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In this survey paper, we present (mainly without proof) a number of results
on conjugacy and factorization in general linear groups over fields and commuta-
tive rings. We also present the additive analogue in matrix rings of some of these
results. The first section deals with the question of expressing elements in the
commutator subgroup of the general linear group over a field as (simple) commu-
tators. In Section 2, the same kind of problem is discussed for the general linear
group over a commutative ring. In Section 3, the analogous question for additive
commutators is discussed. The case of integer matrices is given special emphasis
as this is an area of current interest. In Section 4, factorizations of an element
A ∈ GL(n, F ) (F a field) in which at least one of the factors preserves some
form (e.g. is symmetric or skew-symmetric) is considered. An application to the
size of abelian subgroups of finite p-groups is presented. In Section 5, a curious
interplay between additive and multiplicative commutators in Mn(F ) (F a field)
is identified for matrices of small size and a general factorization theorem for a
polynomial using conjugates of its companion matrix is presented.

Notation. The notation is standard. In particular, GL(n,R) denotes the
group of invertible n×n matrices A such that A and A−1 have entries in the ring
R and in the case R is commutative and has an identity, SL(n,R) denotes the
subgroup of those elements A of GL(n,R) with detA = 1. A matrix A is called
nonderogatory (or cyclic) if its minimal polynomial equals its characteristic poly-
nomial. Equivalently A is nonderogatory if the only matrices which commute with
A are the polynomials in A; cf. [G-L-R, pp. 299–300]. An involution is an element
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J in a group with J2 = I. If V is a vector space equipped with a bilinear form g,
a subspace U of V is isotropic if g(u, v) = 0 for all u, v ∈ U .

AT denotes the transpose of the matrix A.
[X,Y ] denotes the multiplicative commutator X−1Y −1XY .
(X,Y ) denotes the additive commutator XY − Y X.
Z,Q,R,C denote as usual the sets of integers, rational numbers, real numbers

and complex numbers, respectively.

1. Commutators over fields. Let F be a field and let A ∈ SL(n, F ). A
famous theorem of R. C. Thompson [THO1] states that if (n, |F |) 6= (2, 2), then
A is a commutator [X,Y ] for X,Y ∈ GL(n, F ). Thompson’s proof depends on an
analysis of (a variant of) the rational canonical form and is difficult, particularly
for small fields. A simpler proof for large fields was constructed by Grunenfelder,
Paré and Radjavi [G-P-R], and independently Sourour [SOU1] and the author
[LAF2] improved their argument to give the following very useful factorization
theorem.

Theorem 1. Let F be a field and let A ∈ GL(n, F ) be nonscalar. Let x1, . . .
. . . , xn, y1, . . . , yn be any elements of F which satisfy the relation

detA = x1 . . . xny1 . . . yn .

Then there exist elements T,L,U ∈ GL(n, F ) with L lower-triangular and having
diagonal

diag(L) = (x1, . . . , xn)

and U upper-triangular and having diagonal

diag(U) = (y1, . . . , yn)

such that T−1AT = LU .

To prove the theorem, we use induction on n. Since A is not scalar, there exists
a vector v ∈ Fn, the space of column n-tuples over F , such that v and Av are
linearly independent. Put v1 = v, v2 = z−1

1 Av − v1 where z1 = x1y1 and extend
to a basis v1, v2, . . . , vn of Fn. Using this change of basis, we see that there exists
an element T1 ∈ GL(n, F ) such that

T−1
1 AT1 =


z1 z1 0 · · · 0
b21 b22 b23 · · · b2n
...

...
...

...
bn1 bn2 bn3 · · · bnn

 (for some bij ∈ F )

=


z1 0 · · · 0
b21
... In−1

bn1




1 1 0 · · · 0
0
... A2

0
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where A2 ∈ GL(n − 1, F ). If A2 is not scalar, then using induction, we may
assume that there exist T2, L2, U2 ∈ GL(n − 1, F ) with L2 lower-triangular and
diag(L2) = (z2, . . . , zn) and U2 upper-triangular with diag(U2) = (1, . . . , 1) such
that T−1

2 A2T2 = L2U2, where here zi = xiyi (i = 2, . . . , n). If A2 is scalar, then
one can show that a different choice of elements v2, . . . , vn will lead to a nonscalar
A2. It then follows that there exist T3, L3, U3 ∈ GL(n, F ) with L3 lower-triangular
and diag(L3) = (z1, . . . , zn), and U3 upper-triangular and diag(U3) = (1, . . . , 1)
such that T−1

3 AT3 = L3U3. But L3U3 = LU where L = L3D
−1, U = DU3 and

D = diag(y1, . . . , yn). This completes the proof.

Suppose A ∈ SL(n, F ) is not scalar and that F has at least n + 1 elements.
Then x1, . . . , xn can be taken to be distinct in Theorem 1. Also, since detA = 1,
we may take yi = x−1

i for i = 1, . . . , n. But then L is similar to the diagonal
matrix D = diag(x1, . . . , xn) and U is similar to D−1 and thus A is similar to a
matrix of the form DZ−1D−1Z and thus A is a commutator X−1Y −1XY . If A is
scalar, one uses instead the fact that if P is the permutation matrix corresponding
to the n-cycle (1 2 3 . . . n) and w ∈ F with wn = 1, then wP is similar to P−1, so

wI = P−1S−1PS

for some S ∈ GL(n, F ).
No simplification of Thompson’s argument for small fields appears to be avail-

able. One can use character theory (Honda’s Theorem [HON]) since the group
GL(n, F ) is finite in this case, but this approach is not simpler than his.

The problem of writing A ∈ SL(n, F ) as a commutator [X,Y ] with X,Y ∈
SL(n, F ) is also an interesting one, particularly in the scalar case, and it has been
resolved by Thompson [THO2].

Theorem 1 has a number of interesting consequences. It is well known that a
matrix A ∈ GL(n, F ) is similar to its inverse if and only if A is the product of
two involutions. If A = RS with R2 = I, S2 = I, then R−1AR = A−1. The proof
of the converse is more difficult and has been the subject of several papers. All
rely on the rational canonical form or some variant thereof. See Djoković [DJO],
Wonenberger [WON2] for example.

If F does not have characteristic 2 and detA = 1, and A is similar to its
inverse, then we show [LAF2] that A = J1J2 where J1, J2 are each similar to

J0 = diag(1, . . . , 1︸ ︷︷ ︸
k

,−1, . . . ,−1︸ ︷︷ ︸
n−k

)

where k = [(n+ 1)/2].
The corresponding question for the other classical groups has also been con-

sidered. See Gow [GOW2], Wonenberger [WON1] for some typical results.
If A ∈ GL(n, F ) with detA = ±1 we may apply Theorem 1 with x1 = . . . =

xn−1 = y1 = . . . = yn = 1, xn = detA. Then L is similar to its inverse and U is
also similar to its inverse. Hence L, U are each a product of two involutions and
hence we see that A is the product of four involutions. [If A is scalar, we may use
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the permutation matrix of (1 2 3 . . . n) and the fact that (1 2 3 . . . n) is the product
of two involutions to achieve a similar result.] This result was first proved using
rational canonical forms by Gustafson, Halmos and Radjavi [G-H-R].

It is not the case that every A ∈ GL(n, F ) with detA = ±1 is the product of
three involutions. This can be seen (if F does not have characteristic 2) easily as
follows. If A = J1J2J3 with J2

i = I (i = 1, 2, 3), then J1A = J2J3 is similar to its
inverse. Suppose A has an eigenvalue z with z2 6= ±1 such that the corresponding
eigenspace V has dimension greater than 3n/4. Since J1 is an involution, it has
eigenspaces U1, U2 corresponding to ±1 of dimension k, l with k + l = n. Now

dim(V ∩ U1) = dim(V + U) + dimV − dimU > −n+
3n
4

+ k

and

dim(V ∩ U2) > −n+
3n
4

+ l ,

so
dim(V ∩ U1) + dim(V ∩ U2) >

n

2
.

On V ∩ U1, AJ1 has an eigenvalue z and on V ∩ U2, AJ1 has an eigenvalue −z.
But then J1A must also have eigenvalues z−1 and −z−1 with the corresponding
multiplicities. But this forces z = ±z−1, contrary to hypothesis. Since the only
condition on A is that detA = ±1 it is easy to construct examples with such an
eigenvalue z.

A detailed (but not completely decisive) discussion of products of three invo-
lutions has been provided by Liu [LIU]. See also Wu [WU2].

When F is the field of real numbers R and A ∈ GL(n,R) is not scalar and
detA > 0, we can choose the elements x1, . . . , xn, y1, . . . , yn in Theorem 1 to be all
distinct and positive. But it is well known and easy to prove that if B ∈ GL(n,R),
then B is the product of two positive definite symmetric matrices if and only if
B is diagonalizable with positive real eigenvalues. Hence for this choice of xi, yj ,
we find that L, U are each products of two positive definite matrices and since
being a product of four positive definite symmetric matrices is invariant under
similarity, we conclude that A is a product of four positive definite matrices. This
argument is due to Sourour [SOU1] and is much easier than the original proof of
this result by Ballantine [BAL].

If F contains a primitive nth root of unity, ω say, we take the numbers xj =
yj = ωj and then we deduce that A = [X,Y ] where X is periodic of order n.
Thus X is similar to the permutation matrix P corresponding to the n-cycle
(1 2 3 . . . n). However, even if the field F does not contain a primitive nth root of
unity, a factorization of A ∈ SL(n, F ) as [X,Y ] with X similar to P can often be
achieved. Eleanor Meehan and the author [L-M3] have found a new approach to
this type of factorization when n is odd. We present the principal steps here.

Let R be a commutative ring with identity and assume that the matrices
occurring in this section have entries in R.
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Let n ≥ 3 be odd,

A =


a1 y1 0 · · · 0 0
0 a2 y2 · · · 0 0
. . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . an−1 yn−1

0 0 0 . . . 0 an


and P = (pij) the permutation matrix corresponding to the n-cycle (1 2 3 . . . n)
(so pi,i+1 = 1 (i = 1, . . . , n− 1), pn1 = 1, pij = 0 otherwise).

Let B = AP−2. Let z be an indeterminate.
Using the Laplace expansion along row one, we obtain a recurrence relation

for the determinant
det(zI +B) = zn + a2anz

2∆(3, . . . , n− 2)− a1z∆(2, . . . , n− 1)
− any1z∆(2, . . . , n− 2) + a1a2 . . . an

where

∆(k + 1, . . . , k + l) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

yk+1 z 0 . . . 0 0 0
ak+2 yk+2 z . . . 0 0 0

0 ak+3 yk+3 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . yk+l−2 z 0
0 0 0 . . . ak+l−1 yk+l−1 z
0 0 0 . . . 0 ak+l yk+l

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Using the Laplace expansions along the top row and along the bottom row,
respectively, we obtain the following two recurrence relations:

∆(k + 1, . . . , k + l) = yk+1∆(k + 2, . . . , k + l)− ak+2z∆(k + 3, . . . , k + l)

and

(∗) ∆(k+1, . . . , k+l) = yk+l∆(k+1, . . . , k+l−1)−zak+l∆(k+1, . . . , k+l−2) .

Hence

det(zI +B) =zn + z[z(a2an∆(3, . . . , n− 2) + a1an−1∆(2, . . . , n− 3))(1)
− (a1yn−1 + any1)∆(2, . . . , n− 2)] + a1 . . . an .

Using (∗) again we may write (for n ≥ 5)

(2) a2an∆(3, . . . , n− 2) + a1an−1∆(2, . . . , n− 3)
= (a2anyn−2 + a1an−1y2)∆(3, . . . , n− 3)

− z(a1an−1a3∆(4, . . . , n− 3) + a2anan−2∆(3, . . . , n− 4))

We now may use (∗) again on the terms

a1an−1a3∆(4, . . . , n− 3) + a2anan−2∆(3, . . . , n− 4)

and continue the process indefinitely.
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At each stage, we get an expression of the form U −V z. We then set the term
U = 0 in all these equations. This leads to the following system of equations:

(3)

any1 + a1yn−1 = 0 ,
ana2yn−2 + a1an−1y2 = 0 ,

ana2an−2y3 + a1an−1a3yn−3 = 0 ,
ana2an−2a4yn−4 + a1an−1a3an−3y4 = 0 ,

ana2an−2a4an−4y5 + a1an−1a3an−3a5yn−5 = 0 ,
...

The lth equation is

ana2an−2a4an−4 . . . an−2ky2k+1

+an−1a1an−3a3 . . . a2k−1an−(2k−1)a2k+1yn−(2k+1) = 0

for l = 2k + 1 and

ana2an−2a4 · · · a2kyn−2k + a1an−1a3an−3 . . . a2k−1an−(2k−1)y2k = 0

for l = 2k. The last term occurs for l = (n− 1)/2.
If y1, . . . , yn−1 are chosen to satisfy the system, then we obtain det(zI+B) =

zn + a1 . . . an, for that choice of A.
Suppose a1, . . . , an are nonzero. Then we can solve the system for y1, . . . , yn−1.
In fact, we may take

y1 = −a1x1, yn−1 = anx1,

y2 = −ana2x2, yn−2 = a1an−1x2,

y3 = −a1a3an−1x3, yn−3 = ana2an−2x3, etc.,

for any elements x1, . . . , x(n−1)/2 of R.
Thus there are (n − 1)/2 “free” parameters and for each choice, the corre-

sponding matrix B has characteristic polynomial xn − a1 . . . an.
A particular case of interest is the case where a1, . . . , an are equal. Then we

can take

y1 = x, y2 = −x, y3 = x, y4 = −x, . . . , yn−1 = −x

for any x in R.
Note that if F is a field and X ∈ GL(n, F ) is a nonderogatory matrix with its

eigenvalues in F , then X is similar over F to a matrix A of the form above with
the yi nonzero and hence if n is odd, it follows that X = Y Z where Z is similar
to P and Y has characteristic polynomial zn−detX. In particular, if detX = 1,
then Y is similar to P (and to P−1). [This is clear if the characteristic of F does
not divide n since Y has characteristic polynomial xn − 1, while an argument
based on the minors of xI−Y (which we omit) yields the result in general.] Thus
we have
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Theorem 2. Let F be a field , n an odd integer and A ∈ SL(n, F ). Suppose A is
nonderogatory and has its eigenvalues in F. Then A = X−1Y −1XY with X,Y ∈
GL(n, F ) and X conjugate to the permutation matrix of the n-cycle (1 2 3 . . . n).

We conclude this section with an application of Theorem 1 to a factorization
theorem of P. Y. Wu. Wu proved that if A ∈ Mn(C) has determinant 0, then A
is the product of two nilpotent matrices except when n = 2 and A 6= A2 = 0.
His proof relies on the Jordan normal form. Using Theorem 1, the result can
be proved for all fields. If A is nilpotent, then A is similar to its Jordan form
over F and Wu’s arguments work. The other extreme case is where 0 is a simple
eigenvalue of A. In this case, using a similarity and Theorem 1, we may write

A =

 0 · · · 0
... L
0

 0 · · · 0
... U
0


with L = (lij) lower-triangular and U = (uij) upper-triangular.

But then

A =


0 . . . . . . . . . . . . . . . 0
l11 0 . . . . . . . . . . . 0
l21 l22 0 · · · 0
...

. . .
...

lm1 . . . . . . . . lmm 0




0 u11 . . . . . . . . . . u1m

0 0 u22 · · · u2m
...

. . .
...... umm

. . . . . . . . . . . . 0 0


(where m = n− 1), proving the result.

In the general case, A is similar to A1 ⊕ A2 where A1 is nilpotent and A2 is
nonsingular. The result is obtained by combining Wu’s argument for A1 with the
argument above for 0⊕A2. The details are omitted. Sourour [SOU2] has obtained
another proof of this result.

2. Multiplicative commutators over rings. Let R be a commutative
ring with identity and let A ∈ SL(n,R). One can ask whether A can be writ-
ten as a commutator [X,Y ] with X,Y ∈ GL(n,R). That the answer is No
in general even for “nice” rings can be immediately seen from the fact that
SL(2,Z)/[SL(2,Z), SL(2,Z)] has order 12. Newman [NEW] considered the prob-
lem of determining whether every element of SL(n,Z) can be expressed as a
bounded (as a function of n) number of commutators and proved that for n ≥ 3,
the answer is Yes with a bound of the form c log n + d where c, d are explic-
itly given constants. He posed the problem of whether the number required is
bounded. Dennis and Vaserstein [D-V] using very ingenious methods proved that
for all sufficiently large n, every element A ∈ SL(n,Z) can be expressed as the
product of six commutators. The problem of extending Theorem 1 to rings has
been considered by Vaserstein and Wheland [V-W]. They have proved that it
holds with R replaced by a ring with Bass stable rank one. (Z has Bass stable
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rank two.) In the case of Z, they show that every A ∈ SL(n,Z) for n large can
be expressed as the product of six unipotent matrices.

A key result in the discussion of this is the following result of Carter and
Keller [C-K1].

Theorem 3. Every A ∈ SL(n,Z) (n ≥ 3) can be expressed as the product of
(3n2 − n)/2 + 36 elementary matrices.

No such bound exists for n=2 as it is easy to show that if a, b∈Z with highest
common factor (a, b) = 1 and c, d ∈ Z with ad − bc = 1, then expressing

(
a b
c d

)
as the product of elementary matrices is essentially equivalent to performing the
Euclidean algorithm to calculate the highest common factor of a, b. The number of
elementary matrices required is at least half the number of steps in the Euclidean
algorithm for (a, b) and this can be arbitrarily large.

The case n = 3 of Theorem 2 is the key one; a simple induction argument
works for n > 3, once the case n = 3 has been done. In the case n = 3, most of
the calculation arises in showing thatx y 0

z ω 0
0 0 1

 , x, y, z, ω ∈ Z ,

with xω − yz = 1, can be expressed as the product of a bounded number K
of elementary matrices. Carter and Keller [C-K1] show in an ingenious way that
K=44 will do. Earlier, using the Riemann hypothesis, van der Kallen had proved
that such a K exists, but the Carter–Keller proof does not require any unproved
hypotheses.

The results for matrices over Z do not extend easily to other rings or even
to Euclidean domains. Van der Kallen [KAL] shows that in SL(3,C[z]) no such
result holds. The fact that the elementary matrices generate SL(n,Z) for n ≥ 3
and boundedness results on the length of products required have applications
in K-theory. Such results do not hold for all principal ideal rings. See Grayson
[GRA], Lenstra [LEN].

The situation is better over rings of algebraic integers. Assuming an extended
Riemann hypothesis (for a class of L-functions) Cooke and Weinberger [C-W]
proved that if A ∈ SL(2, R) where R is the ring of algebraic integers in a finite
extension of Q and the group of units U(R) is infinite, then A can be written as
the product of nine elementary matrices. It then follows that for every n ≥ 2,
there exists a function f(n) such that every A ∈ SL(n,R) is the product of f(n)
elementary matrices. Carter and Keller [C-K2] using class-field theory succeeded
in proving a boundedness result (the nine in the Cooke–Weinberger theorem is
replaced by a bound depending on the discriminant of the maximal order) without
having to assume any unproved hypotheses. Note that from the Dirichlet unit
theorem, if R is the ring of algebraic integers in a finite extension Q(α) of Q,
then U(R) is infinite if [Q(α) : Q] 6= 2. Length questions for expressing elements
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of GL(n,R) and SL(n,R) in terms of other generators have been considered
particularly in the context of geometry. See, for example, Eller’s survey [ELL].

The related problem of identifying sets of generators for the group SL(n,Z)
has also been considered by several authors. For n≥3, every subgroup of SL(n,Z)
of finite index contains a congruence subgroup of level m (= {A ∈ SL(n,Z) |
A ≡ I mod m}) for some m ≥ 1 [B-M-S]. This result greatly restricts the normal
structure of SL(n,Z). Trott [TRO] has proved that if J is the upper Jordan block
corresponding to (x−1)n and B = In+En1 where En1 is the matrix with its (n, 1)
entry equal to 1 and all other entries 0, then J,B generate SL(n,Z). It is well
known that J, JT generate Mn(Z) as a ring. Recently Gow and Tamburini [G-T]
have proved the very interesting result that for n 6= 4, J, JT generate SL(n,Z) as
a group.

The conjugacy problem in GL(n,Z) has been the subject of much recent work.
For A ∈ Mn(Z), let orb(A) = {B ∈ Mn(Z) | there exists Q ∈ Mn(Q) with

Q−1AQ = B}.
Then orb(A) is the union of GL(n,Z)-orbits. The Latimer–MacDuffee theo-

rem states that if the characteristic polynomial of A is irreducible in Z[x], the
number of GL(n,Z) orbits in orb(A) equals the class number of Z[θ] where θ is
an eigenvalue of A in C. One can deduce from this that orb(A) is the union of
finitely many GL(n,Z)-orbits if and only if A is diagonalizable over C. We have
shown that if A ∈Mn(Z), then orb(A) consists of one GL(n,Z)-orbit if and only
if the minimal polynomial m(x) of A has the factorization

m(x) = p1(x) . . . pr(x)

where r ≥ 1 and p1(x), . . . , pr(x) are distinct irreducible polynomials such that

(i) resultant(pi, pj) = 1 for 1 ≤ i 6= j ≤ r and
(ii) Z[θi] has class number one where θi is a root of the equation pi(x) = 0

(i = 1, . . . , r).

In particular, if A has its eigenvalues in Z, then orb(A) consists of one
GL(n,Z)-orbit if and only if

(A− aI)(A− (a+ 1)I) = 0

for some a ∈ Z. The special case where A is an idempotent is well known.
No satisfactory canonical form is known for representing a conjugacy class

in GL(n,Z). For A ∈ GL(n,Z) with irreducible characteristic polynomial the
Latimer–MacDuffee theorem [L-MAC], [TAU1] shows that there are only finitely
many GL(n,Z)-conjugacy classes in orb(A). An interesting attempt to find a
“companion-matrix-like” representative in each GL(n,Z)-class was made by
Ochoa [OCH] and while the results do not appear to hold in the generality
which Ochoa suggests (see Rehm [REH] for discussion and a derivation of some
of Ochoa’s results), they are important. The Ochoa matrix representations differ
from companion matrices in that the last two rows have several nonzero entries. It
may be worth pointing out here that even the first step in transforming a matrix
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A to its companion (or rational canonical) form can fail over Z, since no nonzero
vector v need exist with the property that {v,Av} can be included in an integral
basis. For example, if A ≡ aI mod p for some a ∈ Z, and some prime p with
(p, n) = 1, it is impossible for A to be integrally similar to a matrix with a zero
on the diagonal, since if so, reading mod p yields a nonscalar matrix similar to aI
over GF (p). Deciding whether two elements A,B ∈M2(Z) are integrally similar
can be done using the continued fraction algorithm or the fact that PSL(2,Z)
is isomorphic to the free product C(2) ∗ C(3) of the cyclic groups of order 2, 3,
respectively and that the conjugacy problem is algorithmically solvable in the
free product. See Campbell and Trouy [C-T]. A discussion of the conjugacy prob-
lem for GL(n,Z) (n ≥ 2) and some other arithmetic groups can be found in
Grunewald [GRU]. See also Gustafson [GUS].

3. Additive commutators. Let F be a field and let A ∈ Mn(F ) with trA
= 0. Albert and Muckenhoupt [A-M] proved that A is an additive commutator
PQ − QP for some P,Q ∈ Mn(F ). This is the (much easier) additive analogue
for the Lie algebra sln(F ) of Thompson’s result for the group SL(n, F ) discussed
in Section 1. Suppose A ∈ Mn(F ) is not scalar. Choose a vector v with v, Av
linearly independent and set v1 = v, v2 = Av and extend to a basis v1, v2, . . . , vn

of Fn. Using this basis we see that A is similar to a matrix with its (1, 1) entry
0. Using induction one obtains the following result.

Theorem 4. Let F be a field and A ∈Mn(F ) nonscalar with trA = 0. Then
A is similar to an element B = (bij) ∈Mn(F ) with b11 = . . . = bnn = 0.

Several improvements of this result are known for large fields. For example,
if F is the complex field C, Gaines [GAI] and Fillmore [F] proved that the zero
diagonal form can be achieved using a unitary similarity. Choi, Laurie and Radjavi
[C-L-R] proved that if F = C, trA = 0 and rank A≥ 2, then A is similar to a
matrix B as above with zero diagonal and all off-diagonal entries nonzero. [Related
to this is a result of Gaines [GAI] establishing that a nonscalar matrix A over an
infinite field F is similar to one with all its entries nonzero.] West and the present
author [L-W] have proved that if F has at least seven elements and A ∈ Mn(F )
is nonscalar, has trace zero and rank at least two, then A is similar over F to a
matrix B = (bij) with the diagonal of B equal to zero, and all the entries bi,i+1,
bi+1,i (i = 1, . . . , n − 1) nonzero. Writing BL, respectively BU , for the matrices
obtained from B by replacing the entries bij (j > i), respectively bij (i > j), by
0, we see that

B = BL +BU = BL − (−BU )
is the sum and difference of similar nilpotent matrices.

Suppose R is a ring and A ∈ Mn(R) has trace 0. It is a natural question to
ask whether A must be expressible in the form PQ − QP with P,Q ∈ Mn(R).
Taking x, y, z to be commuting indeterminates over a field F , it is not hard to
show that A =

(
x y
z −x

)
cannot be expressed in this way over the polynomial ring
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F [x, y, z]. The problem is, however, of great interest over Z and certain principal
ideal domains. See [LIS1].

If R is a Euclidean ring and A ∈ M2(R) has trace zero, then one can deduce
that A can be expressed as a commutator PQ−QP with P,Q ∈M2(R) from the
fact that every element in Z3 can be expressed as a vector cross-product u×v with
u, v ∈ Z3. This latter fact follows from the unimodular row lemma. It appears
to have been initially observed by Hermite and had been studied by Lissner
([LIS1], [LIS2]), and his work has been further extended by Towber [TOW]. (I am
grateful to Irving Kaplansky for this reference.) It was independently discovered
by Vaserstein [VAS]. The problem for n > 2 requires a different approach and
Vaserstein [VAS] poses the problem of whether every A ∈ Mn(Z) (n ≥ 3) with
trace zero can be expressed as a commutator.

This has now been answered affirmatively by the author and his student
Robert Reams. The method used is as follows: Using the corresponding result
for fields, one shows that if A ∈ Mn(Z) with trA = 0, there exists a positive
integer k such that kA = PQ − QP for some P,Q ∈ Mn(Z). One chooses such
a representation with smallest possible k and if k > 1, one chooses a prime
divisor p of k. If P or Q is nonderogatory when regarded as an element of
Mn(GF (p)), one shows that such a representation exists with k replaced by k/p
giving a contradiction and thus forcing k = 1 as required. If neither P nor Q
is nonderogatory in Mn(GF (p)), then by studying the centralizer of Q, one at-
tempts to replace P by a matrix P0 with P0 mod p nonderogatory. When this
strategy fails, an analysis of the situation where P mod p has minimal polyno-
mial of degree n − 1 is used to complete the (lengthy) proof. See [L-R] for
details.

4. Factorizations preserving forms. Let F be a field and let A ∈Mn(F ).
It is well known (and the result is sometimes attributed to Frobenius) that A
can be written as the product ST of two symmetric matrices with one, S say,
invertible. The standard proof uses the rational canonical form and the fact that
the result holds for companion matrices. In fact, if

f(x) = xn − bn−1x
n−1 − . . .− b0

and the corresponding companion matrix

C(f) =



0 1 0 . . . . . . . . . . . . . . . 0
0 0 1 0 . . . 0
...

. . . .
......

. . . . 0
0 . . . . . . . . . . . . . . . . 0 1
b0 b1 . . . . . . . . . . . . bn−2 bn−1


one defines
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V (f) =



−b1 −b2 . . . . . . . . . . . . . −bn−1 1
−b2 −b3 · · · −bn−1 1 0

−b3 . . . .
1 0 0

. . . .
. . . . ...

−bn−1 . . . . ...
1 0 . . . . . . . . . . . . . . . . . . . . . . 0


and observes that V (f)C(f) is symmetric so C(f) = (V (f))−1(V (f)C(f)) is the
product of two symmetric matrices. This ingenious trick appears to have been
first discovered by Williamson in the 1930s and has been rediscovered by several
authors since. Because of the large number of zeros in V (f), the argument enables
one to get information on the signature of S when a matrix A is expressed as ST
with S, T symmetric and S invertible. See [LAF3] for details.

Since A = ST , with S, T symmetric and S invertible, S−1AS = TS = AT , so
A is similar to its transpose via a symmetric matrix. If A is nonderogatory and
we also have L−1AL = AT , then LS−1 commutes with A, so L = g(A)S for some
polynomial g(x) ∈ F [x]. But AS = SAT implies that g(A)S = ST g(AT ) = LT ,
so L is symmetric. Hence every matrix which transforms A to AT in this case is
symmetric. A novel proof of this result was discovered by Taussky and Zassenhaus
[T-Z] who proved by dimension arguments that for A nonderogatory, every matrix
solution X of the linear system AX −XAT = 0 is symmetric.

In discussing many similarity results, symmetric matrices and involutions ap-
pear to play dual roles. In Section 1, we have discussed factorization involving
involutions. A new factorization combining symmetric matrices and involutions
was obtained by Gow [GOW1]. He proved that if F does not have characteristic 2
and A ∈ GL(n, F ), then A = SJ with S symmetric and J an involution. This
result is best thought of in terms of congruence. Two elements H,K ∈ Mn(F )
are congruent if there exists P ∈ GL(n, F ) with K = PTHP . The study of con-
gruence over general fields is much more difficult than the study of similarity and
no satisfactory canonical form is known. See Ballantine and Yip [B-Y], Riehm
[RIE] and Waterhouse [WAT] for a number of results in this area. Gow’s result
can be stated in the equivalent form: if A ∈ GL(n, F ), then A is congruent to
AT and in fact AT = PTAP for some involution P . If the field F is algebraically
closed (and of characteristic not two), then from A = SJ with S symmetric and
J2 = I, we deduce that A is congruent to S1/2JS−1/2 where we denote by S1/2 a
symmetric square root of S, so A is congruent to an involution. More generally,
if S is congruent to the identity matrix, say S = RTR, then RTAR = R−1JR is
an involution. This situation occurs not only if the field F is algebraically closed
but also if F = R, the field of real numbers, and S is positive definite, or if F is
finite and detS is a square.

In these cases the problem of congruence is reduced to considering congruence
on the conjugacy classes of involutions. In fact, the arguments of Gow and the
author [G-L] show that in Gow’s factorization theorem, J may be chosen in the
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conjugacy class of

diag(1, . . . , 1,︸ ︷︷ ︸
k

−1, . . . ,−1︸ ︷︷ ︸
n−k

)

where k = [(n+ 1)/2].
Gow and the author [G-L] have shown that an element A ∈ GL(n, F ) is the

product of two skew-symmetric matrices in GL(n, F ) if and only if n is even and
A is similar to a matrix of the form B⊕B with B ∈ GL(n/2, F ). The proof uses
the theory of bilinear forms and in particular, the theory of symplectic forms.
The key step is a proof of the following result.

Theorem 5. Let F be a field and let f , g be nonsingular symplectic (= alter-
nating) forms on a 2n-dimensional space V over F. Then V has a decomposition
of the form V1 ⊕ V2 where V1, V2 are common maximal isotropic (of dimension
n) subspaces for both forms.

Graham Higman proved in the late 1950s that if f , g is a pair of symplectic
forms as in the theorem, then f , g have a common maximal isotropic subspace
and Alperin [ALP] used the result to get bounds on the size of maximal abelian
subgroups of finite p-groups. To illustrate the connection here, suppose P is a
finite p-group with its commutator subgroup P ′ ≤ Z(P ) and elementary abelian
of order pk and that P/Z(P ) is elementary abelian of order pn. Let z1, . . . , zk be
a basis for P ′. Then we define P = P/Z(P ), u = uZ(P ) for u ∈ P , and

[x, y] = [x, y] =
k∏

i=1

z
fi(x,y)
i

where fi : Zp×Zp → Zp is a symplectic form (i = 1, . . . , k) on the space P . Note
that x, y commute if and only if x, y belong to a common isotropic subspace for
all the forms fi. The case k = 1 arises when P is an extraspecial p-group and
we conclude that n = 2m is even and that all maximal abelian subgroups of P
have order pm+1 (cf. Huppert [HUP], III, (13.7)). In the case k = 2, Theorem 5
implies that P has maximal abelian subgroups A1, A2 of order pm+2 such that
P = A1A2. To obtain a corresponding result for general k, it is necessary to know
the maximal dimension of a subspace isotropic with respect to k symplectic forms
on an n-dimensional vector space over a field F . For F algebraically closed, this
problem has been solved recently by Buhler, Gupta and Harris [B-G-H], using the
methods of algebraic geometry (in particular, the theory of Schubert varieties).
Their result is

Theorem 6. Let F be an algebraically closed field and let V be an n-dimen-
sional vector space over F and let f1, . . . , fk (k > 1) be symplectic forms on V.
Then V has a subspace U of dimension [(2n+ k)/(k+ 2)] on which all the fi are
isotropic. Furthermore, there is a set of k forms for which [(2n + k)/(k + 2)] is
the maximum dimension of such a subspace.
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For general fields F , they prove that the maximum dimension of a common
isotropic subspace is bounded above by the one obtaining in the algebraically
closed field case and thus they are able to use Theorem 6 to construct p-groups
with all their maximal abelian subgroups of relatively small order. In particular,
they prove that there exists a finite p-group (p > 2) of order pn with all its abelian
subgroups of order at most pd where d = [

√
8n+ 9−3]. In the opposite direction,

Burnside observed that if Q is a finite p-group and A is a maximal abelian normal
subgroup of Q, then |Q| ≤ h|A| where h is the p-part of |GL(k, F )|, F being the
field of p elements, and where |A| = pk, so |A| is at least p

√
2n where |Q| = pn.

By analogy with the result that every matrix is the product of two symmetric
matrices, it is proved in [LAF5] that if F is algebraically closed of characteristic
different from two, n > 2 is even and A ∈ GL(n, F ), then A is the product of
five skew-symmetric elements of GL(n, F ). The number “five” is best possible
here but no simple characterizations are available of products of three skew-
symmetric matrices (which is a property invariant under congruence) or of four
skew-symmetric matrices (which is a property invariant under similarity).

Over the field of real numbers R, every matrix A is the product of a positive
semidefinite symmetric matrix S and an orthogonal matrix V (this is the well-
known polar decomposition). Over the complex field C, the corresponding result
holds with “symmetric” replaced by “Hermitian” and “orthogonal” by “unitary”.
Choudhury and Horn [cC-H] considered the problem of determining whether a
matrix A ∈Mn(F ) (where F is an algebraically closed field of characteristic not
equal to two) can be factored as A = SV with S symmetric and V orthogonal
(that is, ST = S, V T = V −1). Clearly, if this occurs AAT = S2 is similar to
ATA = V −1S2V . They prove the decomposition holds if A ∈ GL(n, F ) and in
some other cases. The problem has recently been completely settled by Kaplansky
[KAP2] who shows that the condition thatAA′ andA′A be similar is also sufficient
for the decomposition. His proof uses the theory of bilinear forms in a clever
manner. The crucial result required is that if A ∈ Mn(F ) with AA′ nilpotent,
then AA′ has a symmetric square root if (and only if) AA′ is similar to A′A.

5. Relationship between multiplicative and additive commutators.
In this section, we write (P,Q) for the additive commutator PQ − QP of two
matrices P , Q.

Suppose F is a field and A ∈ M2(F ) with tr A = a, detA = b. The Cayley–
Hamilton theorem states that

A2 − aA+ bI = 0 ,

so if X ∈M2(F ), we have

(A2 − aA+ bI,X) = 0 .

This yields
(A,X)A+A(A,X)− a(A,X) = 0 ,
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so
(A,X)A = ((trA)I −A)(A,X) .

The matrix A2 = (trA)I − A is similar to A and if (A,X) is nonsingular, we
have A2 = (A,X)A(A,X)−1. Also (x2 − ax + b)I = (xI − A1)(xI − A2) where
A1 = A, and (A,X)2 is a scalar matrix for all X ∈ M2(F ). This relationship
between factorizing the characteristic polynomial of A as a product of linear
factors xI − B with B conjugate to A and additive commutators of the form
(A, Y ) can be generalized to n > 2.

For n = 3 and A ∈ M3(F ) with characteristic polynomial x3 − ax2 + bx − c,
we have for all X ∈M3(F ),

(A3 − aA2 + bA− cI,X) = 0 ,

so
A2C +ACA+ CA2 − a(AC + CA) + bC = 0

where C = (A,X).
If C−1 exists, we write D = C−1AC and the last equation becomes

D2 +DA+A2 − aD − aA+ bI = 0

and again taking the commutator with A, we obtain

D(D,A) + (D,A)D + (D,A)A− a(D,A) = 0 .

Assuming (D,A) is invertible, we thus have

(D,A)−1D(D,A) = aI −D −A
so (trA)I −D −A is similar to D via an element of the form (A, Y ).

A calculation essentially due to Wedderburn and given in Rowen [ROW] shows
that (D,A)3 is a scalar matrix. Using the Cayley–Hamilton theorem again, we
can replace (A,X)−1 and we deduce that if

P = ((A,X)2A(A,X)−A(A,X)3, A)

then P need not be scalar but P 3 is a scalar matrix for all A,X ∈ M3(F ). So
M3(F ) has a “cube central” central polynomial.

Meehan and the author [L-M1] have proved the following factorization result
for general n.

Theorem 7. Let F be an infinite field and let f(x) ∈ F [x] be a monic polyno-
mial of degree n. Let A1 be the companion matrix of f(x). Then there exists an
X ∈ Mn(F ) for which the following sequences are defined (that is, the requisite
matrices are invertible):

D1 = C1 = (A1, X), A2 = C−1
1 A1C1,

C2 = (A2, X), D2 = C1 + C2, A3 = D−1
2 A2D2 ,

and in general

Cr = (Ar, X), Dr = Dr−1 + Cr, Ar+1 = D−1
r ArDr for r = 1, 2, . . . , n− 1.
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For any such X, we have the identity

f(x)In = (xIn −A1) . . . (xIn −An) .

When F has characteristic zero, we can exhibit an example of such an X. We
can take X = D−1JD where J is the lower-triangular Jordan block with charac-
teristic polynomial (x− 1)n and D = diag((n− 1)!, (n− 2)!, . . . , 4!, 3!, 2!, 1!, 1).

As a result, we can deduce several consequences on the existence of conjugates
of a nonderogatory matrix A satisfying several identities. For example, by compar-
ing the coefficients of xn−1 and x0 we see that there exist conjugates A1, . . . , An

of A1 satisfying

(∗) A1 + . . .+An = (trA)In , A1A2 . . . An = (detA)In .

Example. If K = F (θ) is a field extension of degree n and K is Galois over
F and f(x) = Irr(θ, F, x), the (monic) irreducible polynomial satisfied by θ over
F , then all the roots of f(x) = 0 are of the form gi(θ) for some g(x) ∈ F [x], with
g1(x) = x.

So
f(x) = (x− θ)(x− g2(θ)) . . . (x− gn(θ)) .

If A is the companion matrix of f(x), then

f(x)In = (xIn −A)(xIn − g2(A)) . . . (xIn − gn(A))

and the factors xI − g2(A), . . . , xI − gn(A) are uniquely determined up to order.
In this example, the equations (∗) correspond to the evaluation of traceK/F (θ)
and NormK/F (θ).

In Theorem 7, the matrices A1, . . . , An cannot in general be taken to commute.
A necessary and sufficient condition for the existence of a factorization with com-
muting A1, . . . , An (with A1 the companion matrix of f(x)) over every field F
has been found [L-M2]. In the (very) special case of an irreducible polynomial
f(x), a factorization of f(x)In involving only commuting Ai exists if and only if
F [θ] is the splitting field of f(x), for θ any root of the equation f(x) = 0. In this
case, the factorization is the one described in the Example. Of particular interest
here is the case of finite fields F . In this case, every finite extension is Galois, so
we have a factorization of every irreducible polynomial of degree n over F using
commuting n× n matrices over F .
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