}{z^p S'(z)}\right) > 0 \quad (z \in \mathbb{U}),$$

then

(2.6)
$$\operatorname{Re}\left(\frac{T(z)}{z^{p}S(z)}\right) > 0 \quad (z \in \mathbb{U}).$$

Proof. Defining the function q(z) by $T(z) = z^p q(z) S(z)$, we see that q(z) is analytic in \mathbb{U} with q(0) = 1. Note that

(2.7)
$$\frac{T'(z)}{S'(z)} = z^p q(z) \left\{ 1 + \left(p + \frac{zq'(z)}{q(z)} \right) \frac{S(z)}{zS'(z)} \right\}.$$

Suppose that there exists a point $z_0 \in \mathbb{U}$ such that

$$Re(q(z)) > 0 \quad (|z| < |z_0|), \quad Re(q(z_0)) = 0, \quad \text{and} \quad q(z_0) \neq 0.$$

Then, applying Lemma 2, we have $q(z_0) = ia \ (a \neq 0)$ and

$$\frac{z_0 q'(z_0)}{q(z_0)} = i \frac{k}{2} \left(a + \frac{1}{a} \right) \quad (k \ge 1).$$

Therefore, writing $S(z_0)/(z_0S'(z_0)) = \alpha_0 + i\beta_0$, we obtain

(2.8)
$$\operatorname{Re}\left(\frac{T'(z_0)}{z_0^p S'(z_0)}\right) = -ap\beta_0 - \frac{ak\alpha_0}{2}\left(a + \frac{1}{a}\right)$$
$$= -ap\beta_0 - \frac{k\alpha_0}{2}(1 + a^2)$$
$$\leq -ap\beta_0 - \frac{\alpha_0}{2}(1 + a^2) \leq -ap\beta_0 - \frac{\alpha}{2}(1 + a^2).$$

Since $-\alpha/p \le \beta_0 \le \alpha/p$, if a > 0, then

(2.9)
$$-ap\beta_0 - \frac{\alpha}{2}(1+a^2) \le a\alpha - \frac{\alpha}{2}(1+a^2)$$
$$= -\frac{\alpha}{2}(1-a)^2 \le 0,$$

and if a < 0, then

(2.10)
$$-ap\beta_0 - \frac{\alpha}{2}(1+a^2) \le -a\alpha - \frac{\alpha}{2}(1+a^2)$$
$$= -\frac{\alpha}{2}(1+a)^2 \le 0.$$

This contradicts our condition (2.5). Consequently, $\operatorname{Re}(q(z)) > 0$ for all $z \in \mathbb{U}$, so that $\operatorname{Re}\{T(z)/(z^pS(z))\} > 0$ $(z_0 \in \mathbb{U})$.

Further, using the same technique as in the proof of Theorem 2, we obtain

Theorem 3. Let $S(z) \in \mathbb{A}(m), \ T(z) \in \mathbb{A}(n)$ with $p=m-n \geq 0$. Let S(z) satisfy $\operatorname{Re}\{S(z)/(zS'(z))\} > \alpha \ (0 \leq \alpha < 1/m)$ and $-\alpha/p \leq \operatorname{Im}\{S(z)/(zS'(z))\} \leq \alpha/p \ (0 \leq \alpha < 1/m)$. If

(2.11)
$$\operatorname{Re}\left(\frac{z^{p}T'(z)}{S'(z)}\right) > 0 \quad (z \in \mathbb{U}),$$

then

(2.12)
$$\operatorname{Re}\left(\frac{z^{p}T(z)}{S(z)}\right) > 0 \quad (z \in \mathbb{U}),$$

Acknowledgements. This research was supported in part by the Japanese Ministry of Education, Science and Culture under Grant-in-Aid for General Scientific Research.

References

- [1] I. S. Jack, Functions starlike and convex of order α , J. London Math. Soc. 3 (1971), 469–474.
- [2] S. S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl. 65 (1978), 289-305.
- [3] M. Nunokawa, On properties of non-Carathéodory functions, Proc. Japan Acad. 68 (1992), 152–153.
- $[4] \quad \text{R. M. Robinson}, \ \textit{Univalent majorants}, \ \text{Trans. Amer. Math. Soc. 61 (1947)}, \ 1-35.$

S. Owa DEPARTMENT OF MATHEMATICS KINKI UNIVERSITY HIGASHI-OSAKA, OSAKA 577 JAPAN H. Saitoh
DEPARTMENT OF MATHEMATICS
GUNMA COLLEGE OF TECHNOLOGY
TORIBA, MAEBASHI, GUNMA 371
JAPAN

M. Nunokawa DEPARTMENT OF MATHEMATICS UNIVERSITY OF GUNMA ARAMAKI, MAEBASHI, GUNMA 371 JAPAN

> Reçu par la Rédaction le 4.10.1993 Révisé le 28.2.1994