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CONVERGENCE OF COMPOUND PROBABILITY
MEASURES ON TOPOLOGICAL SPACES

BY

JUN KAWABE (NAGANO)

1. Introduction. Let X and Y be topological spaces. In this paper, we
present a sufficient condition imposed on transition probabilities that assures
the weak convergence or the relative compactness of compound probability
measures µ ◦ λ defined by

µ ◦ λ(D) =
∫
X

λ(x,Dx) µ(dx)

for a measure µ on X and a transition probability λ on X × Y .
In information theory, a transition probability λ on X × Y is called

an information channel with input space X and output space Y , and for a
probability measure µ on X (which is called the input source) the compound
probability measure µ ◦ λ plays an important role (see, e.g., Umegaki [11]).

On the other hand, compound probability measures can be viewed as a
generalization of convolution measures. In fact, if X = Y is a topological
group and a transition probability λ is given by λ(x,B) = ν(Bx−1) for all
x ∈ X and all Borel subsets B of Y , where ν is a probability measure on X,
then the projection µλ of µ◦λ onto Y defined by µλ(B) = µ◦λ(X×B) is the
convolution measure µ ∗ ν. The weak convergence of convolution measures
has been looked into in great detail by Csiszár [2, 3].

In Section 2 we recall notations and necessary definitions and results
concerning probability measures on topological spaces, and in Section 3
we show that compound probability measures can be defined on the Borel
subsets of X × Y for continuous τ -smooth transition probabilities.

In Section 4 we present a sufficient condition that assures the weak con-
vergence of a net of compound probability measures, and also give a relative
compactness criterion for a set of compound probability measures which ex-
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tends Prokhorov’s compactness criterion for probability measures. In this
and the following sections, the equicontinuity of a set of transition proba-
bilities plays an important role.

In Section 5, for Gaussian transition probabilities we express the assump-
tions of our theorems of Section 4 in terms of the corresponding mean and
covariance functions. In Section 6 we give several examples and counter-
examples concerning the convergence and uniform tightness of compound
probability measures.

Throughout this paper, we suppose that all the topological spaces and
all the uniform spaces considered are Hausdorff.

2. Transition probabilities on topological spaces. Let X be a
topological space and B(X) be the σ-algebra of all Borel subsets of X. By
a Borel measure on X we mean a finite measure defined on B(X) and we
denote by P(X) the set of all Borel probability measures on X.

In this paper, the following concept of regularity for Borel measures is
useful. We say that a Borel measure µ on X is τ -smooth if for every increas-
ing net {Gα} of open subsets of X, we have µ(

⋃
α Gα) = supα µ(Gα). We

denote by Pτ (X) the set of all τ -smooth probability measures on X. Every
Radon measure is τ -smooth, and if X is regular every τ -smooth measure is
regular (see, e.g., Proposition I.3.1 of Vakhania et al. [12]). We also know
that if X is strongly Lindelöf, that is, every open cover of any open subset
of X has a countable subcover (this is satisfied, for instance, if X is a Suslin
space), then every Borel measure is τ -smooth (see, e.g., Proposition I.3.1 of
[12]). Here we recall that a topological space is called a Suslin space if it is
a continuous image of some Polish space (see Schwartz [9]).

If X is completely regular, we equip P(X) with the weakest topology for
which the functionals

P(X) 3 µ 7→
∫
X

f(x)µ(dx), f ∈ Cb(X),

are continuous. Here Cb(X) denotes the set of all bounded continuous real-
valued functions on X. This topology on P(X) is called the weak topology,
and we say that a net {µα} in P(X) converges weakly to a Borel probability
measure µ, and we write µα

w−→ µ, if

lim
α

∫
X

f(x) µα(dx) =
∫
X

f(x) µ(dx)

for every f ∈ Cb(X), and this is equivalent to the condition that for each
open subset G (resp. closed subset F ) of X,

lim inf
α

µα(G) ≥ µ(G) (resp. lim sup
α

µα(F ) ≤ µ(F )),
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provided that µ ∈ Pτ (X). It is known that the weak topology on Pτ (X)
is also completely regular, and hence it is uniformizable, that is, it can be
derived from a uniformity on Pτ (X) (see Topsøe [10, Theorem 11.2]).

Let us recall now Prokhorov’s criterion of weak relative compactness of
a set of probability measures which is a basic tool in the study of weak con-
vergence. A subset P of P(X) is said to be uniformly tight if for each ε > 0,
there exists a compact subset Kε of X such that µ(X−Kε) < ε for all µ ∈ P .
It is well known that if X is completely regular, every uniformly tight subset
of Pτ (X) is relatively compact in Pτ (X) (see, e.g., Theorem I.3.6 of [12]).
We say that a completely regular topological space X is a Prokhorov space if
the converse holds, that is, every relatively compact subset of Pτ (X) is uni-
formly tight. According to Prokhorov [8], every Polish space is a Prokhorov
space. See Fernique [4] for other examples of Prokhorov spaces.

Let X be a topological space and Y be a completely regular topological
space. A (Borel) transition probability λ on X×Y is defined to be a mapping
from X into P(Y ) which satisfies

(T1) for every B ∈ B(Y ), the function X 3 x 7→ λ(x,B) is Borel measur-
able.

Let µ ∈ P(X) and λ be a transition probability on X×Y which satisfies

(T2) for every D ∈ B(X × Y ), the function X 3 x 7→ λ(x,Dx) is Borel
measurable.

Here for a subset D of X×Y and x ∈ X, Dx denotes the section determined
by x, that is, Dx = {y ∈ Y : (x, y) ∈ D}. Then we can define a Borel
probability measure µ◦λ on X×Y , which is called the compound probability
measure of µ and λ, by

µ ◦ λ(D) =
∫
X

λ(x,Dx) µ(dx) for all D ∈ B(X × Y ).

By a standard argument, we can show that Fubini’s theorem remains valid
for all Borel measurable and µ ◦ λ-integrable functions f on X × Y :∫

X×Y

f(x, y) µ ◦ λ(dx, dy) =
∫
X

∫
Y

f(x, y) λ(x, dy) µ(dx).

It is obvious that (T2) implies (T1), and (T2) is satisfied, for instance, if
the product σ-algebra B(X)×B(Y ) coincides with B(X×Y ) (this is satisfied
if X and Y are Suslin spaces; see [9]).

We say that a transition probability λ is τ -smooth if the probability
measure λx ≡ λ(x, ·) is τ -smooth for each x ∈ X, that is, it is a mapping
from X into Pτ (Y ). We also say that λ is continuous if it satisfies

(T3) the mapping X 3 x 7→ λx ∈ P(Y ) is continuous.
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Let us denote by C(X,Pτ (Y )) the set of all continuous mappings from
X into Pτ (Y ).

The following proposition clarifies the relation between continuous
τ -smooth transition probabilities on X × Y and continuous mappings from
X into Pτ (Y ), and gives a sufficient condition, imposed on transition prob-
abilities, under which (T2) is satisfied.

Proposition 1. Let X be a topological space and Y be a completely
regular topological space. Let λ be a mapping from X into Pτ (Y ).

(1) λ is continuous if and only if for each open subset U of X × Y , the
function X 3 x 7→ λ(x,Ux) is lower semi-continuous on X.

(2) If λ is continuous then for each Borel subset D of X×Y , the function
X 3 x 7→ λ(x,Dx) is Borel measurable.

Therefore C(X,Pτ (Y )) coincides with the set of all continuous τ -smooth
transition probabilities on X ×Y , and every continuous τ -smooth transition
probability on X × Y satisfies (T2).

P r o o f. (1) The condition is clearly sufficient for λ to be continuous.
Conversely, let U be an open subset of X×Y . Then we can find an increasing
net {Uα} of finite unions of open rectangles with U =

⋃
α Uα.

Since λx is τ -smooth we have λ(x,Ux) = supα λ(x, [Uα]x) for all x ∈ X.
Since λ : X → Pτ (Y ) is continuous, it is not too hard to prove that the
function X 3 x 7→ λ(x, [Uα]x) is lower semi-continuous on X for each α.
Thus the function X 3 x 7→ λ(x,Ux) is lower semi-continuous on X, because
it is the supremum of a family of lower semi-continuous functions on X.

(2) Let A be the family of sets D ∈ B(X × Y ) for which the function
X 3 x 7→ λ(x,Dx) is Borel measurable. It is easy to see that A is a
σ-additive class. Since, according to (1), open subsets of X × Y belong to
A, the Borel σ-algebra B(X × Y ) coincides with A (see, e.g., Neveu [7]),
and the proof of (2) is complete.

If λ ∈ C(X,Pτ (Y )) then λ clearly satisfies (T3), and, by (2), λ also
satisfies (T2) and hence (T1). Therefore C(X,Pτ (Y )) is contained in the
set of all continuous τ -smooth transition probabilities on X × Y , and the
reverse inclusion is obvious.

Let us denote by µλ the projection of µ ◦ λ onto Y , that is, µλ(B) =
µ ◦λ(X ×B) for all B ∈ B(Y ). Now we give typical examples of continuous
τ -smooth transition probabilities. Other examples are Gaussian transition
probabilities, to be considered in Section 4.

Example 1. (1) For ν ∈ Pτ (Y ), put λ(x,B) = ν(B) for all x ∈ X
and all B ∈ B(Y ). Then λ ∈ C(X,Pτ (Y )), and µ ◦ λ = µ × ν for each
µ ∈ P(X), where µ× ν is the product measure.
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(2) Let X = Y = G be a topological group and ν ∈ Pτ (G). Put λ(x,B) =
ν(Bx−1) for all x ∈ G and all B ∈ B(G). Then λ ∈ C(G,Pτ (G)), and for
each µ ∈ P(G), µλ = µ ∗ ν, where µ ∗ ν is the convolution measure.

(3) Let T be a topological space and Y be a Suslin uniform space. Let
(Ω,A, P ) be a probability measure space and X(t, ω), t ∈ T and ω ∈ Ω, be
a B(T )×A-measurable, Y -valued stochastic process which is continuous in
probability , that is, for every t0 ∈ T , every ε > 0 and every uniformity V
on Y there exists a neighborhood U of t0 such that if t ∈ U then P ({ω ∈ Ω :
(X(t, ω), X(t0, ω)) ∈ V }) > 1− ε. Put λ(t, B) = P ({ω ∈ Ω : X(t, ω) ∈ B})
for all t ∈ T and all B ∈ B(Y ). Then λ ∈ C(T,Pτ (Y )).

P r o o f. (1) Clearly λ is τ -smooth, and the continuity of λ follows from
Lemma I.4.1 of [12] and Proposition 1.

(2) It is easily seen that λ is τ -smooth, and the continuity of λ is an im-
mediate consequence of Lemma I.4.1 of [12] and Proposition 1, together
with the fact that for each open subset U of G × G and each x ∈ G,
Ũ ≡ {(x, y) ∈ G × G : (x, yx) ∈ U} is also an open subset of G × G and
(Ux)x−1 = [Ũ ]x.

(3) The proof is easy and we omit it.

Proposition 2. Let X be a topological space and Y be a completely
regular topological space. If µ ∈ Pτ (X) and λ ∈ C(X,Pτ (Y )) then µ ◦ λ ∈
Pτ (X × Y ) and therefore µλ ∈ Pτ (Y ).

P r o o f. Let {Uα} be an increasing net of open subsets of X × Y , and
set U =

⋃
α Uα. Then λ(x,Ux) = supα λ(x, [Uα]x), because λx is τ -smooth

for each x ∈ X. Since for each α, the bounded positive function X 3 x 7→
λ(x, [Uα]x) is lower semi-continuous on X by Proposition 1(1), and the net
of such functions is increasing, we have

µ ◦ λ(U) =
∫
X

sup
α

λ(x, [Uα]x) µ(dx)

= sup
α

∫
X

λ(x, [Uα]x) µ(dx) = sup
α

µ ◦ λ(Uα)

by the τ -smoothness of µ. Hence µ ◦ λ is τ -smooth, and from this the
τ -smoothness of µλ follows.

3. Convergence of compound probability measures. In this sec-
tion, we study the convergence and relative compactness of compound prob-
ability measures.

Let X be a topological space and Y be a uniform space. Denote by
C(X, Y ) the set of all continuous mappings from X into Y . If Y = R we
write C(X) for C(X, R). We say that a subset H of C(X, Y ) is equicontin-
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uous at x ∈ X if for each uniformity V , there exists a neighborhood U of x
such that (f(x), f(u)) ∈ V for all u ∈ U and all f ∈ H. H is equicontinuous
on X if it is equicontinuous at every x ∈ X. In this paper, we need the
following variant of the notion of equicontinuity. We say that a subset H
of C(X, Y ) is equicontinuous on a set A ⊂ X if the set of all restrictions of
functions of H to A is equicontinuous on A.

A topological space X is called a k-space if it satisfies the condition that a
subset A of X is closed whenever its intersection with every compact subset
of X is closed. Every locally compact space and every space which satisfies
the first axiom of countability (in particular, a metric space) is a k-space,
and a mapping defined on a k-space into a topological space is continuous
if it is continuous on each compact set.

In the proofs of theorems below we need the following form of the Ascoli
theorem (see, e.g., Kelley [6, p. 234]): If X is a k-space, then H ⊂ C(X, Y )
is relatively compact with respect to the topology of uniform convergence
on compact subsets of X if and only if

(a) H is equicontinuous on every compact subset of X, and
(b) H[x] ≡ {f(x) : f ∈ H} is relatively compact in Y for each x ∈ X.

It is not too hard to prove that a subset Q of C(X,Pτ (Y )) is equicon-
tinuous on every compact subset of X if and only if for each h ∈ Cb(Y ), the
set of the functions

X 3 x 7→
∫
Y

h(y) λ(x, dy), λ ∈ Q,

is equicontinuous on every compact subset of X.
In what follows, for P ⊂ P(X) and Q ⊂ C(X,Pτ (Y )), we set P ◦ Q =

{µ ◦ λ : µ ∈ P and λ ∈ Q} and PQ = {µλ : µ ∈ P and λ ∈ Q}. Now we
state our result about the convergence of compound probability measures.

Theorem 1. Let X be a completely regular k-space and let Y be a com-
pletely regular topological space. Assume that a net {λα} in C(X,Pτ (Y ))
satisfies

(a) {λα} is equicontinuous on every compact subset of X,
(b) {λα(x, ·)} is uniformly tight for each x ∈ X, and
(c) there exists λ ∈ C(X,Pτ (Y )) such that λα(x, ·) w−→ λ(x, ·) for x ∈ X.

Then for any uniformly tight net {µα} in Pτ (X) converging weakly to µ ∈
Pτ (X), we have µα ◦ λα

w−→ µ ◦ λ.

The following two theorems extend Prokhorov’s criterion of relative com-
pactness of a set of probability measures.

Theorem 2. Let X and Y be as in Theorem 1. Assume that P ⊂ Pτ (X)
is uniformly tight and Q ⊂ C(X,Pτ (Y )) satisfies
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(a) Q is equicontinuous on every compact subset of X, and
(b) Q[x] = {λx : λ ∈ Q} is uniformly tight for each x ∈ X.

Then for every net {µα ◦ λα} in P ◦Q, we can find a subnet {µα′ ◦ λα′} of
{µα ◦ λα}, µ ∈ Pτ (X) and λ ∈ C(X,Pτ (Y )) which satisfy

(1) µα′
w−→ µ,

(2) λα′(x, ·) w−→ λ(x, ·) for each x ∈ X, and
(3) µα′ ◦ λα′

w−→ µ ◦ λ.

Therefore P ◦Q is a relatively compact subset of Pτ (X × Y ).

R e m a r k 1. If we set X = {x0} (x0 is a fixed element of X) and
P = {δx0} (δx0 is the Dirac measure on X which is concentrated at x0) in
Theorem 2, then we have Prokhorov’s criterion for relative compactness of
a set of probability measures (see Section 2).

Theorem 3. Let X and Y be as in Theorem 1 and assume that Y
is a Prokhorov space. Assume that P ⊂ Pτ (X) is uniformly tight and
Q ⊂ C(X,Pτ (Y )) satisfies

(a) Q is equicontinuous on every compact subset of X, and
(b) Q[x] is relatively compact in Pτ (Y ) for each x ∈ X.

Then P ◦Q ⊂ Pτ (X × Y ) is uniformly tight.

We have more direct proofs of Theorems 1 and 2 than our proofs below
when Y is a Prokhorov space (see the proof of Theorem 3 and Remark 2).
However, in the case when Y is an arbitrary completely regular topological
space, we first prove the lemmas below.

Lemma 1. Let X be a k-space and Y be a compact space.

(1) For each f ∈ Cb(X × Y ) and each λ ∈ C(X,Pτ (Y )), the function

X 3 x 7→
∫
Y

f(x, y) λ(x, dy)

is continuous on X.
(2) Assume that Q ⊂ C(X,Pτ (Y )) is equicontinuous on every compact

subset of X. Then for every net {λα} in Q, we can find a subnet {λα′} of
{λα} and λ ∈ C(X,Pτ (Y )) such that

(3.1) lim
α′

sup
x∈K

∣∣∣∫
Y

f(x, y) λα′(x, dy)−
∫
Y

f(x, y) λ(x, dy)
∣∣∣ = 0

for each f ∈ Cb(X × Y ) and each compact subset K of X.

P r o o f. (1) Let K be a compact subset of X. By the Stone–Weierstrass
theorem, f can be uniformly approximated on K × Y by functions of the
form

∑n
i=1 gihi, where the gi’s are in C(K) and the hi’s are in C(Y ). Then
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the function X 3 x 7→
∫

Y
f(x, y) λ(x, dy) is continuous on K, and since X is

a k-space, it is continuous on X, because it is uniformly approximated on K
by the functions X 3 x 7→

∑n
i=1 gi(x)

∫
Y

hi(y) λ(x, dy) which are continuous
on K by the continuity of λ.

(2) Since Y is compact, Q[x] is clearly uniformly tight for each x ∈ X.
Thus by the Ascoli theorem, Q is relatively compact in C(X,Pτ (Y )) with
respect to the topology of uniform convergence on compact subsets of X.
Therefore for every net {λα} in Q, we can find a subnet {λα′} of {λα} and
λ ∈ C(X,Pτ (Y )) such that

(3.2) lim
α′

sup
x∈K

∣∣∣∫
Y

h(y) λα′(x, dy)−
∫
Y

h(y)λ(x, dy)
∣∣∣ = 0

for each h ∈ C(Y ) and each compact subset K of X. Then it is easily verified
that (3.2) remains valid for every f ∈ Cb(X × Y ) by the Stone–Weierstrass
theorem and a standard argument.

If X is a uniform space, we denote by Ub(X) the set of all bounded
uniformly continuous real-valued functions on X. Let us remark that a net
{µα} of probability measures on a uniform space X converges weakly to a
τ -smooth probability measure µ on X if and only if

lim
α

∫
X

f(x) µα(dx) =
∫
X

f(x) µ(dx)

for every f ∈ Ub(X) (for a proof see, e.g., Lemma 3 of [2]). In the following
lemma, we have the advantage of considering uniform spaces and Ub(X×Y )
instead of topological spaces and Cb(X × Y ).

Lemma 2. Let X be a uniform k-space and Y be a totally bounded uni-
form space.

(1) For each f ∈ Ub(X × Y ) and each λ ∈ C(X,Pτ (Y )), the function

X 3 x 7→
∫
Y

f(x, y) λ(x, dy)

is continuous on X.
(2) Assume that Q ⊂ C(X,Pτ (Y )) satisfies (a) and (b) of Theorem 2.

Then for every net {λα} in Q, we can find a subnet {λα′} of {λα} and
λ ∈ C(X,Pτ (Y )) such that (3.1) is valid for each f ∈ Ub(X × Y ) and each
compact subset K of X.

(3) Assume that Q ⊂ C(X,Pτ (Y )) satisfies (a) and (b) of Theorem 2.
Then for each f ∈ Ub(X × Y ), the set of the functions

X 3 x 7→
∫
Y

f(x, y) λ(x, dy), λ ∈ Q,

is equicontinuous on every compact subset of X.
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P r o o f. Denote by Z the completion of Y . Since Y is totally bounded,
Z is compact and there exists a uniform isomorphism θ of Y onto a dense
subset of Z. Let us first note that the following (i) and (ii) are valid:

(i) If f ∈ Ub(X×Y ) then it has a unique uniformly continuous extension
fZ ∈ Ub(X × Z) which satisfies fZ(x, θ(y)) = f(x, y) for all x ∈ X and all
y ∈ Y .

(ii) For each λ ∈ C(X,Pτ (Y )), if we define

λZ(x,D) = λ(x, θ−1(D)) for all x ∈ X and all D ∈ B(Z),

then λZ ∈ C(X,Pτ (Z)) and∫
Z

fZ(x, z) λZ(x, dz) =
∫
Y

f(x, y) λ(x, dy)

for every f ∈ Ub(X × Y ) and every x ∈ X.
(1) From (i), (ii) and Lemma 1(1), (1) follows.
(2) Set QZ = {λZ : λ ∈ Q}. Then it is easily verified that QZ ⊂

C(X,Pτ (Z)) is equicontinuous on every compact subset of X. Therefore by
Lemma 1, for every net {λα} in Q, we can find a subnet {λα′} of {λα} and
γ ∈ C(X,Pτ (Z)) such that

(3.3) lim
α′

sup
x∈K

∣∣∣∫
Z

f(x, z) λZ
α′(x, dz)−

∫
Z

f(x, z) γ(x, dz)
∣∣∣ = 0

for every f ∈ Ub(X × Z) and every compact subset K of X. From (i), (ii)
and (3.3), it is sufficient to prove that there exists λ ∈ C(X,Pτ (Y )) with
λZ = γ.

To prove this we first show that θ(Y ) is a γx-thick subset of Z for all
x ∈ X, that is,

(γx)∗(Z − θ(Y )) ≡ sup{γx(D) : D ∈ B(Z) and D ⊂ Z − θ(Y )} = 0.

Fix x ∈ X. Since Q[x] is uniformly tight, we can find a sequence {Kn} of
compact subsets of Y such that λ(x, Y − Kn) < 1/n for all λ ∈ Q. On
the other hand, it follows from (3.3) that λZ

α′(x, ·) converges weakly to the
τ -smooth probability measure γ(x, ·). Let D ∈ B(Z) with D ⊂ Z − θ(Y ).
Then for all n ≥ 1, D is contained in Z − θ(Kn), which are open subsets
of Z. Hence

γ(x,D) ≤ γ(x,Z − θ(Kn)) ≤ lim inf
α′

λZ
α′(x,Z − θ(Kn))

= lim inf
α′

λα′(x, Y −Kn) ≤ 1/n.

Letting n →∞ we obtain γ(x,D) = 0, and so θ(Y ) is γx-thick for all x ∈ X.
According to Halmos [5; Theorem A, p. 75], if we define for each x ∈ X

and each B ∈ B(Y ),
λ(x,B) = γ(x,D),
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where D ∈ B(Z) with θ(B) = θ(Y ) ∩ D, it is easily verified that λ is well
defined and λ ∈ C(X,Pτ (Y )) with λZ = γ. So the proof of (2) is complete.

(3) Fix f ∈ Ub(X × Y ). Note first that for each λ ∈ C(X,Pτ (Y )), by
(1), we can define a bounded continuous function ϕλ on X by

ϕλ(x) =
∫
Y

f(x, y) λ(x, dy), x ∈ X.

By the Ascoli theorem, we only have to show that ΦQ = {ϕλ : λ ∈ Q} is rela-
tively compact in C(X) with respect to the topology of uniform convergence
on compact subsets of X.

Let {ϕλα} be a net in ΦQ and let K be a compact subset of X. For
simplicity, we write ϕα for ϕλα . Then by (2), we can find a subnet {ϕα′} of
{ϕα} and λ ∈ C(X,Pτ (Y )) such that

lim
α′

sup
x∈K

∣∣∣ϕα′(x)−
∫
Y

f(x, y)λ(x, dy)
∣∣∣ = 0.

Put ϕ(x) =
∫

Y
f(x, y) λ(x, dy) for x ∈ X. Then ϕ ∈ Cb(X) by (1), and

limα′ supx∈K |ϕα′(x)− ϕ(x)| = 0. Hence ΦQ is relatively compact in C(X).

Lemma 3. Let X be a completely regular topological space and let {µα}
be a net in P(X) which is uniformly tight. Assume that a net {ϕα} in
Cb(X) satisfies

(a) {ϕα} is uniformly bounded , and
(b) {ϕα} is equicontinuous on every compact subset of X.

If µ ∈ Pτ (X) and µα
w−→ µ, and if ϕ ∈ Cb(X) and ϕα(x) → ϕ(x) for each

x ∈ X, then

lim
α

∫
X

ϕα(x)µα(dx) =
∫
X

ϕ(x)µ(dx).

P r o o f. We omit the proof, which is an easy modification of the proof
of Theorem 2 in [2].

Now we prove the theorems of this section.

P r o o f o f T h e o r e m 1. First note that any completely regular topo-
logical space is uniformizable and it can be totally bounded for uniformities
yielding its topology. Thus we assume that X is a uniform k-space and Y
is a totally bounded uniform space.

To prove the theorem, we only have to show that for each f ∈ Ub(X×Y ),
we have

lim
α

∫
X×Y

f(x, y) λα(x, dy) µα(dx) =
∫

X×Y

f(x, y) λ(x, dy) µ(dx).

Fix f ∈ Ub(X × Y ). By Lemma 2(3), if we put for each x ∈ X,
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ϕα(x) =
∫
Y

f(x, y) λα(x, dy) and ϕ(x) =
∫
Y

f(x, y) λ(x, dy),

then {ϕα} satisfies (a) and (b) of Lemma 3, and ϕα(x) → ϕ(x) for each
x ∈ X, since λα(x, ·) w−→ λ(x, ·) for each x ∈ X. Consequently, by Lemma 3,
we have

lim
α

∫
X

ϕα(x) µα(dx) =
∫
X

ϕ(x) µ(dx),

and this implies µα ◦ λα
w−→ µ ◦ λ.

P r o o f o f T h e o r e m 2. As noticed at the beginning of the proof
of Theorem 1, we assume that X is a uniform k-space and Y is a totally
bounded uniform space.

Since P is uniformly tight, it is relatively compact in Pτ (X). Conse-
quently, by Lemma 2(2), for every net {µα ◦ λα} in P ◦ Q we can find a
subnet {µα′ ◦λα′} of {µα ◦λα}, µ ∈ Pτ (X) and λ ∈ C(X,Pτ (Y )) such that
for every f ∈ Ub(X × Y ) and every compact subset K of X,

(3.6) µα′
w−→ µ

and

(3.7) lim
α′

sup
x∈K

∣∣∣∫
Y

f(x, y) λα′(x, dy)−
∫
Y

f(x, y) λ(x, dy)
∣∣∣ = 0.

From (3.7) it follows that λα′(x, ·) w−→ λ(x, ·) for each x ∈ X. So, by
Theorem 1 we have µα′ ◦ λα′

w−→ µ ◦ λ, and the proof is complete.

P r o o f o f T h e o r e m 3. By (a), (b) and the Ascoli theorem, Q is
relatively compact in C(X,Pτ (Y )) with respect to the topology of uniform
convergence on compact subsets of X, while P is relatively compact in
Pτ (X) since it is uniformly tight. Hence for every net {µαλα} in PQ, we
can find a subnet {µα′λα′} of {µαλα}, µ ∈ Pτ (X) and λ ∈ C(X,Pτ (Y ))
such that for every h ∈ Cb(Y ) and every compact subset K of X,

(3.8) µα′
w−→ µ

and

(3.9) lim
α′

sup
x∈K

∣∣∣∫
Y

h(y) λα′(x, dy)−
∫
Y

h(y) λ(x, dy)
∣∣∣ = 0.

Define bounded continuous functions ϕα′ and ϕ on X by

ϕα′(x) =
∫
Y

h(y) λα′(x, dy) and ϕ(x) =
∫
Y

h(y) λ(x, dy).

Then {ϕα′} satisfies (a) and (b) of Lemma 3, while from (3.9) it follows that
ϕα′(x) → ϕ(x) for each x ∈ X. Therefore by Lemma 3 we have
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lim
α′

∫
X

ϕα′(x) µα′(dx) =
∫
X

ϕ(x) µ(dx),

which implies µα′λα′
w−→ µλ, and hence PQ is relatively compact.

Since Y is a Prokhorov space by assumption, PQ is uniformly tight.
Noting that P and PQ are the projections of P ◦ Q ⊂ Pτ (X × Y ) onto
X and Y respectively, P ◦ Q is uniformly tight by an easily verified result
that Σ ⊂ P(X × Y ) is uniformly tight if and only if so are ΣX = {σX :
σ ∈ Σ} ⊂ P(X) and ΣY = {σY : σ ∈ Σ} ⊂ P(Y ), where σX and σY denote
the projections of σ onto X and Y , respectively.

R e m a r k 2. The author does not know whether PQ is uniformly tight
or not under the assumptions of Theorem 2. However, we know that even for
subsets of probability measures on Suslin spaces, relative compactness does
not imply uniform tightness in general (see Example I.6.4 of Fernique [4]).

4. Gaussian transition probabilities. In this section we treat Gaus-
sian transition probabilities which are important examples of equicontinuous
sets of transition probabilities. Let us first give necessary information about
Gaussian measures needed in the sequel.

Let H be a real separable Hilbert space with norm ‖·‖ and inner product
〈·, ·〉. A Borel probability measure µ on H is said to be Gaussian if for each
u ∈ H, the function H 3 w 7→ 〈w, u〉 is a real (possibly degenerate) Gaussian
random variable on the probability measure space (H,B(H), µ). Since every
Gaussian measure µ on H satisfies∫

H

‖w‖2 µ(dw) < ∞,

there are a mean vector m∈H and a covariance operator S∈S(H) such that

〈m,u〉 =
∫
H

〈w, u〉µ(dw) and 〈Su, v〉 =
∫
H

〈w −m,u〉〈w −m, v〉µ(dw)

for all u, v ∈ H. Here S(H) denotes the set of all non-negative symmetric
trace class operators on H; it is endowed with the metric topology derived
from the trace norm ‖ · ‖tr.

The following lemma is well known for Gaussian measures on a Hilbert
space, and acutually shown in Chevet [1], using the method of tensor prod-
ucts, for Gaussian measures on a real separable Banach space which is of
type 2 and has the approximation property.

Lemma 4. (1) Let A be a set of Gaussian measures on H with mean
vectors {mµ : µ ∈ A} and covariance operators {Sµ : µ ∈ A}. Then A is
uniformly tight if and only if {mµ : µ ∈ A} and {Sµ : µ ∈ A} are relatively
compact in H and S(H), respectively.
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(2) Let µn (n ≥ 1) and µ be Gaussian measures on H with mean vectors
mn and m and with covariance operators Sn and S, respectively. Then
µn

w−→ µ if and only if

lim
n→∞

‖mn −m‖ = 0 and lim
n→∞

‖Sn − S‖tr = 0.

Let X be a topological space. A transition probability λ on X×H is said
to be Gaussian if for each x ∈ X, λx is a Gaussian measure on H. For each
x ∈ X, we denote by m(x) and S(x) the mean vector and the covariance
operator of λx respectively, and we say that the functions m : X → H
and S : X → S(H) are the mean function and the covariance function of
λ, respectively. Since a Gaussian measure is uniquely determined by its
mean vector and covariance operator, it is easily verified that a Gaussian
transition probability λ is also uniquely determined by its mean function m
and covariance function S, and hence we write λ = TN [m,S].

In what follows, let X be a completely regular k-space and assume that
every compact subset of X satisfies the first axiom of countability. These
conditions are satisfied, for instance, when X is either (1) a first countable
locally compact space, or (2) a metric space, or (3) a regular Suslin k-
space. From Lemma 4, it follows that a Gaussian transition probability
λ = TN [m,S] on X × H is continuous if and only if m ∈ C(X, H) and
S ∈ C(X,S(H)), and λ is τ -smooth since every Borel measure on H is
τ -smooth.

The following theorem states that for Gaussian transition probabilities,
we can express the conditions (a) and (b) of the theorems of Section 3 in
terms of the corresponding mean and covariance functions.

Theorem 4. Let λn = TN [mn, Sn] (n ≥ 1) and λ = TN [m,S] be
continuous Gaussian transition probabilities on X ×H. Assume that

(a) {mn} ⊂ C(X, H) and {Sn} ⊂ C(X,S(H)) are equicontinuous on
every compact subset of X, and

(b) limn→∞ ‖mn(x)−m(x)‖ = 0 and limn→∞ ‖Sn(x)− S(x)‖tr = 0 for
each x ∈ X.

Then {λn} satisfies (a) and (b) of Theorems 1–3. Therefore for any
uniformly tight sequence {µn} in Pτ (X) converging weakly to µ ∈ Pτ (X),
we have µn ◦ λn

w−→ µ ◦ λ and {µn ◦ λn} is uniformly tight.

In order to prove the theorem above, we need the following lemma, which
is known (see, e.g., Kelley [6; Problem M, p. 241]).

Lemma 7. Let {ϕn} be a sequence of real-valued functions defined on a
topological space X which satisfies the first axiom of countability , and let
x ∈ X. Assume that
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(a) ϕn is continuous for all n ≥ 1, and
(b) ϕn converges continuously to a function ϕ at x, i.e., limn→∞ ϕn(xn)

= ϕ(x) for any sequence {xn} converging to x.

Then {ϕn} is equicontinuous at x.

P r o o f o f T h e o r e m 4. By (b) and Lemma 4, λn(x, ·) w−→ λ(x, ·)
for each x ∈ X, and this implies that {λn(x, ·)} is uniformly tight for each
x ∈ X, since H is a Prokhorov space. Hence the conditions (b) of Theorems
1–3 are valid.

Fix h ∈ Cb(X) and put for each x ∈ X,

ϕn(x) =
∫
H

h(u) λn(x, du) and ϕ(x) =
∫
H

h(u) λ(x, du).

Now we show that {ϕn} ⊂ C(H) is equicontinous on every compact subset
K of X in order to prove that the conditions (a) of Theorems 1–3 are valid.
From (a) and (b) of the present theorem, it is easily proved that mn and Sn

converge continuously on K to m and S, respectively. Hence if a sequence
{xn} in K converges to x ∈ K, then λn(xn, ·) w−→ λ(x, ·) by Lemma 4. From
this we have ϕn(xn) → ϕ(x), and hence ϕn converges continuously to ϕ
on K. Since K is first countable by assumption, {ϕn} is equicontinuous on
K by Lemma 7. Consequently, by Theorem 1 we have µn ◦ λn

w−→ µ ◦ λ,
and from Theorem 3 it follows that {µn ◦ λn} is uniformly tight since H is
a Prokhorov space.

R e m a r k 3. In Theorem 4, the condition that {µn} is uniformly tight
is automatically satisfied if X is a Prokhorov space.

R e m a r k 4. We can obtain a similar result to Theorem 4 for Gaussian
transition probabilities on nuclear spaces such as, for instance, the space of
slowly increasing functions and the space of distributions.

5. Examples and counter-examples. In this section we give the
following examples and counter-examples concerning the uniform tightness
and the convergence of compound probability measures:

• P is not uniformly tight and Q is not equicontinuous, but PQ is uni-
formly tight (see Example 2(2)).

• P is uniformly tight, but PQ and P ◦Q are not (see Example 2(3)).
• Q is not equicontinuous, but P ◦ Q and PQ are uniformly tight (see

Example 3(2)).
• µα

w−→ µ, λα(x, ·) w−→ λ(x, ·) for each x ∈ X and µα ◦ λα converges
weakly, but µ ◦ λ is not a limit point of µα ◦ λα (see Example 3(3)).

In what follows, δx denotes the Dirac measure concentrated at x, that
is, δx(B) = 1 if x ∈ B, and δx(B) = 0 if x 6∈ B.
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Example 2. Let X = Y = R. For each n ≥ 1, put

s2
n(x) =


0 for x ≤ 0,
n2x for 0 < x ≤ 1/n,
2n− n2x for 1/n < x ≤ 2/n,
0 for 2/n < x.

Define a continuous τ -smooth transition probability λn on R × R by λn =
TN [0, s2

n] and put Q = {λn}.
(1) For each x ∈ R, Q[x] = {λn(x, ·)} is uniformly tight , but Q is not

equicontinuous at x = 0.
(2) Put P = {δn}. Then P and P ◦Q are not uniformly tight , while PQ

is uniformly tight.
(3) Put P = {δ1/n}. Then P is uniformly tight , but PQ and P ◦Q are

not uniformly tight.

P r o o f. Put

ϕn(x) =
∫
R

eiv λn(x, dv) = exp{− 1
2s2

n(x)}

for each n ≥ 1 and each x ∈ R. Then ϕn(1/n) = e−n/2 and ϕn(0) = 1.
Therefore {ϕn} is not equicontinuous at x = 0, and neither is Q. On the
other hand, since supn≥1 s2

n(x) < ∞ for each x ∈ R, Q[x] is uniformly tight.
Consequently, (1) is proved.

Before starting to prove (2) and (3), note that a subset A of P(Rn) is
uniformly tight if and only if the set {µ̂ : µ ∈ A} of characteristic functions
defined by

µ̂(p1, . . . , pn) =
∫

Rn

eiΣn
j=1pjuj µ(du1, . . . , dun)

for p = (p1, . . . , pn) ∈ Rn is equicontinuous at p = 0 ∈ Rn.
Since δ̂n(p) = einp and (δn ◦ λn)∧(p, q) = einp for all p, q ∈ R, {δ̂n}

and {(δn ◦ λn)∧} are not equicontinuous at p = 0 and at (p, q) = (0, 0),
respectively. Therefore P and P ◦Q are not uniformly tight. On the other
hand, PQ is uniformly tight, since (δnλn)∧(q) = 1 for all q ∈ R and hence
{(δnλn)∧} is equicontinuous at q = 0. Consequently, (2) is proved, and (3)
is proved similarly.

Example 3. Let X = Y = R. For each n ≥ 1, put

s2
n(x) =

n|x|
1 + n2x2

, x ∈ R.

Define a continuous τ -smooth transition probability λn on R × R by λn =
TN [0, s2

n] and put Q = {λn}.
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(1) For each x ∈ R, Q[x] is uniformly tight, but Q is not equicontinuous
at x = 0.

(2) Put P = {δ1/n}. Then P ◦Q and PQ are uniformly tight.
(3) Put µn = δ1/n, µ = δ0 and λ(x, ·) = δ0 for each x ∈ R. Then,

though µn
w−→ µ, λn(x, ·) w−→ λ(x, ·) for every x ∈ R and µn ◦ λn converges

weakly, µ ◦ λ is not a limit point of µn ◦ λn (actually, µnλn
w−→ µγ and

µn ◦ λn
w−→ µ ◦ γ, where γ = TN [0, 1/2]).

P r o o f. (1) and (2) are proved in the same way as Example 2. By Levy’s
continuity theorem, (3) is proved by noticing that

(µn ◦ λn)∧(p, q) → exp{− 1
4q2} = (µ ◦ γ)∧(p, q) as n →∞,

while (µ ◦ λ)∧(p, q) = 1 for all (p, q) ∈ R× R.
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Reçu par la Rédaction le 24.5.1993


