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Introduction. The importance of vector measures in modern analysis
is well established. The theory is particularly well developed in the Banach
space setting; see, for example, [3, 4] and the references therein. Just as
important is the setting of locally convex spaces (briefly, lcs), where many
classical problems have their natural formulation. For example, this is the
case for summability of series, spectral theory and resolutions of the identity
of normal and, more generally, spectral operators, moment problems, Stone’s
theorem for representation of certain groups of operators, control theory, and
so on; see [7, 8, 13], for example, and the references therein. The theory in
such spaces is generally not attained from the Banach space case by simply
replacing norms with seminorms; genuinely new phenomena and difficulties
arise.

An important aspect of the theory is the integration map. Associated
with each X-valued vector measure µ, with X a lcs, is its integration map
Iµ : L1(µ) → X given by f 7→

∫
f dµ, for every f ∈ L1(µ). Here L1(µ) is

the space of all scalar-valued, µ-integrable functions; it is a lcs for the mean
convergence topology (see Section 1). Many classical operators, such as
the Fourier transform, certain integral operators (e.g. Volterra), represen-
tations for Boolean algebras of projections (arising from normal operators
or spectral operators) and so on, can be viewed as integration maps Iµ (or
restrictions of such maps) for suitable measures µ and spaces X. Properties
of the operator Iµ, which is always linear and continuous, are closely related
to the nature of the lcs L1(µ). One of the difficulties is the lack of knowl-
edge about the space L1(µ), even for particular measures µ (e.g. the dual
space of L1(µ)). Moreover, certain basic properties of L1(µ) which always
hold in the Banach space setting (e.g. completeness, existence of a control
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measure) become delicate problems for more general spaces X (see [8], for
example). Such difficulties concerning L1(µ) are often transferred to the op-
erator Iµ. For example, if X is a reflexive Banach space, then Iµ is always
weakly compact. For a reflexive lcs X this need no longer be the case in
general, where now weak compactness is meant in the sense of Grothendieck,
that is, the image of some neighbourhood of zero (in the domain space) is
relatively weakly compact (in the range space). Accordingly, known com-
pactness properties of integration maps in the Banach space setting [11] are
no automatic guides as what to expect in the lcs setting. The aim of this
note is to investigate certain compactness properties of integration maps
with values in a lcs.

Section 1 collects together some basic facts and notions needed in the
sequel. In particular, the notion of an X-valued measure µ factoring through
another space Y is introduced; see Definition 1.6. This notion is fundamental
to the main result of Section 2 (viz. Theorem 2.1) which states that the
integration map Iµ : L1(µ) → X is weakly compact if and only if there
exist a quasicomplete lcs Y and a continuous linear map j : Y → X such
that Y is a dense subspace of the projective limit of reflexive Banach spaces,
the measure µ factors through Y and the integration map Iν : L1(ν) → Y
(where µ = j ◦ ν) is weakly compact. If X happens to be complete, then Y
can be chosen to be complete. Moreover, if the lcs X is a Fréchet space (i.e.
metrizable), then Y can be chosen to be a (single) reflexive Banach space.
This shows that the corresponding (known) result for X a Banach space [11;
Proposition 2.1] has an “exact analogue” for Fréchet spaces X. However,
it is not always possible to choose a single reflexive Banach space Y for a
general non-metrizable lcs X (see Example 3.6).

In the final section we exhibit some examples. In particular, a charac-
terization is given of those resolutions of the identity of spectral operators
(e.g. normal operators) which have compact or weakly compact integration
maps; they are precisely those measures which assume only finitely many
values (cf. Proposition 3.8)!
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and the second author the support of an Alexander von Humboldt Fellow-
ship.

1. Preliminaries and basic results. All vector spaces to be considered
are over the scalar field, either real or complex. The continuous dual space
of a locally convex Hausdorff space X (briefly, lcHs) is denoted by X ′. The
set of all continuous seminorms on X is denoted by P(X); it is directed with
respect to the natural order. The space X equipped with its weak topology
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σ(X, X ′) is denoted by Xσ(X,X′). The space X ′ equipped with its weak-star
topology σ(X ′, X) is denoted by Xσ(X′,X).

A sequence of vectors xn ∈ X, n = 1, 2, . . . , is said to be summable in
X if there exists a vector x ∈ X such that limN→∞ p(x −

∑N
n=1 xn) = 0

for every p ∈ P(X). A sequence in X is called unconditionally summable if
each of its subsequences is summable in X.

A subset H of X ′ is called total if it separates points of X.
We adopt the notation: 〈x′, x〉 = x′(x) for every x′ ∈ X ′ and x ∈ X.

Given an X-valued set function m on a σ-algebra of sets and an element x′ ∈
X ′, let 〈x′,m〉 denote the set function defined by 〈x′,m〉(E) = 〈x′,m(E)〉
for every set E in the domain of m.

Lemma 1.1 ([13; Proposition 0.1]). The following statements on a total
subset H of X ′ are equivalent.

(i) A sequence of vectors in X is unconditionally summable if and only
if it is so with respect to the topology σ(X, H).

(ii) An X-valued set function m on a σ-algebra is σ-additive if and only
if the scalar-valued set function 〈x′,m〉 is σ-additive for every x′ ∈ H.

A total subset H of X ′ is said to have the Orlicz property if it satisfies
either (i) or (ii) of Lemma 1.1; see [13; §0]. The Orlicz–Pettis lemma (cf.
[8; Theorem I.1.3]) can be rephrased to state that X ′ itself has the Orlicz
property. For the Banach space case, the following result holds.

Lemma 1.2 ([3; Corollary I.4.7]). In the case when X is a Banach space,
every total subset of X ′ has the Orlicz property if and only if X has no
isomorphic copy of the Banach space `∞.

Let S be a σ-algebra of subsets of a non-empty set Ω. Let µ : S → X
be a vector measure, i.e. a σ-additive set function.

For every x′ ∈ X ′, the total variation measure of the scalar measure
〈x′, µ〉 is denoted by |〈x′, µ〉|. Given p ∈ P(X), let U0

p = {x′ ∈ X ′ :
|〈x′, x〉| ≤ 1, x ∈ p−1([0, 1])}. The p-semivariation of µ is the set func-
tion p(µ) on S defined by

p(µ)(E) = sup{|〈x′, µ〉|(E) : x′ ∈ U0
p}, E ∈ S.

For every E ∈ S, let E ∩ S = {E ∩ F : F ∈ S}. The following result is
well-known (cf. [3; Proposition I.1.11]).

Lemma 1.3. For every p ∈ P(X) and E ∈ S,

sup
F∈E∩S

p(µ(F )) ≤ p(µ)(E) ≤ 4 sup
F∈E∩S

p(µ(F )).

A scalar-valued, S-measurable function f on Ω is said to be µ-integrable
if it is 〈x′, µ〉-integrable for every x′ ∈ X ′ and if there is a unique set function
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fµ : S → X such that

〈x′, (fµ)(E)〉 =
∫
E

f d〈x′, µ〉, x′ ∈ X ′, E ∈ S.

In this case, fµ is also σ-additive by the Orlicz–Pettis lemma, and will be
called the indefinite integral of f with respect to µ. We also use the classical
notation ∫

E

f dµ = (fµ)(E), E ∈ S.

The vector space of all µ-integrable functions on Ω will be denoted
by L1(µ). A µ-integrable function is called µ-null if its indefinite inte-
gral is the zero vector measure. We denote by N (µ) the subspace of L1(µ)
consisting of all µ-null functions.

For every p ∈ P(X), the seminorm f 7→ p(fµ)(Ω), f ∈ L1(µ), will be
denoted also by p(µ). The space L1(µ) will be equipped with the locally
convex topology defined by the seminorms p(µ), p ∈ P(X) . This topology
is called the mean convergence topology . The lcHs associated with L1(µ) is
the quotient space L1(µ)/N (µ).

Lemma 1.4 ([10; Theorem 2.4]). Suppose that the lcHs X is sequen-
tially complete. Then a scalar-valued , S-measurable function f on Ω is
µ-integrable if and only if there exist scalar-valued S-simple functions fn

on Ω, n = 1, 2, . . . , which are µ-almost everywhere convergent to f , such
that the sequence {(fnµ)(E)}∞n=1 is Cauchy in X for every E ∈ S. In this
case ∫

E

f dµ = lim
n→∞

∫
E

fn dµ, E ∈ S.

The following result will be needed in Section 3.

Lemma 1.5. Let X be a Banach space and µ : S → X be a vector
measure. Then the following statements are equivalent.

(i) The range µ(S) of µ is an infinite subset of X.
(ii) There exist infinitely many pairwise disjoint , non-µ-null sets in S.
(iii) There exists a µ-integrable function which is not µ-essentially

bounded.

P r o o f. (i)⇒(ii). Statement (ii) follows from (i) because there exists a
non-µ-null set E ∈ S which can be partitioned into infinitely many pairwise
disjoint non-µ-null subsets.

(ii)⇒(i). The σ-additivity of µ shows that it is impossible for µ to take
the same non-zero value on infinitely many pairwise disjoint, non-µ-null sets.
Accordingly, µ(S) must be an infinite set.
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(ii)⇒(iii). Let ‖µ‖ denote the semivariation of µ. If {En}∞n=1 is a se-
quence of pairwise disjoint, non-µ-null sets in S, then we can choose a sub-
sequence {En(k)}∞k=1 such that ‖µ‖(En(k)) < k−3 for each k = 1, 2, . . . Then
the function

∑∞
k=1 kχEn(k) is µ-integrable, but not µ-essentially bounded.

(iii)⇒(ii). Let f ∈ L1(µ) be a function which is not µ-essentially
bounded. Define pairwise disjoint sets En = {ω ∈ Ω : n < |f(ω)| ≤ n + 1},
for all n = 1, 2, . . . Since f is not µ-essentially bounded, there must be a
subsequence {En(k)}∞k=1 consisting entirely of non-µ-null sets.

The integration map Iµ : L1(µ) → X is defined by

Iµ(f) = (fµ)(Ω) =
∫
Ω

f dµ, f ∈ L1(µ).

It is clear that Iµ is linear and continuous.

Definition 1.6. The vector measure µ : S → X is said to factor
through a lcHs Y if there exist a vector measure ν : S → Y and a continuous
linear map j : Y → X such that

(F1) L1(µ) = L1(ν) as locally convex spaces,
(F2) N (µ) = N (ν) as sets, and
(F3) Iµ = j ◦ Iν .

In this case we say that µ factors through Y via ν and j.
Consider the following condition, which is weaker than (F1):

(F1)′ L1(µ) = L1(ν) as vector spaces.

If X and Y are Banach spaces, then (F1) can be replaced by (F1)′ because
(F1)′, (F2) and (F3) jointly imply (F1) by the open mapping theorem; see
[11; Section 1]. This is not the case in general. To see this, let N denote the
positive integers and 2N its power set (which is a σ-algebra).

Example 1.7. Let X = `1σ(`1,c0)
and Y be the Banach space `1. Let

ν : 2N → Y be the vector measure defined by ν(E) =
∑

n∈E n−2 en, for
every E ∈ 2N, where {en}∞n=1 is the usual basis for Y . Let j : Y → X be the
identity map and let µ = j ◦ ν. Then L1(µ) and L1(ν) are the same vector
space consisting of all scalar functions f on N satisfying

∑∞
n=1 |f(n)|n−2

<∞. So (F1)′ holds. Clearly N (µ) =N (ν) = {0}. The condition (F3) is
obvious. However, (F1) is not valid. In fact, if (F1) were valid, then L1(µ)
would be normable because L1(ν) is. Hence, there would exist a vector
ξ= (ξn)∞n=1∈c0 satisfying ξn >0 for every n∈N such that L1(µ)=L1(〈ξ, µ〉).
This contradicts the fact that L1(µ) is strictly smaller than L1(〈ξ, µ〉).

Let j be a continuous linear map from a lcHs Y into a lcHs X and
j′ : X ′ → Y ′ be its adjoint map, that is, 〈j′(x′), y〉 = 〈x′, j(y)〉, x′ ∈ X ′,
y′ ∈ Y ′. If j is injective, then j′(X ′) is a total subset of Y ′.
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Proposition 1.8. Let X be a sequentially complete lcHs and µ : S → X
be a vector measure. Suppose that Y is a linear subspace of X containing the
vector space Iµ(L1(µ)) and equipped with a locally convex topology stronger
than that induced by X, with respect to which Y is sequentially complete.
Let j : Y → X be the natural injection. If the total subset j′(X ′) of Y ′ has
the Orlicz property , then the set function ν : S → Y defined by j ◦ ν = µ is
σ-additive, and (F1)′, (F2) and (F3) hold.

Furthermore, if there is a neighbourhood V of 0 in L1(µ) such that Iν(V )
is a bounded subset of Y , then (F1) holds, so that µ factors through Y via
ν and j.

P r o o f. By the definition of the Orlicz property, ν is σ-additive. The
continuity of j implies that L1(ν) ⊂ L1(µ). To prove the converse, let
f ∈ L1(µ). We may assume that f is non-negative. Choose non-negative,
S-simple functions fn on Ω, n = 1, 2, . . . , such that

∑∞
n=1 fn = f pointwise

on Ω.
Let E ∈ S. By the Lebesgue dominated convergence theorem for vec-

tor measures [8; Theorem II.4.2], the sequence {fn}∞n=1 is unconditionally
summable in L1(µ) and hence, so is the sequence {(fnµ)(E)}∞n=1 in X. Since
fn ∈ L1(ν) and j ◦ (fnν)(E) = (fnµ)(E) for every n = 1, 2, . . . , and since
Iµ(L1(µ)) ⊂ Y , the sequence {(fnν)(E)}∞n=1 is unconditionally summable in
Y with respect to the topology σ(Y, j′(X ′)). The Orlicz property of j′(X ′)
implies that {(fnν)(E)}∞n=1 is unconditionally summable in Y . In particu-
lar, the sequence {

∑N
n=1(fnν)(E)}∞N=1 is Cauchy in Y . By Lemma 1.4, we

have f ∈ L1(ν). Hence (F1)′ holds. Now (F3) is clear. The injectivity of j
implies (F2).

To show the second statement, take any p ∈ P(X) such that

(1) {g ∈ L1(µ) : p(µ)(g) ≤ 1} ⊂ V.

Denote the left-hand-side of (1) by Vp. Let q ∈ P(Y ) be arbitrary. The
boundedness of Iν(Vp) in Y implies that

Iν(Vp) ⊂ Cq{y ∈ Y : q(y) ≤ 1},
for some constant Cq > 0. Let g ∈ L1(µ). If p(µ)(g) 6= 0, then it follows
easily that

(2) q(Iνg) ≤ Cqp(µ)(g).

If p(µ)(g) = 0, then αg ∈ Vp ⊂ V and so αIνg ∈ Iν(Vp), for all scalars α.
Since Iν(Vp) is bounded, this forces Iνg = 0 and so again (2) holds. Ac-
cordingly, (2) holds for every g ∈ L1(µ). It then follows from Lemma 1.3
that

(3) q(ν)(g) ≤ 4 sup
E∈S

q
( ∫

E

g dν
)
≤ 4Cqp(µ)(g), g ∈ L1(µ).
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This shows that the identity map Φ : L1(µ) → L1(ν) is continuous. On the
other hand, Φ−1 is continuous because j is continuous. Hence, (F1) holds.

2. Weakly compact integration maps. Throughout this section, let
X denote a quasicomplete lcHs and let µ denote an X-valued vector measure
on a σ-algebra S of subsets of a non-empty set Ω. Recall that the associated
integration map Iµ : L1(µ) → X is defined by Iµf = (fµ)(Ω) =

∫
Ω

fdµ, for
all f ∈ L1(µ).

The aim of this section is to establish the following characterization of
weak compactness of the integration map Iµ.

Theorem 2.1. The integration map Iµ : L1(µ) → X is weakly compact if
and only if there exist a quasicomplete lcHs Y , a vector measure ν : S → Y
and a continuous linear map j : Y → X such that

(i) Y is a dense subspace of the projective limit of reflexive Banach
spaces;

(ii) µ factors through Y via ν and j, and
(iii) the integration map Iν : L1(ν) → Y is weakly compact.

If the space X happens to be complete, then the space Y can be chosen
to be complete.

The “if” portion of the above theorem is clear. To prove the “only if”
portion, assume that Iµ is weakly compact. By definition, there is a convex
and balanced neighbourhood V of 0 in L1(µ) such that its image Iµ(V ) is
relatively weakly compact in X. We fix the set V and let K = Iµ(V ), in
which case K is also convex and balanced.

Let p ∈ P(X). Let Xp denote the completion of the quotient normed
space X/p−1({0}). The natural projection from X into Xp is denoted by
πp. We denote by Bp the closed unit ball of Xp. Given q ∈ P(X) satisfying
q ≥ p, let αpq : Xq → Xp be the continuous linear map satisfying αpq ◦
πq = πp. For every n = 1, 2, . . . , let pn denote the gauge of the subset
2nπp(K) + 2−nBp of Xp. Let Wp denote the space of elements wp of Xp

such that

(4)
( ∞∑

n=1

pn(wp)2
)1/2

< ∞.

For every wp ∈ Wp, let ‖wp‖ denote the left-hand side of (4). Then ‖ · ‖p is
a norm on Wp.

Lemma 2.2 ([2; Lemma 1]). Let p ∈ P(X). Then

(i) the normed space Wp is a reflexive Banach space;
(ii) the set πp(K) is contained in the closed unit ball of Wp;
(iii) the natural injection jp : Wp → Xp is continuous.
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Let p and q be continuous seminorms on X such that p ≤ q. For every
n = 1, 2, . . . , we have

αpq(2nπq(K) + 2−nBq) ⊂ 2nπp(K) + 2−nBp,

and hence

(5) ‖αpq(wq)‖p ≤ ‖wq‖q, wq ∈ Wq.

In other words, αpq(Wq) ⊂ Wp. Let βpq : Wq → Wp denote the restriction
of αpq to Wq. Then βpq is continuous by (5), and αpq ◦ jq = jp ◦ βpq.

The definition of projective limits can be found, for example, in [12;
p. 52]. Let W be the projective limit of the family of reflexive Banach spaces
{Wp : p ∈ P(X)} with respect to the maps βpq (p, q ∈ P(X), p ≤ q). That
is, W is the space of elements (wp)p∈P(X) of the product space

∏
p∈P(X) Wp

such that wp = βpq(wq) whenever p, q ∈ P(X) satisfy p ≤ q, and the
topology of W is induced by

∏
p∈P(X) Wp. Then W is complete because

so is Wp for every p ∈ P(X). By kp : W → Wp is denoted the natural
projection, for every p ∈ P(X).

The space X will be identified with a dense subspace of its completion
X̂ which is realized as the projective limit of the family of Banach spaces
{Xp : p ∈ P(X)} with respect to the maps αpq (p, q ∈ P(X), p ≤ q). With
this identification, the set K will be identified with the subset

{(πp(x))p∈P(X) : x ∈ K}

of X ⊂ X̂ ⊂
∏

p∈P(X) Xp. Then K is contained in W because πp(K) ⊂ Wp

for every p ∈ P(X).
Let the linear space Y = X ∩W be equipped with the topology induced

by W . Clearly K ⊂ Y . The space Y may not be dense in W . So, consider
the closure Z of Y in W and the closure Zp of kp(Y ) in Wp, for every
p ∈ P(X). For seminorms p, q ∈ P(X) such that p ≤ q, let γpq : Zq → Zp be
the restriction of βpq to Zq. Equip Z and Zp, p ∈ P(X), with the topologies
induced by W and Wp, p ∈ P(X), respectively. Then Zp is a reflexive
Banach space for every p ∈ P(X). Furthermore, Z is the projective limit
of the family {Zp : p ∈ P(X)} with respect to the maps γpq (p, q ∈ P(X),
p ≤ q). Then Y is a dense subspace of the complete space Z, and Y = X∩Z.

Lemma 2.3. The lcHs Y is quasicomplete and K is a relatively weakly
compact subset of Y.

P r o o f. An arbitrary bounded Cauchy net in Y has a limit z in the
complete space Z and a limit x in the quasicomplete space X. Since the
topologies on X and Z are stronger than or equal to those induced by the
Hausdorff space X̂, we conclude that x = z, which is a member of Y . Hence,
Y is quasicomplete.
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The subset K of Y is homeomorphic to a subset of
∏

p∈P(X) πp(K) which
is relatively weakly compact in the product space

∏
p∈P(X) Zp (cf. [12; The-

orem IV.4.3]); hence, K is relatively weakly compact in the quasicomplete
space Y .

Let j : Y → X denote the natural injection; then j′(X ′) is a total subset
of Y ′.

Lemma 2.4. The subset j′(X ′) of Y ′ has the Orlicz property.

P r o o f. Suppose that m is a Y -valued set function defined on a σ-
algebra of subsets of a non-empty set such that 〈j′(x′),m〉 is σ-additive for
every x′ ∈ X ′. Then the X-valued set function j ◦ m is σ-additive by the
Orlicz–Pettis lemma.

Let p ∈ P(X). Recall that kp : W → Wp is the natural projection. Since
πp ◦ j ◦m = jp ◦ kp ◦m, the Xp-valued set function jp ◦ kp ◦m is σ-additive.
In other words, 〈j′p(x′p), kp ◦ m〉 is σ-additive for every x′p ∈ X ′

p. Since the
reflexive Banach space Zp has no isomorphic copy of `∞, it follows from
Lemma 1.2 that j′p(X

′
p) has the Orlicz property, so that kp ◦m is σ-additive.

Since p is arbitrary, we deduce the σ-additivity of m and the statement of
the lemma follows.

P r o o f o f T h e o r e m 2.1. To show the “only if” portion, we have fixed
a convex, balanced neighbourhood V of 0 in L1(µ) whose image K =Iµ(V )
is relatively weakly compact in X. The space Y clearly satisfies statement (i).

Since V is absorbing and since Iµ(V ) = K ⊂ Y , we have Iµ(L1(µ)) ⊂ Y .
Let ν : S → Y be the set function defined by j ◦ ν = µ; then ν is

σ-additive by Lemma 2.4. Statement (ii) follows from Proposition 1.8.
Statement (iii) is a consequence of (ii) and Lemma 2.3.
Finally, suppose that X is complete. Then Y = X ∩W = X̂ ∩W = W .

So, the second half of Theorem 2.1 holds. This completes the proof of the
theorem.

R e m a r k 2.5. If the space X happens to be a Fréchet space, then there
exists a reflexive Banach space Y such that the statement of Theorem 2.1
is valid. This can be proved as in [11; Proposition 2.1] by applying [2;
Remark 2]. In the general case, there exists a vector measure µ which
does not factor through any reflexive Banach space while its associated
integration map Iµ is weakly compact (see Example 3.6).

R e m a r k 2.6. The statement of Theorem 2.1 is still valid if we re-
place “weakly compact” by “compact” there. For, suppose that Iµ is com-
pact. Take a convex, balanced neighbourhood V of 0 in L1(µ) whose image
K = Iµ(V ) is a relatively compact subset of X. Then πp(K) is a relatively
compact subset of Wp (cf. [1; Theorem 17.19]) and hence of Zp for every
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p ∈ P(X). Therefore K is relatively compact in Y because it is homeomor-
phic to a subset of the relatively compact set

∏
p∈P(X) πp(K) in

∏
p∈P(X) Zp

and because Y is quasicomplete. The converse statement is clear.

3. Examples. Given a vector measure µ, the space L1(µ) of all
µ-integrable functions will be identified with its associated Hausdorff space
L1(µ)/N (µ) in order to make the presentation simpler.

We begin with two “concrete” examples; in both S denotes the σ-algebra
of Borel subsets of the unit interval Ω = [0, 1], λ is Lebesgue measure on S
and ‖ · ‖1 is the usual norm in L1(λ).

Example 3.1. Let X = `1σ(`1,c0)
, in which case X is quasicomplete and

semireflexive. Let µ : S → X be the vector measure given by

µ(E) =
(
n−2
∫
E

tn−1 dt
)∞

n=1
, E ∈ S.

Then an S-measurable function f : Ω → C belongs to L1(µ) if and only if∑∞
n=1 n−2

∫ 1

0
tn−1|f(t)| dt is finite, in which case∫

E

f dµ =
(
n−2
∫
E

tn−1f(t) dt
)∞

n=1
, E ∈ S.

Each element ξ = (ξn)∞n=1 of c0 = X ′ determines a seminorm qξ for the
topology of X given by

qξ(x) = |〈ξ, x〉|, x ∈ X.

This seminorm then induces a continuous seminorm qξ(µ) on L1(µ) (for the
definition, see Section 1).

Now let ξ = (1, 0, 0, . . .). Then

qξ(µ)(f) =
1∫

0

|f(t)| dt = ‖f‖1, f ∈ L1(µ),

so that Vξ = {f ∈ L1(µ) : ‖f‖1 ≤ 1} is a neighbourhood of 0 in L1(µ).
Accordingly, the integration map Iµ : L1(µ) → X satisfies

Iµ(Vξ) =
{ 1∫

0

f dµ : f ∈ L1(µ), ‖f‖1 ≤ 1
}

.

Let Y denote the Banach space `1 with the usual norm ‖ · ‖Y . Then, with
C =

∑∞
n=1 n−2, it follows that∥∥∥ 1∫
0

f dµ
∥∥∥

Y
=

∞∑
n=1

n−2
1∫

0

tn−1|f(t)| dt ≤ C‖f‖1, f ∈ L1(µ),
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and hence, Iµ(Vξ) ⊂ C{y ∈ Y : ‖y‖Y ≤ 1} is a norm bounded set in Y
(and, of course, a bounded set in X). The Banach–Alaoglu theorem implies
that Iµ(Vξ) is relatively compact (= weakly compact) in X. That is, Iµ is
compact (= weakly compact).

Example 3.2. Let X = CN, equipped with the seminorms given by

qn : x 7→ max
1≤r≤n

|xr|, x = (xi)∞i=1 ∈ X,

for all n = 1, 2, . . . Then X is a separable, reflexive Fréchet space. The set
function µ : S → X given by

µ(E) =
( ∫

E

tn−1 dt
)∞

n=1
, E ∈ S,

is a vector measure. Since
∫

E
f dµ = (

∫
E

tn−1f(t) dt)∞n=1, for every E ∈ S
and f ∈ L1(µ), it is clear that L1(µ) and L1(λ) coincide as vector spaces.
A direct computation shows that

qn(µ)(f) ≤ 4‖f‖1 = 4q1(µ)(f), f ∈ L1(µ),

for each n = 1, 2, . . . Accordingly, L1(µ) and L1(λ) are isomorphic.
Now let V = q1(µ)−1([0, 1]), which is a bounded neighbourhood of 0 in

L1(µ). Its image Iµ(V ) under the integration map Iµ : L1(µ) → X is a
bounded subset of the Montel space X, so that Iµ(V ) is relatively compact
in X. Therefore, Iµ is compact (= weakly compact).

We wish to exhibit a vector measure µ for which Iµ is weakly compact,
but µ does not factor through any reflexive Banach space. First a prelimi-
nary result is needed.

Definition 3.3. Let T be a continuous linear map from a lcHs U into
a lcHs W . We say that T factors through a lcHs Z if there exist continuous
linear maps R : U → Z and S : Z → W such that T = S ◦R.

R e m a r k 3.4. If a vector measure µ : S → X factors through a lcHs Y
(cf. Definition 1.6), then the associated integration map Iµ : L1(µ) → X
also factors through Y . Indeed, let ν : S → Y and j : Y → X be as in
Definition 1.6. By (F1) there is a bicontinuous isomorphism Φ : L1(µ) →
L1(ν) and hence, R = Iν ◦ Φ is continuous from L1(µ) into Y . Then Iµ =
S ◦R (where S = j) is a factorization of Iµ through Y .

Lemma 3.5. Let the lcHs X be a non-reflexive Pták space. Let T be a
bijective, continuous linear map from X onto a lcHs Y . Then T does not
factor through any reflexive Banach space.

P r o o f. Suppose that there is a reflexive Banach space Z and continuous
linear maps R : X → Z and S : Z → Y such that T = S ◦R. Without loss



12 S. OKADA AND W. J. RICKER

of generality we may assume that S is an injection. Otherwise, if π : Z →
Z/S−1({0}) is the quotient map and S : Z/S−1({0}) → Y is the continuous
linear map such that S ◦ π = S, then T = S ◦ R with S : Z → Y injective
and R = π ◦ R : X → Z, where Z = Z/S−1({0}) is again a reflexive
Banach space. Since T is surjective, so is S and hence, S is a bijection.
Accordingly, R = S−1 ◦ T is a bijection of the Pták space X onto Z. Since
Z is barrelled, R is a nearly open map and hence, R−1 is also continuous [12;
Corollary 1, p. 164], that is, R is a bicontinuous isomorphism of X onto Z,
which contradicts the fact that X is non-reflexive.

We note that every Fréchet lcs is a Pták space and hence, in particular,
Banach spaces are Pták spaces.

Example 3.6. The duality between the spaces c and `1 is given by

〈ξ, x〉 = (x1 lim
n→∞

ξn) +
∞∑

n=2

xnξn−1,

for every ξ = (ξn)∞n=1 ∈ c and x = (xn)∞n=1 ∈ `1 (cf. [9; §14.7]). Let
X = `1σ(`1,c), in which case X ′ = c. Let µ : 2N → X be the vector measure
defined by

µ(E) =
∑
n∈E

n−2 en, E ∈ 2N.

The associated integration map Iµ : L1(µ) → X is then bijective. Let
1 denote the member of c in which every coordinate is 1. Then the space
L1(µ) is isomorphic to the non-reflexive Pták space L1(〈1, µ〉). In particular,
L1(µ) is normable, so that Iµ is compact because every bounded subset of X
is relatively compact by the Banach–Alaoglu theorem. However, it follows
from Lemma 3.5 that Iµ cannot factor through any reflexive Banach space.
In other words, neither does µ.

We conclude this section by considering an important class of measures
arising in operator theory. Let X be a Banach space and L(X) be the space
of all continuous linear operators of X into X. With respect to the topology
of pointwise convergence in X (i.e. the strong operator topology), L(X) is
a quasicomplete lcHs; it is denoted by Ls(X). An operator-valued measure
is a set function P : S → L(X), where S is a σ-algebra of subsets of some
set Ω, which is σ-additive in Ls(X). If, in addition, P (Ω) = I (the iden-
tity operator in X) and P is multiplicative (i.e. P (E ∩ F ) = P (E)P (F ),
for all E,F ∈ S), then P is called a spectral measure. Examples of such
measures are provided by the resolution of the identity of any normal op-
erator T in a Hilbert space, where Ω = σ(T ) is the spectrum of T and S
is the σ-algebra of Borel subsets of σ(T ). Or, if X = Lp(λ), 1 ≤ p < ∞,
where λ : S → [0,∞] is some σ-additive measure, then the projection-



INTEGRATION MAPS 13

valued set function given by E 7→ P (E), E ∈ S, where P (E)f = χEf ,
for every f ∈ Lp(λ), is a spectral measure. The following result is needed
later.

Lemma 3.7. Let X be a Banach space and P : S → Ls(X) be a spectral
measure.

(i) Every P -integrable function is P -essentially bounded.
(ii) If the range P (S), of P , is a closed subset of Ls(X), then the lcHs

L1(P ) is complete and the integration map IP : L1(P ) → Ls(X) is a bicon-
tinuous isomorphism onto its range IP (L1(P )) ⊂ Ls(X), equipped with the
relative topology from Ls(X).

P r o o f. For part (i) see [6; Theorem XVIII.2.1]. Part (ii) follows from
[5; Propositions 1.4 and 1.5].

We can now provide a complete characterization of weakly compact in-
tegration maps associated with spectral measures.

Proposition 3.8. Let X be a Banach space and P : S → Ls(X) be
a spectral measure with range P (S) a closed subset of Ls(X). Then the
integration map IP : L1(P ) → Ls(X) is weakly compact if and only if its
range P (S) is a finite subset of L(X).

P r o o f. Suppose that P (S) is a finite subset of Ls(X). Then IP (L1(P ))
coincides with the closed linear span of P (S) because S-simple functions are
dense in L1(P ) (cf. Lemma 1.4). In particular, IP (L1(P )) is finite-dimen-
sional, so that IP is weakly compact.

Conversely, suppose that IP is weakly compact. Choose a neighbourhood
V of 0 in L1(P ) such that IP (V ) is relatively weakly compact in Ls(X).
By Lemma 3.7(ii) the range W = IP (L1(P )), equipped with the relative
topology from Ls(X), is a complete lcHs with a weakly compact neigh-
bourhood of 0. Accordingly, W is normable and hence, by completeness,
is a Banach space. So, we may consider P : S → W as a Banach space-
valued measure. By Lemma 3.7(i) the only P -integrable functions are the
P -essentially bounded ones. Therefore, Lemma 1.5 implies that P (S) is a
finite set.

R e m a r k 3.9. (i) The condition that the range P (S) be closed in Ls(X)
is automatically satisfied in separable Banach spaces X.

(ii) A simple consequence of Proposition 3.8 is that the integration map
of a spectral measure is weakly compact if and only if it is compact, which
happens if and only if it is nuclear.
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