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NOTE ON THE GALOIS MODULE
STRUCTURE OF QUADRATIC EXTENSIONS

BY

GÜNTER LETTL (GRAZ)

In this note we will determine the associated order of relative extensions
of algebraic number fields, which are cyclic of prime order p, assuming that
the ground field is linearly disjoint to the pth cyclotomic field, Q(p). For
quadratic extensions we will furthermore characterize when the ring of inte-
gers of the extension field is free over the associated order. All our proofs are
quite elementary. As an application, we will determine the Galois module
structure of Q(n)/Q(n)+ .

I. Let L/K be a finite Galois extension of algebraic number fields with
Galois group Γ , and denote the ring of integers of K (resp. L) by o (resp.
O). Then the associated order of L/K is defined by

AL/K = {α ∈ KΓ | α O ⊂ O},
where the group algebra KΓ operates on the additive structure of L. To
determine the Galois module structure of O with respect to K means to
describe O as a module over AL/K . One is especially interested in the
question whether O is free over AL/K (i.e. O ' AL/K). For more details
about this subject, consult [2, 5, 6].

Let us now suppose that Γ = 〈σ〉 is cyclic of prime order p with generator
σ and [K(ζp) : K] = ϕ(p), where ζp is a root of unity of order p and
ϕ denotes Euler’s totient function. Since Γ is abelian, there is a unique
maximal order M ⊂ KΓ . With our additional assumption on K, the only
primitive idempotents of KΓ are ε = 1

p

∑p−1
j=0 σj and 1− ε, so

M = oΓε⊕ oΓ (1− ε) = oε⊕ o(1− ε)⊕ o(σ − ε)⊕ . . .⊕ o(σp−2 − ε).

Let DL/K denote the different of L/K and a / o be minimal such that

aO ⊃ DL/K + pO.
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From the well known description of the different (see e.g. [4], Theorem 4.8)
one deduces that a = o if and only if L/K is at most tamely ramified.

Let TrL/K denote the trace from L to K.

Proposition 1. Let the notation be as above.

(i) The associated order of L/K is given by

AL/K =
{

a0ε +
p−1∑
j=1

aj(ε− σj−1)
∣∣∣ aj ∈ o and

p−1∑
j=0

aj ∈ pa−1
}

.

(ii) If O ' AL/K , then a is a principal ideal. Moreover , if x ∈ O and
t ∈ o with O = AL/K x and a = to, then TrL/K(x/t) is a unit in o.

(iii) If a = to is principal , then

(1) AL/K = oΓ

[
p

t
ε

]
= oΓ + oΓ

p

t
ε =

p−2⊕
j=0

oσj ⊕ o
p

t
ε.

P r o o f. (i) Obviously, oΓ ⊂ AL/K ⊂ M. Let α = a0ε +
∑p−1

j=1 aj(ε −
σj−1) ∈M be given with aj ∈ o. Then α ∈ AL/K if and only if

TrL/K

((
1
p

p−1∑
j=0

aj

)
x

)
∈ O

for all x ∈ O. This is equivalent to 1
p

∑p−1
j=0 aj ∈ D−1

L/K . Since pO+DL/K ⊂
p(

∑p−1
j=0 aj)−1O and by the minimality of a, this holds if and only if

∑p−1
j=0 aj

∈ pa−1.
(ii) Let x ∈ O with O = AL/Kx. Thus there exists an α ∈ AL/K with

1 = αx, and by part (i), α = a0ε +
∑p−1

j=1 aj(ε − σj−1) with aj ∈ o and∑p−1
j=0 aj = b ∈ pa−1. This yields

(2) 1 =
b

p
TrL/K(x)−

p−1∑
j=1

ajσ
j−1(x).

Since L = K ⊗o O = K ⊗o (AL/Kx) = KΓx, the conjugates of x are
linearly independent over K. Thus we can derive from (2) that aj = 0 for
all 1 ≤ j ≤ p− 1 and

(3) 1 =
b

p
TrL/K(x).

Suppose that bo $ pa−1. Then there exist a prime ideal q/o with bo⊂
pa−1q and a b∈pa−1\ pa−1q. But then (b/p)TrL/K(x)=b/b is not integral,
contradicting bε∈AL/K . Thus we have proved bo=pa−1, which implies that
a=(p/b)o is principal. The second assertion of (ii) follows now from (3).
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(iii) Assuming a = to and putting
∑p−1

j=0 aj = (p/t)b with some b ∈ o,
this assertion is easily verified.

If L/K is at most tamely ramified (so a = o), Proposition 1(iii) yields
AL/K = oΓ , which is of course well known. But furthermore, parts (ii) and
(iii) of the above proposition yield also for wildly ramified extensions the
following

Corollary. If O ' AL/K , then O is a free o-module of rank p.

II. Now we consider the quadratic case, i.e. p = 2. In this case we
can extend Proposition 1 to obtain a full characterization for O ' AL/K .
Our results should be compared with Theorems 4.1 and 6.1 in [3], where this
problem is considered under the additional conditions that L is an extension
with given Galois group (of order 4 or 8) over some subfield k ⊂ K, the class
number of k equals 1 and L/K is at most tamely ramified.

Proposition 2. Let L/K be a quadratic extension of number fields.
Then the following statements are equivalent :

(i) O ' AL/K .
(ii) There exist t, x ∈ O with t | 2, AL/K = oΓ [(1 + σ)/t] and O =

AL/Kx.
(iii) There exist t, x ∈ O with t | 2 such that TrL/K(x/t) is a unit in o

and O = o[x].

P r o o f. The equivalence of (i) and (ii) follows from Proposition 1.
For p = 2, (1) yields

(4) oΓ

[
1 + σ

t

]
= o⊕ o

1 + σ

t
.

Assume (ii). Proposition 1(ii) shows that TrL/K(x/t) is a unit, and
together with (4) we obtain O = ox + oTrL/K(x/t) = o[x].

Now assume (iii). Using (4) yields O = o[x] = ox ⊕ oTrL/K(x/t) =
oΓ [(1 + σ)/t]x, which proves (ii).

With t = 1, Proposition 2 immediately yields the following

Corollary. Let L/K be a quadratic extension of number fields which
is at most tamely ramified. Then O ' AL/K (= oΓ ) if and only if there
exists an x ∈ O such that O = o[x] and TrL/K(x) is a unit in o.

III. We will use Proposition 2 to describe the Galois module structure
of cyclotomic fields over their maximal real subfield. In all cases the ring of
integers turns out to be free over the associated order.
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Let 3 ≤ n ∈ N with n 6≡ 2 (mod 4), and ζ be a root of unity of order n.
Put L = Q(n) = Q(ζ) and K = L+ = Q(ζ + ζ−1).

Proposition 3. (i) If n 6= 4pα with p ∈ P and α ∈ N0, then

O = oΓζ.

(ii) If n = 4pα with 2 6= p ∈ P and α ∈ N, then

O = oΓ (1 + ζ).

(iii) If n = 2k with k ≥ 2, let t ∈ o be a generator of the prime ideal
dividing 2. Then

AL/K = oΓ

[
1 + σ

t

]
and O =

{
AL/K ζ if k ≥ 3,
AL/K (1 + ζ) if k = 2.

P r o o f. We always have O = o[ζ] = o[1 + ζ].
Now, TrL/Kζ = ζ+ζ−1 = ζ−1(1−(−ζ2)) is a unit in o if n 6= 4 pα (p ∈ P,

α ∈ N0), and generates the prime ideal dividing 2 in o for n = 2k (k ≥ 3).
Thus Proposition 2 yields (i) and (iii) for k ≥ 3.

For n = 4, TrL/K(1 + ζ) = 2, which completes the proof of (iii).
Finally, TrL/K(1 + ζ) = 2 + ζ + ζ−1 = (1 + ζ)(1 + ζ−1) is a unit in o if

n = 4pα with 2 6= p ∈ P and α ≥ 1, which yields (ii).

R e m a r k. In the same way, Proposition 2 yields for n = 2k with k ≥ 3:

(i) for K = Q(ζ − ζ−1):

O = oΓ

[
1 + σ

t

]
ζ

with t as in Proposition 3(iii);
(ii) for K = Q(ζ2):

O = oΓ

[
1 + σ

2

]
(1 + ζ),

which already follows from [1], Theorem I.4.1.
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