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Abstract. The object of the present paper is to derive some inequalities involving
multivalent functions in the unit disk. One of our results is an improvement and a gener-
alization of a result due to R. M. Robinson [4].

1. Introduction. Let A(p) be the class of functions of the form

(1.1) f(z) =2+ Z a2z (peN={1,2,3,...})

n=p+1
which are analytic in the unit disk U= {z: |z| < 1}.
In 1947, Robinson [4] proved the following

THEOREM A. Let S(z) and T(z) be analytic in U, and let
Re{z5"(2)/S(2)} >0 (z € U). If |T"(2)/S'(2)] < 1 (2 € U) and T(0) = 0,
then |T'(2)/S(2)| <1 (z € U).

In the present paper, we derive an improvement and generalization of
Theorem A for functions belonging to A(p).
To establish our results, we have to recall the following lemmas.

LEMMA 1 ([1], [2]). Let w(z) be analytic in U with w(0) = 0. If |w(z)]
attains its maximum value in the circle |z| =r < 1 at a point zy € U, then
we can write

(1.2) zow'(z0) = kw(zo),
where k is real and k > 1.

LEMMA 2 ([3]). Let p(z) be analytic in U with p(0) = 1. If there exists a
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point zg € U such that

Re(p(z)) >0 (|z| <l20l), Re(p(z0)) =0, and p(z0) # 0,
then p(z9) = ia (a #0) and

(13) ) =i (o)

where k is real and k > 1.

2. Some counterparts of Theorem A. Our first result for functions
in the class A(p) is contained in

THEOREM 1. Let S(z) € A(m), T(z) € A(n) withp=n—m > 1. Let
S(z) satisfy Re{S(z)/25"(2)} >a (0<a < 1/m). If

(2.1) LD <@palll ™t (e
then
(2.2) ’gg < |zt (ze).

Proof. Since T'(2)/S(z) = 2P + ... € A(p), we define the function w(z)
by T(z) = 2P7'w(2)S(z). Then w(z) is analytic in U with w(0) = 0. Tt
follows from the definition of w(z) that

(2.3) 58 - zp—lw(z){1 + <p 1+ Z;U(S)) 22(2) }

If we suppose that there exists a point zy € U such that

max |w(z)| = [w(z)] = 1,
|zI<z0]

then Lemma 1 gives w(zy) = €* and

zow'(z0) = kw(zg) (k> 1).
Therefore,
T"(20)

25718 (z0)

(2.4)

zow’(z0)> S(z0)
w(zo0) ) 205" (z0)
S(20)

zOS’((;O)) > 1+ po.

This contradicts our condition (2.1), so that |w(z)| < 1 for all z € U. This
completes the proof of Theorem 1.

—‘l—i-(p—l—i-

21+(p1+k‘)Re<

Remark. If we take p = 1 and a = 0 in Theorem 1, then we recover
Theorem A due to Robinson [4].

Next, applying Lemma 2, we prove
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THEOREM 2. Let S(z) € A(m), T'(z) € A(n) withp =n—m > 1. Let S(z)
satisfy Re{S(z)/z5"(2)} >a (0<a<1/m) and —a/p <Im{S(z)/(25'(2))}
<a/p(0<a<l/m). If

(2.5) Re <ZZ;,(,2)) >0 (z€l),
then
(2.6) Re (ZZS(Z)) >0 (zeD).

Proof. Defining the function ¢(z) by T(z) = 2zPq(2)S(z), we see that
q(2) is analytic in U with ¢(0) = 1. Note that

T'(2) 2q'(2)\ S(z)
2.7 =zP 1 .
27 sy~ (55 5
Suppose that there exists a point zy € U such that
Re(q(2)) >0 (2] <lz0l), Re(q(z0)) =0, and q(z0) # 0.
Then, applying Lemma 2, we have ¢(z9) = ia (a # 0) and

20d'(20) _ K <a+ 1) (k> 1).

a

q(20) 2

Therefore, writing S(z0)/(205(20)) = ao + 5o, we obtain
T'(20) akayg 1
2. = 20U ) apBy — -
(2.8) Re<zgs,(20) apfo = —5—et

k
= —apfo — (1 + )

2
< —apfhy — (1 +a?) < —apfhy — S (1 +a?).
Since —a/p < By < a/p, if a > 0, then
(2.9) —apBy — %(1 +a?) < aa — %(1 +a?)
= —S-a?<0,
and if a < 0, then
(2.10) —apBo — %(l—l—ag) < —aa — %(l—l—ag)

= —%(1 +a)® <0.
This contradicts our condition (2.5). Consequently, Re(g¢(z)) > 0 for all
z € U, so that Re{T'(2)/(2?S5(z))} > 0 (20 € U).

Further, using the same technique as in the proof of Theorem 2, we
obtain
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THEOREM 3. Let S(z) € A(m), T(z) € A(n) with p = m —n
> 0. Let S(z) satisfy Re{S(2)/(25(2))} > a (0 < a < 1/m) and —a/p <
Im{5(2)/(25"(2))} < a/p (0 < a < 1/m). If

(2.11) Re <Z;1/1(/2E')z)> >0 (z€l),

then
(2.12) Re (%) >0 (zel),
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