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P.O. Box 137, Śniadeckich 8, 00-950 Warszawa, Poland

E-mail: JKKOW@IMPAN.IMPAN.GOV.PL

1. Introduction and notation. The paper presents a finite-difference
method for solving the differential problem

(1.1) Lu(t, x) =
∂u

∂t
(t, x) +

∂(au)
∂x

(t, x) = 0, (t, x) ∈ Ω = (0, T )× R ,

(1.2) u(0, x) = g(x), x ∈ R ,
where a is continuous and g is a bounded and measurable function.

The solution of problem (1.1)–(1.2) is investigated in Section 2 (Theorem 1).
Section 3 contains the definition of the finite-difference problem, in Section 4 the
problem approximating (1.1)–(1.2) is formulated, and the theorems concerning
the convergence of the numerical solution are stated (Theorem 2 for g ∈W 2

1 (R),
Theorem 3 for g ∈ L1(R)). Section 5 contains some results of numerical compu-
tation. In the next sections all the results are proved.

Let us now define some function spaces which will be used in the paper. First,
the spaces Lp are defined in the usual way, and we use the following norms and
moduli of continuity: if f ∈ Lp(A), A ⊂ R, then

‖f‖p =
( ∫
A

|f(x)|p dx
)1/p

, ωkp(h, f) = sup{‖∆k
zf‖p : 0 < z ≤ h}, where

∆k
zf =

k∑
j=0

(−1)k−j
(
k

j

)
f(·+ jz) ∈ Lp(Akz), Aε = {x ∈ A : (x, x+ ε) ⊂ A} .

Next, let us consider the two-dimensional case. Let I = [0, T ], and let %1 :
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I → R ∪ {−∞}, %2 : I → R ∪ {+∞} be continuous functions, Q = {(t, x) :
t ∈ I, %1(t) < x < %2(t)}, Qt = {x : (t, x) ∈ Q}.

The space LC(Q) is defined as the set of all functions u which are measurable
on Q and such that for each t ∈ I, u(t, ·) ∈ L1(Qt) and

(1.3) ‖u‖∗ = sup{‖ut‖1 : t ∈ I} <∞, ‖Pus − Put‖1 → 0 as s→ t

(ut = u(t, ·))
(the function Pus is defined on R by Pus(x) = us(x) if x ∈ Qs, Pus(x) = 0 if
x ∈ R \Qs); ‖ · ‖∗ is the norm in LC(Q). The following moduli of continuity will
be used in LC(Q):

ωk∗ (h, u) = sup{ωk1 (h, ut) : t ∈ I},
ω0(h, u) = sup{‖Put − Pus‖1 : s, t ∈ I, |s− t| ≤ h} .

It can be proved (see Section 7) that

(1.4) if u ∈ LC(Q) then ωk∗ (h, u)→ 0 as h→ 0;

the fact that ω0(h, u)→ 0 as h→ 0 directly follows from the definition of LC(Q).
It will be convenient to introduce Cmon, the set of all nondecreasing functions σ

such that limh→0 σ(h) = 0. Formula (1.4) can thus be written as ωk∗ (·, u) ∈ Cmon.
Finally, since we are interested mostly in the derivatives with respect to x, we

use the notation

(1.5) Dku = Dk
xu =

∂k

∂xk
u.

2. Solution of the differential problem. To consider the properties of the
solution of problem (1.1)–(1.2) we use the characteristics of the operator L, that
is, continuous functions ϕ : I → R satisfying

d

dt
ϕ(t) = a(t, ϕ(t)), t ∈ I.

Throughout this paper we assume that

(2.1) a ∈ C(Ω), Da ∈ LC(Ω) ∩ L∞(Ω),

and we use the notation

(2.2) A = ‖a‖∞, A′ = ‖Da‖∞, A′∗ = ‖Da‖∗.
With this assumption it can be proved that if ϕ,ψ are two characteristics then

eA
′(s−t)|ϕ(t)− ψ(t)| ≤ |ϕ(s)− ψ(s)| ≤ eA

′(t−s)|ϕ(t)− ψ(t)| if 0 ≤ s < t ≤ T.
Hence, no two characteristics have common points and for each (t, x) ∈ Ω we can
define the function λ(·, t, x) as the characteristic passing through (t, x), that is,

∂

∂s
λ(s, t, x) = a(s, λ(s, t, x)), λ(t, t, x) = x, if 0 ≤ s < t ≤ T ;

we also use the function κ defined by

κ(s, t, x) = (x− λ(s, t, x))/(t− s) (0 ≤ s < t ≤ T, x ∈ R).
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We thus have

(2.3)

λ(s, t, x) = x−
t∫
s

a(θ, λ(θ, t, x)) dθ ,

κ(s, t, x) =
1

t− s

t∫
s

a(θ, λ(θ, t, x)) dθ ;

differentiating (2.3) we get

(2.4)

Dλ(s, t, x) = exp
(
−

t∫
s

Da(θ, λ(θ, t, x)) dθ
)
,

Dκ(s, t, x) =
1

t− s

t∫
s

Da(θ, λ(θ, t, x))Dλ(θ, t, x) dθ.

Therefore,

(2.5) Λ−1
st ≤ Dλ(s, t, x) ≤ Λst = eA

′(t−s) if 0 ≤ s < t ≤ T, x ∈ R.

It also follows from (2.3) and (2.4) that

(2.6) ‖κ‖∞ ≤ A, ‖Dκ(s, t, ·)‖1 ≤ A
′
∗.

If u is a solution of (1.1)–(1.2), then

(2.7) u(t, x) = Dλ(0, t, x)g(λ(0, t, x)),

where, as in (1.5), Dkλ = ∂kλ/∂xk. This formula allows us to investigate the
properties of the solution of (1.1)–(1.2). First, we see that

(2.8) ‖ut‖1 = ‖u0‖1 for each t ∈ I.

Next, the following theorem is true.

Theorem 1. Let % ∈ C1(I), Ω< = {(t, x) : t ∈ I, x < %(t)}, Ω> = {(t, x) :
t ∈ I, x > %(t)}, a< = a|Ω<

, a> = a|Ω>
. We assume that (2.1) is satisfied and

(2.9) D2a< ∈ LC(Ω<) ∩ L∞(Ω<), D2a> ∈ LC(Ω>) ∩ L∞(Ω>) ,
(2.10) ∃β0 > 0 ∀s ∈ I |a(s, %(s))− %′(s)| ≥ β0 ,

and we use notation (2.2) and

(2.11) ‖%′‖∞ = M, ω1
∞(ε, %′) = σ0(ε), ω0(h,Da) = σ10(h) ,

(2.12) ‖a′%∆‖∞ = A′∆ , where a′%∆ = a′%+ − a′%−, a′%± = Da(·, %(·)± 0) ,

(2.13) max(‖D2a<‖∞, ‖D2a>‖∞) = A′′ , ‖D2a<‖∗ + ‖D2a>‖∗ = A′′∗ ,

(2.14)
ω0(h,D2a<) + ω0(h,D2a>) = σ20(h) ,

max(ω1
∗(h,D

2a<), ω1
∗(h,D

2a>)) = σ2(h) .
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Then for every s, t, D2λ(s, t, ·) ∈ L1(R) ∩ L∞(R) and

(2.15)
‖D2λ(s, t, ·)‖∞ ≤ e2A

′(t−s)((t− s)A′′ +A′∆/β0) ,

‖D2λ(s, t, ·)‖1 ≤ e
A′(t−s)(t− s)(A′′∗ +A′∆) ,

(2.16) there exists a function σ ∈ Cmon such that
ω1

1(h,D2λ(s, t, ·)) ≤ σ(h) if 0 ≤ s < t ≤ T .
In the further considerations we use the operators

E(s, t) : L∞(R)→ L∞(R) (0 ≤ s < t ≤ T )

defined by the formula

(2.17) [E(s, t)f ](x) = Dλ(s, t, x)f(λ(s, t, x)) ∀x ∈ R.
It follows from (2.7) that the solution of (1.1)–(1.2) satisfies

(2.18) ut = E(s, t)us if 0 ≤ s < t ≤ T.

3. Finite-difference problem. In order to define an approximate solution,
we introduce the mesh

Ωh = {(t, x) ∈ Ω : t = nτ, x = mh, m, n ∈ Z, 0 ≤ n ≤ Nh}, Nh = [T/τ ] ,
Ω′h = {(nτ,mh) ∈ Ωh : n ≤ Nh − 1}, Rh = {x ∈ R : x = mh, m ∈ Z} ,

where h (the step size) is a parameter from the interval (0, 1), τ = µh, and µ is
a fixed number (independent of h).

Let m(A) be the set of all functions defined on A. We introduce the following
notation for any wh ∈ m(Rh) and vh ∈ m(Ωh):

(3.1)

vnm = vh(nτ,mh), vn = vh(nτ, ·) , wm = wh(mh) ,

‖wh‖∞ = sup{|wm| : m ∈ Z} , ‖wh‖1 = h
∑
m∈Z
|wm| ,

‖vh‖∞ = max{‖vn‖∞ : 0 ≤ n ≤ Nh} ,
‖vh‖∗ = max{‖vn‖1 : 0 ≤ n ≤ Nh} .

Next, we introduce the difference operator, Lh : m(Ωh)→ m(Ω′h), by

(3.2) (Lhvh)nm =
1
τ

[
vn+1
m − 1

2
(vnm+1 + vnm−1)

]
+

1
2h

[αnm+1v
n
m+1 − αnm−1v

n
m−1] ,

for vh ∈ m(Ωh), m ∈ Z, n = 0, 1, . . . , Nh − 1 ,

where α ∈ m(Ω′h) is given, and we formulate the following difference problem:
find vh ∈ m(Ωh) such that

(3.3) (Lhvh)nm = 0 for (nτ,mh) ∈ Ω′h, v0 ∈ m(Rh) given.

It can be easily seen that problem (3.3) has a unique solution vh, and

(3.4) if µ‖α‖∞ ≤ 1 then ‖vh‖∗ ≤ ‖v0‖1 .
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4. Approximation of the differential equation. Let us define the opera-
tors of restriction (see [1]), r0h : Lloc

1 (R) → m(Rh), rh : LC(Ω) → m(Ωh), by the
formulas

(4.1)
(r0hf)m =

1
2h

(m+1)h∫
(m−1)h

f(x) dx if f ∈ L∞(R) ,

(rhu)nm = (r0hu
nτ )m if u ∈ LC(Ω)

(ut is defined in (1.3)).
We consider problem (3.3) where

(4.2) αnm = a(nτ,mh), v0 = r0hg,

and assume that

(4.3) µA = µ‖a‖∞ ≤ 1.

If the operator Fh : L∞(R)→ m(Ωh) is defined by the formula

(Fhg)0 = r0hg ,

(4.4) (Fhg)n+1
m = 1

2 (1− µαnm+1)(Fhg)nm+1 + 1
2 (1 + µαnm−1)(Fhg)nm−1 ,

(nτ,mh) ∈ Ω′h ,

then Fhg is the unique solution of problem (3.3), (4.2).
Let u be the solution of problem (1.1)–(1.2) and vh the solution of (3.3), (4.2).

Our purpose is to estimate the error of approximation, that is, the function

(4.5) zh = vh − rhu,

in the norm ‖ · ‖∗.
Using definitions (2.17) and (4.4), we can write the error zh in the form

zh = Fhg − rh(E(0, ·)g),

that is, zn = (Fhg)n − r0h(E(0, nτ)g) for 0 ≤ n ≤ Nh.
The estimate for ‖zh‖∗ depends on the regularity of the solution u, and hence

of g and a. First, we have the following result.

Theorem 2. Assume that conditions (2.1), (4.3) are satisfied and that D2λ
satisfies (2.16), and use notation (2.2), (2.11) and

(4.6) ‖Dλ‖∞ = Λ, ‖D2λ(0, ·, ·)‖∗ = Λ′, ω1
∗(h,Da) = σ1(h) .

Then for each g ∈W 2
1 (R),

(4.7) ‖zh‖∗ ≤M1(h)‖Dg‖1 +M2h‖D2g‖1,

where M1(h) = T{(Λ+Λ′/4)σ10(µh) + 5
2Λσ1(h) + (µ1/2)σ(h) +hA′(eA

′µh(Λ(1 +
(µ/2)A′∗) + Λ′/2) + Λ/2 + Λ′/4)}, M2 = TΛµ1(Λ+ 3

2Λ
′), µ1 = 81/(4µ).
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In the next theorem the initial function g has a lower regularity.

Theorem 3. Let the assumptions of Theorem 2 be satisfied. If g ∈ L1(R) ∩
L∞(R) then

(4.8) ‖zh‖∗ ≤M3(h)ω1
1(ψ(h), g) +M4ω

2
1(ψ(h), g),

where ψ(h) = max(
√
h,M1(h)), M3(h) = M1(h)/ψ(h), M4 = 13

3 + 3M2, and
M1(h), M2 are taken from Theorem 2.

These theorems are proved in Section 8.

5. Numerical examples. We present here some numerical results. We con-
sider problem (1.1)–(1.2) where a is constant, and g has two values:

g(x) = u− if x < 0, g(x) = u+ if x > 0.

In this case

u(t, x) = u− if x < at, u(t, x) = u+ if x > at.

We also consider problem (3.3) with the coefficients given by (4.2), and the error
zh defined by (4.5). The norm of zh can be estimated with the use of Theorem 3,
where ψ(h) =

√
h, M3(h) = 0, M4 = 13/3+243/(4µ). We also see that ω1

1(ε, g) =
ε|u+ − u−|, ω2

1(ε, g) = 2ε|u+ − u−|. Theorem 3 says that

‖zh‖∗ ≤ 2M4|u+ − u−|
√
h.

Below, we present some results of computation for T = 1 and different values of
a, u−, u+, h.

u− = 1.00, u+ = 2.00, a = 0.00, µ = 1.00
h ‖zN‖1 ‖zN‖1/

√
h

0.010000000 0.051630 0.516302
0.005000000 0.037469 0.529891
0.002500000 0.026986 0.539718
0.001250000 0.019331 0.546776
0.000625000 0.013796 0.551822
0.000312500 0.009818 0.555417

u− = 0.00, u+ = 1.00, a = 1.60, µ = 0.50
h ‖zN‖1 ‖zN‖1/

√
h

.025000000 0.064448 0.407604

.012500000 0.047719 0.426813

.006250000 0.034880 0.441199

.003125000 0.025255 0.451779

.001562500 0.018162 0.459467

.000781250 0.012997 0.465005

u− = 2.00, u+ = 3.00, a = 0.80, µ = 1.00
h ‖zN‖1 ‖zN‖1/

√
h

0.020000000 0.039135 0.276724
0.010000000 0.029301 0.293008
0.005000000 0.021596 0.305414
0.002500000 0.015732 0.314644
0.001250000 0.011363 0.321402
0.000625000 0.008157 0.326297

u− = 2.00, u+ = 3.00, a = 0.80, µ = 0.50
h ‖zN‖1 ‖zN‖1/

√
h

0.020000000 0.093952 0.664340
0.010000000 0.068316 0.683164
0.005000000 0.049276 0.696864
0.002500000 0.035337 0.706746
0.001250000 0.025238 0.713832
0.000625000 0.017972 0.718892
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u− = 0.80, u+ = 2.10, a = −1.00, µ = 0.60
h ‖zN‖1 ‖zN‖1/

√
h

0.020833333 0.096772 0.670454
0.010416667 0.070888 0.694555
0.005208333 0.051405 0.712290
0.002604167 0.037007 0.725180
0.001302083 0.026503 0.734471
0.000651042 0.018910 0.741128

u− = −1.00, u+ = 1.00, a = 0.17, µ = 0.80
h ‖zN‖1 ‖zN‖1/

√
h

0.016666667 0.145127 1.124150
0.008333333 0.105862 1.159659
0.004166667 0.076573 1.186262
0.002083333 0.054977 1.204496
0.001041667 0.039304 1.217783
0.000520833 0.028004 1.227092

Thus, we observe that the convergence of ‖zh‖∗ is of order
√
h, as stated in

Theorem 3.

6. Auxiliary formulas and lemmas. All the results presented in this section
are proved in Section 7.

Let us start from a lemma which allows us to obtain estimates for functions
of low regularity.

Lemma 4. Let X be a Banach space and consider the operator Φ : Lp(Rn)→
X. Assume that there exist nonnegative numbers M,η,C0, C1, . . . , Ck such that

(6.1) ∀g, g′ ∈ Lp(Rn) ‖Φ(g)− Φ(g′)‖X ≤M‖g − g′‖p ,

(6.2) ∀f ∈W k
p (Rn) ‖Φ(f)‖X ≤ η

k∑
l=0

Cl|f |(l)p .

Then there exist constants N,N0, . . . , Nk (depending only on k, n, p) such that for
every g ∈ Lp(Rn),

(6.3) ‖Φ(g)‖X ≤ (MN +NkCk)ωkp(η1/k, g) +
k−1∑
l=0

η1−l/kNlClω
l
p(η

1/k, g) .

It can be checked that

(6.4)
if n = k = p = 1 , then N = 3

2 , N0 = N1 = 1;
if n = p = 1 , k = 2 , then N = 13

3 , N0 = N1 = N2 = 3 .

The next two lemmas will be used in the proof of Theorem 2.

Lemma 5. Let the operators πh : Lloc
1 (R)→ Lloc

∞ (R) (h ∈ H ⊂ R+) be defined
by

(6.5) (πhf)(x) =
∫
R

Wh(x, z)f(x+ zh) dz,

where Wh are bounded measurable functions on R2 satisfying

(6.6) ∀h ∈ H ∃βh > 0 ∀x ∈ R suppWh(x, ·) ⊂ [−βh, βh].

For x ∈ R let ψjh(x) =
∫

R Wh(x, z)zj dz. If ψjh ∈ Lp(j)(R) (j = 0, 1, . . . , k − 1,
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1 ≤ p(j) ≤ ∞), then

(6.7) ∀f ∈W k
1 (R) ‖πhf‖1 ≤

k∑
j=0

ϑjhh
j‖Djf‖p′(j) + ϑ′khh

kω1
1(hβh, Dkf),

where ϑjh=(1/j!)‖ψjh‖p(j), ϑ′kh=(2/(k + 1)!)βk+1
h ‖Wh‖∞, 1/p(j) + 1/p′(j)=1.

Lemma 6. Let f ∈ L1(R),

ϕm,h(f) =
∣∣∣ (m+1)h∫
(m−1)h

f(x) dx−
φm+1∫
φm−1

f(y) dy
∣∣∣ for m ∈ Z ,

and |φm −mh| ≤ h, he−Bh ≤ ∆φm ≤ heBh. Then

(6.8)
∑
m∈Z

ϕm,h(f) ≤ 10ω1
1(h, f) + 2BheBh‖f‖1.

The following lemma is needed for proving Theorem 1.

Lemma 7. Let f ∈ L1(a, b), ϕ : [c, d] → [a, b], 0 < P−1
2 ≤ Dϕ(x) ≤ P1 for

almost every x ∈ [c, d]. Then

(6.9) ω1
1(h, f(ϕ(·))Dϕ) ≤ (3 + P1)ω1

1(h,Pf) + P2ω
1
∞(h,Dϕ)‖f‖1 .

Finally, we formulate some properties of measurable functions:

(6.10) if g ∈W 1
1 (a, b) then g ∈ L∞(a, b) and ‖g‖∞ ≤ (2/(b− a))‖g‖1 + ‖Dg‖1 ,

(6.11) if g ∈W 1
1 (R) then g ∈ L∞(R) and ‖g‖∞ ≤ 1

2‖Dg‖1 ,
and a formula which can be proved with the use of the mean value theorem:

(6.12) ∀a, b ∈ R ∃ξ ∈ (0, 1) ea − eb = (ξea + (1− ξ)eb)(a− b) .

7. Proofs of auxiliary formulas. In this section all the results from the
previous section and formula (1.4) are proved.

P r o o f o f L e m m a 4. We first give a definition of multivariate box splines
(cf. [1] or [2]), which will be used in the proof. We introduce the class Sk of all
systems of vectors from Zn of the form

Y = [x1, . . . , xr], where r > nk, xlk+j = el+1 if 0 ≤ l ≤ n− 1, 1 ≤ j ≤ k
(ei is the unit vector of the ith axis) which satisfy the condition: each subsystem
of Y consisting of r − k vectors spans the space Rn.

The multivariate box spline BY is the function satisfying the identity∫
Rn

BY (x)f(x) dx =
1∫

0

. . .
1∫

0

f
( r∑
j=1

ξjxj

)
dξ1 . . . dξr

for every f ∈ C(Rn).
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Let g ∈ Lp(Rn) be fixed. If f ∈ W k
p (Rn) is an arbitrary function, it follows

from the triangle inequality and assumptions (6.1), (6.2) that

(7.1) ‖Φ(g)‖X ≤M‖g − f‖p + η
k∑
l=0

Cl|f |(l)p .

Now, as in the proof of Lemma 2 in [2], we construct f for which the right-hand
side of (7.1) can be estimated by the right-hand side of (6.3).

Let Y ∈ Sk and let BY be the corresponding box spline. Let t > 0 and

ft(x) = −
k∑
j=1

(−1)j
(
k

j

) ∫
Rn

BY (y)g(x+ jty) dy ;

the number t will be chosen later. It is shown in [2] that

‖g − ft‖p ≤ Nωkp(t, g), |ft|(l)p ≤ t−lNlωlp(t, g) , l = 0, 1, . . . , k ,

where N and Nl depend only on k, p and Y . Taking t = η1/k we thus obtain the
estimate

M‖g − ft‖p + η

k∑
l=0

Cl|f |(l)p ≤MNωkp(η1/k, g) +
k∑
l=0

η1−l/kNlClω
l
p(η

1/k, g) .

Inequality (6.3) follows from this formula and (7.1).

P r o o f o f (6.4). We use here the notation from the proof of Lemma 4. Let Bl
(l ∈ Z+) be the Schoenberg splines satisfying the recurrence relation B0 = χ[0,1],
Bl+1 =

∫ 0

−1
Bl(x + ξ) dξ. Then Bl is the spline BY where Y = [1, . . . , 1] ∈ Zl+1.

Defining the operator Mk
ε by Mk

εg(x) =
∫

R Bk(y)g(x + εy) dy, we see that ft =

−
k∑
j=1

(−1)j
(
k
j

)
Mk

jtg. Hence g − ft = (−1)k
∫

R Bk(y)∆k
tyg(·) dy, and consequently

‖g − ft‖1 ≤
∫
R

Bk(y)
∫
R

|∆k
tyg(x)| dx dy =

∫
R

Bk(y)‖∆k
tyg‖1 dy .

Since for j ∈ Z, ‖∆k
tjg‖1 ≤ jk‖∆k

t g‖1, and ‖∆k
tyg‖1 ≤ ωk1 (tj, g) if 0 < y ≤ j, we

obtain

‖g − ft‖1 ≤ Nω
k
1 (t, g) , where N =

k+1∑
j=1

jk
j∫

j−1

Bk(y) dy .

Hence N = 3
2 if k = 1, N = 13

3 if k = 2.
It is shown in the proof of Lemma 2 in [2] that (in the one-dimensional case)

DlMk
εg = ε−lMk−l

ε (∆l
εg), ‖Mk

εg‖1 ≤ ‖g‖1. Thus

‖Dlft‖1 ≤
k∑
j=1

(
k

j

)
(jt)−l‖Mk−l

jt (∆l
jtg)‖

1
≤ t−l

k∑
j=1

(
k

j

)
‖∆l

tg‖1(2k−1)t−lωl1(t, g) .

Hence Ni = 2k − 1 for i = 0, 1, . . . , k, which was to be proved.
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P r o o f o f L e m m a 5. Let f ∈ W k
1 (R). Applying Taylor’s formula we de-

duce from (6.5) that at each x ∈ R,

πhf(x) =
∫
R

Wh(x, z)
{ k∑
j=0

zjhj

j!
Djf(x)

+
zkhk

(k − 1)!

1∫
0

(1− ξ)k−1∆ξzhD
kf(x) dξ

}
dz .

This formula can be transformed to

πhf(x) =
k∑
j=0

hj

j!
ψjh(x)Djf(x)

+
hk

(k − 1)!

∫
R

Wh(x, z)zk
1∫

0

(1− ξ)k−1∆ξzhD
kf(x) dξ dz .

Applying assumption (6.6) and Hölder’s inequality we obtain estimate (6.7).

P r o o f o f L e m m a 6. First, let f ∈W 1
1 (R). Introducing a new variable into

the second integral, y = ∆0φm(x− (m− 1)h)/2h (where ∆0φm = φm+1−φm−1),
we deduce that

ϕm,h(f) ≤
(m+1)h∫

(m−1)h

∣∣∣∣f(x)− f
(
φm−1 +

∆0φm
2h

(x− (m− 1)h)
)∣∣∣∣ dx

+
∣∣∣∣1− 2h

∆0φm

∣∣∣∣ φm+1∫
φm−1

|f(y)| dy .

According to our assumptions,∣∣∣∣x− (φm−1 +
∆0φm

2h
(x− (m− 1)h)

)∣∣∣∣ ≤ h and
∣∣∣∣1− 2h

∆0φm

∣∣∣∣ ≤ BheBh .
Hence

ϕm,h(f) ≤
(m+1)h∫

(m−1)h

x+h∫
x−h

|Df(y)| dy dx+BheBh
φm+1∫
φm−1

|f(y)| dy ,

and therefore ∑
m∈Z

ϕm,h(f) ≤ 2BheBh‖f‖1 + 4h‖Df‖1 .

At the same time, for any two functions f, f ′ ∈ L1(R),∑
m∈Z
|ϕm,h(f)− ϕm,h(f ′)| ≤ 4‖f − f ′‖1 .

Using Lemma 4 with X = l1, Φ(f) = (ϕm,h(f))m∈Z, and remark (6.4), we ob-
tain (6.8).
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P r o o f o f L e m m a 7. We use Lemma 4. First, we have

(7.2) ‖∆h(f(ϕ(·))Dϕ)‖1 =
d−h∫
c

|f(ϕ(x+ h))Dϕ(x+ h)− f(ϕ(x))Dϕ(x)| dx .

Let us take g ∈W 1
1 (R). Then

d−h∫
c

|g(ϕ(x+ h))Dϕ(x+ h)− g(ϕ(x))Dϕ(x)| dx

≤
d−h∫
c

∣∣∣Dϕ(x+ h)
ϕ(x+h)∫
ϕ(x)

Dg(y) dy +∆hDϕ(x)g(ϕ(x))
∣∣∣ dx

≤
d−h∫
c

Dϕ(x+ h)
ϕ(x+h)∫

ϕ(x+h)−P1h

|Dg(y)| dy dx+
d−h∫
c

|∆hDϕ(x)| |g(ϕ(x))| dx .

Introducing new variables of integration, z = ϕ(x + h) in the first integral, and
z = ϕ(x) in the second one, and using (7.2), we obtain

‖∆h(g(ϕ(·))Dϕ‖1 ≤ P1h‖Dg‖1 + P2ω
1
∞(h,Dϕ)‖g‖1 .

At the same time, if f, f ′ ∈ L1(a, b) then

‖∆h(f(ϕ(·))Dϕ)−∆h(f ′(ϕ(·))Dϕ)‖1

≤
d−h∫
c

Dϕ(x+ h)|(f − f ′)(ϕ(x+ h))|+Dϕ(x)|(f − f ′)(ϕ(x))| dx

≤ 2‖Pf − Pf ′‖1 .

Thus, applying Lemma 4 with (6.4) we obtain (6.9).

P r o o f o f (6.10). For almost every x ∈ ((a+ b)/2, b) we have

g(x) =
1
δ

x∫
a

(
g(y) +

x∫
y

Dg(z) dz
)
dy, where δ = x− a > b− a

2
,

and therefore

|g(x)| ≤ 1
δ

x∫
a

|g(y)| dy +
1
δ

x∫
a

|Dg(z)|
z∫
a

dy dz ≤ 2
b− a

‖g‖1 + ‖Dg‖1 .

Similarly, if x ∈ (a, (a+ b)/2) then g(x) = (1/(b− x))
∫ b
x

(g(y)−
∫ y
x
Dg(z) dz) dy.

Hence, formula (6.10) is proved.

P r o o f o f (6.11). For almost every x ∈ R,

g(x) =
x∫

−∞

Dg(y) dy = −
∞∫
x

Dg(y) dy .
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Thus,

|g(x)| ≤ min
( x∫
−∞

|Dg(y)| dy,
∞∫
x

|Dg(y)| dy
)
≤ 1

2
‖Dg‖1 ,

which was to be proved.

P r o o f o f (1.4). For every t ∈ I, ωk1 (h, ut)→ 0 as h→ 0, hence

∀δ > 0 ∀t > 0 ∃ε = ε(t) ∀z < ε ‖∆k
zu

t‖1 ≤
δ

2
.

At the same time, the function t 7→ Put is continuous on I, thus

∀δ > 0 ∃η ∀s, t |s− t| ≤ η ⇒ ∀z ‖∆k
z(Pus − Put)‖1 ≤

δ

2
.

Let us take the numbers 0 = t0 < t1 < . . . < tn = T such that ti+1− ti < 2η, and
ε = min(ε(t0), . . . , ε(tn)). Then for every t ∈ I, if ti is the point nearest to t, and
z < ε, we have

‖∆k
zu

t‖1 ≤ ‖∆
k
zu

ti‖1 + ‖∆k
z(Put − Puti)‖1 ≤ δ ,

which was to be proved.

8. Proofs of the main results

P r o o f o f T h e o r e m 1. First, we show that the functions a% = a(·, %(·))
and a′%+, a

′
%− defined in (2.12) are continuous on I. If s, t are fixed, we have

(8.1)
|a%(s)− a%(t)| ≤ |a(s, %(s))− a(s, %(t))|+ |a(s, %(t))− a(t, %(t))|

≤ σ30(|s− t|) ,
σ30(ε) = A′Mε+ 1

2σ10(ε) ;

the last inequality follows from (2.2), (2.11) and (6.11). Similarly, if %(s) ≤ %(t)
then applying (2.13), (2.14) and (6.10) we obtain

(8.2)

|a′%+(s)− a′%+(t)| ≤ |Da(s, %(s) + 0)−Da(s, %(t))|
+ |Da(s, %(t))−Da(t, %(t) + 0)| ≤ σ40(|s− t|) ,

σ40(ε) = A′′Mε+ σ20(ε).

A similar estimate can be obtained for a′%−, hence, a%, a′%+, a
′
%− are continuous.

Therefore, since (2.10) is assumed, a% − %′ has a constant sign on I. Without
loss of generality we may suppose that it is negative, hence

(8.3) ∀s ∈ I β(s) = %′(s)− a(s, %(s)) ≥ β0 .

Let now s, t be fixed, let η = t− s > 0 and

[x′, x′′] = {x ∈ R : ∃ψ(x) ∈ [s, t] λ(ψ(x), t, x) = %(ψ(x))} .
Differentiating the definition of ψ we deduce that

(8.4) Dψ(x) = Dλ(ψ(x), t, x)/β(ψ(x)).
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Hence

(8.5) 1/C1 ≤ Dψ(x) ≤ C2 , C1 = Λst(A+M) , C2 = Λst/β0,

and there exists a function ξ inverse to ψ, that is, ξ(ψ(x)) = x for x ∈ [x′, x′′].
For later convenience, we extend ψ onto R, setting ψ(x) = s for x < x′, ψ(x) = t
for x > x′′. Differentiating (2.4) we obtain

D2λ(s, t, x) = −Dλ(s, t, x)
t∫
s

D2a(θ, λ(θ, t, x))Dλ(θ, t, x) dθ

if x < x′ or x > x′′ .

Now, let x ∈ R and h > 0. Let ν(θ) = λ(θ, t, x), νh(θ) = λ(θ, t, x+ h). It follows
from (2.5) that

(8.6) νh(θ)− ν(θ) ≤ Λsth = eA
′ηh .

Applying (2.4) and (6.12) we deduce that there exists a number ξh ∈ (0, 1) such
that

Dλ(s, t, x+ h)−Dλ(s, t, x) = − (ξhDλ(s, t, x) + (1− ξh)Dλ(s, t, x+ h))(8.7)

×
t∫
s

(Da(θ, νh(θ))−Da(θ, ν(θ))) dθ .

We divide the interval of integration into three parts: (s, ψ(x))∪ (ψ(x), ψ(x+h))
∪ (ψ(x+ h), t), and use assumption (2.9) to the first and third parts:

(8.8)
t∫
s

(Da(θ, νh(θ))−Da(θ, ν(θ))) dθ =
ψ(x)∫
s

νh(θ)∫
ν(θ)

D2a>(θ, y) dy dθ

+
ψ(x+h)∫
ψ(x)

(Da(θ, νh(θ))−Da(θ, ν(θ))) dθ +
t∫

ψ(x+h)

νh(θ)∫
ν(θ)

D2a<(θ, y) dy dθ .

We deduce from (8.7), (2.5), (8.8), (8.6), (2.13), (8.5) and (2.2) that

(8.9) |Dλ(s, t, x+ h)−Dλ(s, t, x)| ≤ C3h, C3 = Λ2
st(ηA

′′ + 2A′/β0) .

Hence, Dλ(s, t, ·) is Lipschitz-continuous on R and therefore D2λ(s, t, ·) is
bounded.

Further, we see that h−1(νh(θ) − ν(θ)) → Dλ(θ, t, x) and h−1(ψ(x + h) −
ψ(x)) → Dψ(x) as h → 0. Next, ν(θ) < %(θ) < νh(θ) if θ ∈ (ψ(x), ψ(x + h)).
Hence, it follows from (8.7) and (8.8) (majorized convergence of integrals) that

D2λ(s, t, x) = −Dλ(s, t, x)(B>(x)−B(x) +B<(x)) , where

(8.10) B>(x) =
ψ(x)∫
s

b>(θ, x) dθ, B<(x) =
t∫

ψ(x)

b<(θ, x) dθ ,

B(x) = Dψ(x)a′%∆(ψ(x)) ,
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bε(θ, x) = Dλ(θ, t, x)D2aε(θ, λ(θ, t, x)), ε stands for < or >, a′%∆ is defined
in (2.12). Therefore, due to (2.5), (2.13), (8.5), and (2.12), the first inequality
in (2.15) is true. Next, changing the order of integration we deduce that

(8.11)
‖B>‖1 ≤

t∫
s

∞∫
ξ(θ)

|b>(θ, x)| dx dθ =
t∫
s

‖D2aθ>‖1dθ ≤ η‖D
2a>‖∗ ,

‖B<‖1 ≤ η‖D
2a<‖∗.

Setting θ = ψ(x) and using (2.12) we obtain

(8.12) ‖B‖1 =
t∫
s

|a′%∆(θ)| dθ ≤ ηA′∆ .

Thus, applying (2.5) and (2.13) we prove that the second inequality in (2.15) is
true. Now, we want to show (2.16). First, we see from (8.10) that

‖∆hD
2λ(s, t, ·)‖1 ≤ ω

1
∞(h,Dλ(s, t, ·))(‖B>‖1 + ‖B<‖1 + ‖B‖1)(8.13)

+ ‖Dλ(s, t, ·)‖∞ω1
1(h,B> −B +B<) .

The first component has just been estimated; let us consider the second. First,
according to (8.10),

|∆hB>(x)| ≤
ψ(x)∫
s

|∆hb
θ
>(x)| dθ +

ψ(x+h)∫
ψ(x)

|b>(θ, x+ h)| dθ .

The first term on the right-hand side can be estimated by use of Lemma 7 with
f = D2aθ>, ϕ = λ(θ, t, ·):∫

R

ψ(x)∫
s

|∆hb
θ
>(x)| dθ dx =

t∫
s

∞∫
ξ(θ)

|∆hb
θ
>(x)| dx dθ

≤
t∫
s

((3 + Λst)ω1
1(h,D2aθ>) + Λstω

1
∞(h,Dλ(θ, t, ·))A′′∗) dθ ,

the second — from (2.5) and (2.13):∫
R

ψ(x+h)∫
ψ(x)

|b>(θ, x+ h)| dθ dx =
t∫
s

ξ(θ)+h∫
ξ(θ)

|b>(θ, x)| dx dθ ≤ hηΛstA′′∗ .

Combining these two inequalities and applying (8.9) and (2.14) we obtain

(8.14) ω1
1(h,B>) ≤ σ3(h), σ3(h) = η((3 + Λst)σ2(h) + hΛstA

′′
∗(1 + C3)) .

The same estimate holds for B<. Further, it follows from (8.4) that if x′ ≤ x ≤
x′′ − h then

|∆hDψ(x)| ≤ |Dλ(ψ(x+ h), t, x+ h)−Dλ(ψ(x), t, x)|/β0(8.15)
+ Λst|β(ψ(x+ h))−1 − β(ψ(x))−1| .
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Applying (2.4), (6.12), (2.5), and next (8.5) and (2.2) we deduce that

|Dλ(ψ(x+ h), t, x+ h)−Dλ(ψ(x), t, x+ h)|

≤ Λst
ψ(x+h)∫
ψ(x)

|Da(θ, λ(θ, t, x+ h))| dθ ≤ hΛ2
stA
′/β0 .

Hence, due to (8.9),

|Dλ(ψ(x+ h), t, x+ h)−Dλ(ψ(x), t, x)| ≤ C4h, C4 = C3 + Λ2
stA
′/β0 .

Further, it follows from the definition (8.3) of β, and from (2.11), (8.1) and (8.5)
that

|β(ψ(x+ h))−1 − β(ψ(x))−1| ≤ β−2
0 |β(ψ(x+ h))− β(ψ(x))| ≤ β−2

0 σ4(h) ,

where σ4(h) = σ0(C2h) + σ30(C2h). Applying these inequalities in (8.15) we
conclude that

ω1
∞(h,Dψ) ≤ σ5(h) , σ5(h) = (C4h+ C2σ4(h))/β0 .

Thus, using Lemma 7 with ϕ = ψ, f = a′%∆ and taking into account (8.5) we
obtain

ω1
1(h,B) ≤ (3 + C2)ω1

1(h, a′%∆) + C1σ5(h)‖a′%∆‖1 .
Finally, due to (8.2) and (2.12), we have

(8.16) ω1
1(h,B) ≤ σ6(h), σ6(h) = η(6 + 2C2)σ40(h) + C1A

′
∆σ5(h)T .

Applying inequalities (8.9), (8.11), (8.12), (2.5), (8.14) and (8.16) to (8.13) we
conclude that (2.16) is true and σ(h) = C3hη(A′′∗ +A′∆) +Λst(2σ3(h) + σ6(h)).

P r o o f o f T h e o r e m 2. S t e p 1. Formula (3.2) yields for each (nτ,mh) ∈
Ω′h the equality

(8.17) zn+1
m = 1

2 (1− µαnm+1)znm+1 + 1
2 (1 + µαnm−1)znm−1 + τ(Lhzh)nm .

Since (4.3) is satisfied, we have

(8.18) µ‖α‖∞ ≤ 1 .

Therefore, the coefficients in (8.17) are nonnegative and ‖zn+1‖1 ≤ ‖zn‖1 +
τ‖(Lhzh)n‖1, and we deduce by induction that

‖zn‖1 ≤ ‖z0‖1 + τ

n−1∑
j=0

‖(Lhzh)j‖1 (0 ≤ n ≤ Nh) .

But, from (4.2), (4.5) and (3.3), z0 = 0 and Lhzh = Lhvh − Lhrhu = −Lhrhu.
Hence

(8.19) ‖zn‖1 ≤ τ
n−1∑
j=0

‖(Lhrhu)j‖1 .

Thus, we must estimate the norm of (Lhrhu)n (0 ≤ n ≤ Nh − 1).
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S t e p 2. Let h ∈ H and n (0 ≤ n ≤ Nh − 1) be fixed and let us introduce
the following notation:

f = unτ , f+ = u(n+1)τ , ϕ(x) = λ(0, nτ, x) ,
(8.20) λm = λ(nτ, (n+ 1)τ,mh) , φm(θ) = λ(θ, (n+ 1)τ,mh) ,

κnm = κ(nτ, (n+ 1)τ,mh) .

It follows from (2.3), (4.3) and (2.5) that for every m ∈ Z,

(8.21)
|mh− φm(θ)| ≤ A((n+ 1)τ − θ) ≤ Aτ ≤ h;

he−A
′τ ≤ φm+1(θ)− φm(θ) ≤ heA

′τ .

According to (3.2) and (4.1) we have

(Lhrhu)nm =
1

2τh

[ (m+1)h∫
(m−1)h

f+− 1
2

(m+2)h∫
(m−2)h

f

]
+

1
4h2

[
αnm+1

(m+2)h∫
mh

f −αnm−1

mh∫
(m−2)h

]
.

Since u is a solution of problem (1.1)–(1.2), it follows from (2.18) that
(m+1)h∫

(m−1)h

f+ =
λm+1∫
λm−1

f .

Thus, (Lhrhu)n can be written as lhf where lh is an operator acting from Lloc
1 (R)

to m(Rh), defined by

(lhf)m =
1

2τh

[ λm+1∫
λm−1

f − 1
2

(m+2)h∫
(m−2)h

f

]
(8.22)

+
1

4h2

[
αnm+1

(m+2)h∫
mh

f − αnm−1

mh∫
(m−2)h

f
]
.

If we define the prolongation operator (cf. [2]), p0
h : m(Rh)→ Lloc

∞ (R), by

(8.23) (p0
hwh)(x) =

∑
m∈Z

wmχ[0,1)(x/h−m)

(where χA is the characteristic function of A), then we can see that ‖p0
hwh‖1 =

‖wh‖1 and thus

(8.24) ‖(Lhrhu)n‖1 = ‖p0
hlhf‖1 .

S t e p 3. We prove here that the operator πh = p0
hlh satisfies the assumptions

of Lemma 5. First, we show that (6.5) and (6.6) hold. It follows from (8.22), (8.23)
and (4.2) that for m ∈ Z, ξ ∈ [0, 1),

Wh((m+ ξ)h, ·) =
1
2τ

[
χ[−1−µκn

m−1−ξ,1−µκ
n
m+1−ξ) −

1
2
χ[−2−ξ,2−ξ)

]
+

1
4h

[αnm+1χ[−ξ,2−ξ) − αnm−1χ[−2−ξ,−ξ)] .
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Thus, (8.18) and (2.6) imply that ‖Wh‖∞ ≤ 3/(4τ), βh = 3. Next, the following
formulas are true for x = (m+ ξ)h, 0 ≤ ξ < 1:

(8.25)

ψ0h(x) =
1

2h
∆0(αn − κn)m,

ψ1h(x) =
µ

4h
∆0κ

n
m(κnm+1 + κnm−1)

+
1

2h
[(1− ξ)(α− κ)nm+1 + (1 + ξ)(α− κ)nm−1],

where ∆0wm = wm+1 − wm−1. We want to estimate ‖ψ0h‖1 and ‖ψ1h‖∞. First,
by (8.25) we deduce that

‖ψ0h‖1 =
1
2

∑
m∈Z
|∆0(αn − κn)m| .(8.26)

‖ψ1h‖∞ ≤
µ

2h
‖∆0κ

n‖∞‖κn‖∞ +
1
h
‖αn − κn‖∞ .(8.27)

It follows from (4.2), (8.20) and (2.3) that

(α− κ)nm =
1
τ

(n+1)τ∫
nτ

(a(nτ,mh)− a(θ, φm(θ))) dθ(8.28)

=
1
τ

(n+1)τ∫
nτ

(
a(nτ,mh)− a(θ,mh)−

φm(θ)∫
mh

Da(θ, y) dy
)
dθ .

Applying estimate (6.11) and using (2.11) we obtain

(8.29) |a(nτ,mh)− a(θ,mh)| ≤ ‖anτ − aθ‖∞ ≤ 1
2‖Da

nτ −Daθ‖1 ≤
1
2σ10(τ);

formula (8.21) and assumption (2.2) imply that

φm(θ)∫
mh

|Da(θ, y)| dy ≤ AA′((n+ 1)τ − θ) .

Combining this inequality with (8.29) and (8.28) we obtain

(8.30) |αnm − κnm| ≤ 1
2 (σ10(τ) + τAA′) .

Next, we estimate ∆0κ. By (2.3), (2.2) and (8.21), for fixed n, m,

(8.31) |∆0κ
n
m| ≤

1
τ

(n+1)τ∫
nτ

φm+1(θ)∫
φm−1(θ)

|Da(θ, y)| dy dθ ≤ 2hA′eA
′τ .

Finally, let us consider ∆0(αn − κn)m. It follows from (4.2) and (2.3) that
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∆0(αn − κn)m =
1
τ

(n+1)τ∫
nτ

{ (m+1)h∫
(m−1)h

(Da(nτ, y)−Da(θ, y)) dy(8.32)

+
(m+1)h∫

(m−1)h

Da(θ, y) dy −
φm+1(θ)∫
φm−1(θ)

Da(θ, y) dy
}
dθ .

We first have

(8.33)
∑
m∈Z

(m+1)h∫
(m−1)h

|Da(nτ, y)−Da(θ, y)| dy = 2‖Danτ −Daθ‖1 ≤ 2σ10(τ) .

To estimate the remaining part of our sum, let us observe that if we take f = Daθ,
φm = φm(θ), B = A′µ, then the assumptions of Lemma 6 are satisfied due
to (8.21). Hence,∑
m∈Z

∣∣∣ (m+1)h∫
(m−1)h

Da(θ, y) dy−
φm+1(θ)∫
φm−1(θ)

Da(θ, y) dy
∣∣∣ ≤ 10ω1

1(h,Daθ)+2A′eA
′ττ‖Daθ‖1 .

Combining this estimate with (8.33), (4.6), (2.11), (2.2) and (8.32) we obtain

(8.34)
∑
m∈Z
|∆0(αn − κn)m| ≤ 2σ10(τ) + 10σ1(h) + 2A′A′∗e

A′ττ .

Inequalities (8.30), (8.31), (2.6), (4.3) and (8.34) applied to (8.27) and (8.26)
imply the estimates

‖ψ0h‖1 ≤ γ0(h), γ0(h) = σ10(µh) + 5σ1(h) + µhA′A′∗e
A′µh ,

‖ψ1h‖∞ ≤ h−1γ1(h) , γ1(h) = 1
2σ10(µh) + hA′(eA

′µh + 1
2 ) .

Hence, Lemma 5 yields the inequality

(8.35) ‖p0
hlhf‖1 ≤ γ0(h)‖f‖∞ + γ1(h)‖Df‖1 +

81
4µ
ω1

1(h,Df).

S t e p 4. We now estimate the terms occurring on the right-hand side of (8.35)
by the given numbers. First, it follows from (2.7) that

f(x) = Dϕ(x)g(ϕ(x)) , Df(x) = D2ϕ(x)g(ϕ(x)) + (Dϕ(x))2Dg(ϕ(x)) ,
∆hDf(x) = ∆hD

2ϕ(x)g(ϕ(x+ h)) +D2ϕ(x)∆h(g ◦ ϕ)(x)

+∆h((Dϕ)2)(x)Dg(ϕ(x+ h)) + (Dϕ(x))2∆h(Dg ◦ ϕ)(x) .

Assumption (4.6) implies the estimates

‖Dϕ‖∞ ≤ Λ , ϕ(x+ h)− ϕ(x) ≤ Λh, ‖D2ϕ‖1 ≤ Λ
′ .

Hence

|∆h(g ◦ ϕ)(x)| ≤
ϕ(x)+Λh∫
ϕ(x)

|Dg(y)| dy ≤ Λh‖Dg‖∞ ;
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|∆h((Dϕ)2)(x)| ≤ |Dϕ(x+ h) +Dϕ(x)|
x+h∫
x

|D2ϕ(y)| dy

⇒ ‖∆h((Dϕ)2)‖1 ≤ 2ΛΛ′h ;

|∆h(Dg ◦ ϕ)(x)| ≤
ϕ(x)+Λh∫
ϕ(x)

|D2g(y)| dy

⇒
∫
R

(Dϕ(x))2|∆h(Dg ◦ ϕ)(x)| dx ≤ Λ2h‖D2g‖1 .

Consequently,

‖f‖∞ ≤ Λ‖g‖∞, ‖Df‖1 ≤ Λ
′‖g‖∞ + Λ‖Dg‖1 ,

ω1
1(h,Df) ≤ σ(h)‖g‖∞ + 3Λ′Λh‖Dg‖∞ + Λ2h‖D2g‖1 .

Combining these inequalities with (8.35), (8.24) and (8.19) and using (6.11),
we obtain

‖zh‖∗ ≤ T
{[

Λ

2
γ0(h) +

(
Λ+

Λ′

2

)
γ1(h) +

µ1

2
σ(h)

]
‖Dg‖1

+hΛµ1

(
3
2
Λ′ + Λ

)
‖D2g‖1

}
.

This estimate implies (4.7), hence the proof of Theorem 2 is complete.

P r o o f o f T h e o r e m 3. The proof is carried out with the use of Lemma 4.
Let us consider the Banach space L(Ωh) consisting of all mesh functions yh which
are bounded and such that the norm ‖yh‖∗ defined by (3.1) is finite. For h ∈
(0, 1) let the operator Φh : L∞(R) ∩ L1(R) → L(Ωh) be defined by Φh(g) =
Fhg− rh(E(0, ·)g). We must show that Φh satisfies the assumptions of Lemma 4.
First, according to (3.4), ‖Fhg‖∗ ≤ ‖(Fhg)0‖1 = ‖g‖1. Next, it follows from
formula (2.8) that for every n > 0, ‖r0h(E(0, nτ)g)‖1 = ‖E(0, nτ)g‖1 = ‖g‖1.
Since Φh is linear, we deduce that (6.1) is satisfied for each h ∈ H and M = 2.

Next, by Theorem 2, if f ∈W 1
2 (R) then ‖zh‖∗ ≤M1(h)‖Df‖1 +M2h‖D2f‖1.

Applying Lemma 4 with η = max(h,M1(h)2), we obtain inequality (4.8) and the
proof is complete.
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