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1. Introduction. On the mesh ∆ = {x0 < x1 < . . . < xn} defined on
the interval [x0, xn] let a histogram F = {f1, . . . , fn} be given, i.e. fi is the
frequency for the subinterval [xi−1, xi], i = 1(1)n. The local mesh spacing is de-
noted by hi = xi−xi−1. In many practical applications, it is of interest to have a
C1-function s that satisfies exactly or approximatively the area matching condi-
tion

(1.1)
xi∫

xi−1

s(x) dx = hifi , i = 1(1)n ,

and that, in addition, preserves the shape of the histogram F . In this paper we
are concerned with area matching as well as with smoothing of histograms under
convexity constraints. The functions s are assumed to be cubic C1-splines on ∆.

The problem of convex area matching has, if it is solvable at all, an infinite
number of solutions. Thus it is convenient to have a choice function. In the present
paper,

(1.2) minimize
xn∫

x0

s′(x)2 dx

is taken. In smoothing histograms, following [S92] the objective function

(1.3) minimize l
xn∫

x0

s′(x)2 dx +

n
∑

i=1

pi

(

fi −
1

hi

xi∫

xi−1

s(x) dx

)2
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is used. Here l > 0 is a global parameter while p1 > 0, . . . , pn > 0 are local
parameters. The function (1.3) may be considered as an extension of Schoenberg’s
functional [Sh64] well-known from smoothing data. For another extension see [S91]
where the second derivative is used instead of s′.

There are several models that lead to the constrained approximation of his-
tograms. Here we mention the following one occurring in the one-dimensional
motion of a material point: Determine the velocity s = s(x) as a function of the
time x such that the point reaches the positions gi at times xi, i = 0(1)n. In this
case, defining the histogram F we have to set

(1.4) fi =
gi − gi−1

hi

, i = 1(1)n .

The derivative s′ means the acceleration of the material point. Hence, the func-
tional (1.3) can be considered as a trade-off between minimizing the acceleration
and the deviation from area matching. Let us remark that in this model con-
straints like positivity are obvious.

Recently, several papers have appeared concerned with area matching under
constraints.We refer to [N82], [SU88], [MC89], [SHN90], [S91], [SH91], [S93] and
to the book [Sp90]. In these references various types of polynomial splines are con-
sidered. Constrained smoothing of histograms is treated in [S92] using quadratic
splines. In the present paper we apply cubic C1-splines.

2. Results on dualizing partially separable programs. The problems
under consideration are shown to lead to a partially separable program of the type

(2.1)
minimize

n
∑

i=1

Fi(yi−1,mi−1, yi,mi) ,

subject to (yi−1,mi−1, yi,mi)
T ∈ Wi , i = 1(1)n .

Programs of this structure can be solved effectively by dualization; see e.g. [DS85],
[SS90], [S92a]. With the Fenchel conjugates H∗

i to Fi and Wi defined by

(2.2) H∗

i (̺, ξ, σ, η) = sup{̺f + ξx + σg + ηy − Fi(f, x, g, y) : (f, x, g, y)T ∈ Wi}
a program dual to (2.1) reads

(2.3)
maximize −

n
∑

i=1

H∗

i (y∗

i−1,m
∗

i−1,−y∗

i ,−m∗

i )

with y∗

0
= m∗

0
= y∗

n = m∗

n = 0 .

In the present cases of convexity constraints, the conjugates can be explicitly
computed, and they are everywhere finite. Thus, the dual program (2.3) becomes
unconstrained. Therefore, from the numerical point of view, dualization is here
very effective. Further, the maximizers in the four-dimensional programs (2.2)
turn out to be unique. This implies the validity of the return-formula

(2.4) (yi−1,mi−1, yi,mi)
T = grad H∗

i (y∗

i−1
,m∗

i−1
,−y∗

i ,−m∗

i ) , i = 1(1)n ,
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by means of which the solution of the primal program can be directly computed
if a solution of the dual is known.

3. Cubic C1-splines in constrained histogram approximation. A cubic
spline s on ∆ can be defined for x ∈ [xi−1, xi] by

(3.1) s(x) = yi−1u + yit + {(yi − yi−1 − himi)t + (himi−1 − yi + yi−1)u}tu
when i = 1(1)n. Here t and u are local variables given by x = xi−1 + thi and
u = 1− t. It follows that s ∈ C1[x0, xn] for all parameters y0,m0, . . . , yn,mn, and

(3.2) s(xi) = yi , s′(xi) = mi , i = 0(1)n .

Further, s is easily proved to be convex on [x0, xn] if and only if

(3.3) 2mi−1 + mi ≤
3

hi

(yi − yi−1) ≤ mi−1 + 2mi , i = 1(1)n ;

see [N78]. The characterization of monotonicity from paper [FC80] reads

(3.4) mi−1 ≥ 0 , mi ≥ 0 , mi−1 −
√

mi−1mi + mi ≤
3

hi

(yi − yi−1) ,

i = 1(1)n ;

for a positivity criterion we refer to [SH88]. Finally, we get in a straightforward
way

(3.5)
xi∫

xi−1

s(x) dx =
hi

2
(yi−1 + yi) +

h2

i

12
(mi−1 − mi)

and
xi∫

xi−1

s′(x)2 dx =
hi

15

{

2m2

i−1
− mi−1mi + 2m2

i(3.6)

− 3

hi

(yi − yi−1)(mi−1 + mi) +
18

h2

i

(yi − yi−1)
2

}

.

3.1. Convex area matching. In view of (3.3), (3.5), there are convex area
matching cubic C1-splines if and only if the linear system of equalities and in-
equalities

(3.7)
2mi−1 + mi ≤

3

hi

(yi − yi−1) ≤ mi−1 + 2mi ,

1

2
(yi−1 + yi) +

hi

12
(mi−1 − mi) = fi , i = 1(1)n ,

is solvable, and every solution (y0,m0, . . . , yn,mn) leads via (3.1) to a spline
with the desired properties. A solvability criterion for problem (3.7) based on
the so-called staircase algorithm [CM84], [SH84] is given in the paper [S91]. This
existence test may fail, even when the histogram F is in convex position in the
sense of [SHN90]. If the criterion is satisfied then, in general, there exist an infinite



38 J. W. SCHMIDT

number of convex histosplines. For selecting one of them the choice function (1.2)
is proposed. Thus, because of (3.6) and (3.7) we are led to an optimization
problem (2.1) with

(3.8) Fi(f, x, g, y) =
hi

15

{

2x2 − xy + 2y2 − 3

hi

(g − f)(x + y) +
18

h2

i

(g − f)2
}

and

(3.9) Wi =

{

(f, x, g, y)T :

2x + y ≤ 3

hi

(g − f) ≤ x + 2y ,
1

2
(f + g) +

hi

12
(x − y) = fi

}

.

The corresponding Fenchel conjugates needed for dualizing the program (2.1),
(3.8), (3.9) are given in Section 4 of this paper.

3.2. Monotone area matching. When considering monotone histopolation, in
the test system (3.7) we have to replace (3.3) by the monotonicity condition (3.4).
If now m0 = . . . = mn = 0 is set, the system

(3.10) yi−1 ≤ yi ,
1

2
(yi−1 + yi) = fi , i = 1(1)n ,

arises which characterizes F to be in monotone position; see [SHN90]. Thus, there
exist monotone area matching cubic C1-splines if the histogram is in monotone
position. The number of these splines is in general infinite. Again the choice
function (1.2) is proposed leading to a program (2.1) with Fi defined by (3.8) and

(3.11) Wi =

{

(f, x, g, y)T : x ≥ 0 , y ≥ 0 ,

x −√
xy + y ≤ 3

hi

(g − f) ,
1

2
(f + g) +

hi

12
(x − y) = fi

}

.

Here it seems to be difficult to compute the Fenchel conjugates explicitly. Thus,
this must be done numerically.

3.3. Convex smoothing of histograms. Using the objective function (1.3) this
problem can be formulated by a program (2.1) with

Fi(f, x, g, y) =
lhi

15

{

2x2 − xy + 2y2 − 3

hi

(g − f)(x + y) +
18

h2

i

(g − f)2
}

(3.12)

+ pi

{

fi −
1

2
(f + g) − hi

12
(x − y)

}2

and

(3.13) Wi =

{

(f, x, g, y)T : 2x + y ≤ 3

hi

(g − f) ≤ x + 2y

}

.

Now, the feasible domain is non-empty. E.g., the point with y0 = m0 = . . . =
yn = mn = 0 satisfies the constraints. Further, the Hessian of the objective



CONVEX APPROXIMATION OF HISTOGRAMS 39

function is positive-definite. Thus, the program (2.1), (3.12), (3.13) is always
uniquely solvable. The solution can be determined via dualization (2.3). The
Fenchel conjugates needed there are computed in an explicit manner in Section 4.

4. Determination of Fenchel conjugates. As pointed out above, the con-
jugates (2.2) are essential in the dual (2.3) as well as in the return-formula (2.4).

4.1. Conjugates in convex area matching. In the case (3.8), (3.9) of convex
area matching, the conjugates (2.2) read

(4.1) H∗

i (̺, ξ, σ, η) = K∗

i (̺, ξ, σ, η; 1) + L∗

i (̺, ξ, σ, η; 1) ,

where

K∗

i (̺, ξ, σ, η; l) = fi(̺ + σ) +
hi

12l
(̺2 − ̺σ + σ2)(4.2)

+
1

2l
(ση − ̺ξ) +

3

4hil
(3ξ2 + 2ξη + 3η2)

and

(4.3) L∗

i (̺, ξ, σ, η; l)

=



































0 for ̺ + σ ≥ 12(3ξ + 2η)/hi, ̺ + σ ≥ −12(2ξ + 3η)/hi,
−hi{−(̺ + σ)/4 + 3(3ξ + 2η)/hi}2/(48l)

for ̺ + σ ≤ 12(3ξ + 2η)/hi, ̺ + σ ≥ 4(ξ − 2η)/hi,
−hi{−(̺ + σ)/4 − 3(2ξ + 3η)/hi}2/(48l)

for ̺ + σ ≤ −12(2ξ + 3η)/hi, ̺ + σ ≥ 4(2ξ − η)/hi,
−hi(̺ + σ)2/(48l) + 1(̺ + σ)(ξ − η)/(4l) − 1(2ξ2 + ξη + 2η2)/(hil)

for ̺ + σ ≤ 4(ξ − 2η)/hi, ̺ + σ ≤ 4(2ξ − η)/hi.

P r o o f o f f o r m u l a (4.1). With the Lagrangian Φ for program (2.2), (3.8),
(3.9) given by

(4.4) Φ(f, x, g, y, α, λ, µ) = −̺f − ξx − σg − ηy

+
hil

15

{

2x2 − xy + 2y2 − 3

hi

(g − f)(x + y) +
18

h2

i

(g − f)2
}

+ α

(

g + f

2
+

hi

12
(x − y) − fi

)

+ λ

(

2x + y − 3

hi

(g − f)

)

+ µ

(

3

hi

(g − f) − x − 2y

)

,

where l = 1, the Kuhn–Tucker conditions read as follows:

Φx = − ξ +
hil

15

{

4x − y − 3

hi

(g − f)

}

+
αhi

12
+ 2λ − µ = 0 ,(4.5)

Φy = − η +
hil

15

{

4y − x − 3

hi

(g − f)

}

− αhi

12
+ λ − 2µ = 0 ,(4.6)
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Φf = − ̺ +
hil

15

{

3

hi

(x + y) − 36

h2

i

(g − f)

}

+
α

2
+

3

hi

(λ − µ) = 0 ,(4.7)

Φg = − σ +
hil

15

{

− 3

hi

(x + y) +
36

h2

i

(g − f)

}

+
α

2
− 3

hi

(λ − µ) = 0 ,(4.8)

Φα = 0 , Φλ ≤ 0 , λ ≥ 0 , λΦλ = 0 , Φµ ≤ 0 , µ ≥ 0 , µΦµ = 0 .(4.9)

By means of (4.5), (4.6) and (4.7), (4.8) we get

−ξ − η +
hil

5

{

x + y − 2

hi

(g − f)

}

+ 3(λ − µ) = 0 ,(4.10)

−̺ + σ +
l

5

{

2(x + y) − 24

hi

(g − f)

}

− 6

hi

(λ − µ) = 0(4.11)

as well as

−ξ + η +
hil

3
(x − y) +

αhi

6
+ λ + µ = 0 ,(4.12)

−̺ − σ + α = 0 .(4.13)

Now, from (4.10), (4.11) and (4.12), (4.13) we compute

x + y =
σ − ̺

2l
+

6

hil
(ξ + η) − 15

hil
(λ − µ) ,(4.14)

x − y = − ̺ + σ

2l
+

3

hil
(ξ − η) − 3

hil
(λ + µ) ,(4.15)

implying

x = − ̺

2l
+

3

2hil
(3ξ + η) − 3

hil
(3λ − 2µ) ,(4.16)

y =
σ

2l
+

3

2hil
(ξ + 3η) − 3

hil
(2λ − 3µ) .(4.17)

Further, from (4.10), (4.11) and from Φα = 0 we obtain

g − f =
hi

4l
(σ − ̺) +

ξ + η

2l
,(4.18)

g + f = 2fi +
hi

12l
(̺ + σ) +

η − ξ

2l
+

λ + µ

2l
.(4.19)

Hence it follows that

f = fi +
hi

12l
(2̺ − σ) − ξ

2l
+

λ + µ

4l
,(4.20)

g = fi +
hi

12l
(2σ − ̺) +

η

2l
+

λ + µ

4l
.(4.21)

In view of the complementarity conditions (4.9) there are four different cases to
be discussed.
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C a s e 1: Let λ = 0, µ = 0. Then Φλ≤0, Φµ≤0 lead to the domain of validity

̺ + σ ≥ 12

hi

(3ξ + 2η) , ̺ + σ ≥ −12

hi

(2ξ + 3η) .

Further, the maximizer resulting from (4.16), (4.17), (4.20), (4.21),

(4.22)

f = fi +
hi

12l
(2̺ − σ) − ξ

2l
,

x = − ̺

2l
+

3

2hil
(3ξ + η) ,

g = fi +
hi

12l
(2σ − ̺) +

η

2l
,

y =
σ

2l
+

3

2hil
(ξ + 3η)

turns out to be unique. Next, using the property that the maximizer satisfies

(4.23) (f, x, g, y)T = grad H∗

i (̺, ξ, σ, η) ,

it follows straightforwardly that H∗

i (̺, ξ, σ, η) = K∗

i (̺, ξ, σ, η; 1). Thus, in Case 1
formula (4.1) is proven.

C a s e 2: Let Φλ = 0, µ = 0. These assumptions imply

λ =
hi

24

{

−̺ + σ

4
+

3

hi

(3ξ + 2η)

}

,

and λ ≥ 0, Φµ ≤ 0 give the domain of validity

̺ + σ ≤ 12

hi

(3ξ + 2η) , ̺ + σ ≥ 4

hi

(ξ − 2η) .

The components of the unique maximizer are obtained by adding the terms

λ

4l
, − 9λ

hil
,

λ

4l
, − 6λ

hil

to the values (4.22), respectively. Hence, because of (4.23), we have to add the
present term L∗

i (̺, ξ, σ, η; 1) to K∗

i (̺, ξ, σ, η; 1) in order to get H∗

i (̺, ξ, σ, η).

C a s e 3: Let λ = 0, Φµ = 0. This case is treated analogously to Case 2.

C a s e 4: Let Φλ = 0, Φµ = 0. Now, using (4.16), (4.17), (4.20), (4.21) we find

λ =
hi

12

{

−̺ − σ +
4

hi

(2ξ − η)

}

, µ =
hi

12

{

−̺ − σ +
4

hi

(ξ − 2η)

}

,

and λ ≥ 0, µ ≥ 0 describes the domain of validity. The components of the unique
maximizer are obtained by adding

λ + µ

4l
= − hi

24l
(̺ + σ) +

ξ − η

4l
, − 3

hil
(3λ − 2µ) =

̺ + σ

4l
− 4ξ + η

hil
,

λ + µ

4l
= − hi

24l
(̺ + σ) +

ξ − η

4l
, − 3

hil
(2λ − 3µ) = − ̺ + σ

4l
− ξ + 4η

hil
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to the components of (4.22). Property (4.23) again shows that H∗

i (̺, ξ, σ, η) is
obtained if the present L∗

i (̺, ξ, σ, η; 1) is added to K∗

i (̺, ξ, σ, η; 1).

Thus, the proof of formula (4.1) is complete.

4.2. Conjugates in convex smoothing of histograms. In the case (3.12), (3.13)
of convex smoothing of histograms, the conjugates are

(4.24) H∗

i (̺, ξ, σ, η) = K∗

i (̺, ξ, σ, η; l) + L∗

i (̺, ξ, σ, η; l) +
(̺ + σ)2

4pi

,

where K∗

i and L∗

i are defined by (4.2) and (4.3).

P r o o f o f f o r m u l a (4.24). We follow the lines of 4.1. The basic expressions
(4.16), (4.17), (4.20), (4.21) for the maximizer remain valid, except that we have
to add the term (̺ + σ)/(2pi) in (4.20) as well as in (4.21). In view of (4.23) this
modification implies the additional term (̺+σ)2/(4pi) in (4.24) relative to (4.1).

5. Computational comments. The described dualization technique leads
to the following general approach for solving partially separable programs.

S t e p 1: Compute a solution of the unconstrained dual program (2.3) numer-
ically.

S t e p 2: Determine the solution of program (2.1) by means of the explicit
return-formula (2.4).

In Step 1 computer tests with various types of partially separable programs
have shown that Newton’s method combined with the steepest descent method
for supplying sufficiently good starting vectors is effective. In both methods the
special structure of the dual (2.3) can be taken into account. Numerical tests
in convex smoothing of histograms are done by our students C. Gemmer and
G. Prokert. Though the rough initial vector having only zero components is used,
the number NS of Newton steps is moderate. The splines in Figure 1 result by
setting

l pi NS

spline 1 10 1 4
spline 2 0.1 1 6
spline 3 0.0001 1 8

while the splines in Figure 2 are obtained for

l pi NS

spline 1 10 1 8
spline 2 0.1 1 7
spline 3 0.0001 1 18

In Figure 3 we have taken

l pi NS

spline 1 10 1 10
spline 2 0.1 1 12
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Fig. 1
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Finally, let us remark that in general, for instance in the case of monotone
histogram approximation, also the conjugates must be computed numerically.
It is of importance that this can be done simultaneously by solving a possibly
larger number of four-dimensional programs (2.2).
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