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ON THE CLASS OF FUNCTIONS HAVING
INFINITE LIMIT ON A GIVEN SET

BY

J. TOTH axp L. ZSILINSZKY (NITRA)

Introduction. Given a topological space X and a real function f on X
define

Li(X)={reX: gl_rgf(t) = +oo}.

According to [1] for a linear set A there exists a function f : R — R such
that A = Ly(R) if and only if A is a countable Gs-set. Our purpose is
to prove a similar result in a more general setting and to investigate the
cardinality and topological properties of the class of functions f : X — R
for which L;(X) equals a given non-empty, countable G;-set.

We will need some auxiliary notions and notations. Denote by E and
E°, respectively, the closure and the set of all condensation points of a
subset E of a topological space, and by card F its cardinality. Denote by F
the space R¥.

A topological space X is called a Fréchet space if for every E C X and
every x € E there exists a sequence in E converging to x (cf. [2]). Every
first-countable space is a Fréchet space ([2], p. 78), but there exists a Fréchet
space that is not first-countable ([2], p. 79).

A topological space X is said to be hereditarily Lindelof if for each
E C X every open cover of F has a countable refinement. A well-known
property of these spaces is as follows ([4], p. 57):

LEMMA 1. If X is a hereditarily Lindeldf space, then E\ E° is countable
for each E C X.

Main results. Using Lemma 1 it can be shown similarly to [1] that for
a Hausdorff, hereditarily Lindel6f space X having no isolated points, L ;(X)
is a countable Gs-set for every f € F. We will be interested in the reverse
problem, namely to find, for every non-empty, countable Gs-set A C X, a
function f € F for which L{(X) = A.
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In what follows X will be a Fréchet, Hausdorff, hereditarily Lindel6f
space such that X = X¢. Let A be a given non-empty, countable Gs-subset
of X. Define

S={feF:LyX)=A}
THEOREM 1. The set S is non-empty.

Proof. Let A= {ay,a2,...} C X, A=, G, where G| = X, G,, is
open in X, Gp+1 € G, (n € N). We can assume that F,, = G,, \ Gp4+1 is
uncountable for each n € N. Put H = |J,—_, (F,, N EY).

According to Lemma 1 the set B = (|J,—; F},) \ H is countable, since

B c U, (F,\FS). Write B = {by,bs,...}. Observe that AN~ F,, =0,

SO

o0
X\ H= (Au U Fn> \H=AUB.
n=1
Therefore B C H (since B C X¢), hence for each k € N there exists a
sequence cl(»k) € H (i € N) converging to by. Set C = Ui,keN{Cz('k)}' Define a
function f € F as follows:

flax) =k forall k €N,

FEY =k foralli k€N,
flx)=n forallze F,\C, neN.

We will prove that L¢(X) = A.
First choose z € X\ A. Then eitherx € Borx € H. If v € B then z = by,

for some k € N, and consequently z ¢ L;(X) since lim;_, f(cgk)) =k. If
x € H then x € Fj, for some m € N, so there exists a directed set X' and a
net {z, : 0 € X'} in F,,, \ C converging to x. Thus again x ¢ L;(X) since
lim, f(xs) =m.

Finally, suppose © € A. Take an arbitrary n € N. Then x € G,,. The
space X is Hausdorff, so there is a neighbourhood S; of z which contains
no member of the sequence {cz(»k) }2, for all 1 < k < n (notice that cgk)
by, ¢ A as i — o0o). Further, there exists a neighbourhood Sy of  containing
none of ay, ..., a, except possibly z. It is now not hard to see that f(t) > n
for each t € G,, N .S1 N Sy, t # x, whence x € Ly(X). =

—

Remark 1. If X is a Hausdorff, second-countable, Baire space with
no isolated points (in particular, if X is a separable, complete metric space
with no isolated points) then Theorem 1 holds. Indeed, in this case every
non-empty open subset of X is uncountable (see [3], Proposition 1.29) and
thus X=X¢; further, second-countable spaces are Fréchet and hereditarily
Lindelof.

THEOREM 2. We have card S = card(F \ S) = 2¢ard X,
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Proof. Let f € S (see Theorem 1). Using the notation of Theorem 1
put o, = card(X \ G,,) (n € N) and a = card(X \ A) = card X (X is
uncountable). Then {a,}22; is a non-decreasing sequence of infinite ordi-
nals converging to a (in the order topology; see [4]). Fix n € N. For every
M C X \ Gy, define the function fy; = max{1, f} - xx\am, where xx\as is
the characteristic function of X \ M.

It is not hard to see that fi; # fx and fur, fnv € S for any different
subsets M, N of the closed set X \ G,,. Thus cardS > 2%". Since « is a
limit ordinal we have card S > sup{2%* : n € N} = 2% = 2¢ardX_ (On the
other hand, making allowance for the uncountability of X we get card S <
card F = (card R)card X — geard X,

To show that card(F \ S) = 2°"4 X it suffices to notice that xp € F\S
for any B C X. Hence 244X < card(F \ S) < card F = 2814 X o

To be able to investigate S from the topological point of view introduce
the sup-metric d on F:

d(f,g) = min{1, Sup |f(z) —g(x)[}, where f,g € F.

It is known that (F,d) is a complete metric space.
THEOREM 3. The class S is simultaneously open and closed in F.

Proof. If f,g € F and d(f,g) < 1 then L{(X) = Ly(X). Soif f €
S (resp. f € F\S) then the open 1-ball around fisin S (resp. in F\S). m

THEOREM 4. Both S and F\ S are of second category in F.

Proof. According to Theorems 2 and 3, S and F \ S are non-empty

open sets, and consequently they are of second category in the complete
metric space (F,d). m

Remark 2. In the light of Theorems 2 and 4 it is worth noticing that
neither S nor F \ S is dense in F. Actually, if, say, S were dense in F then
in view of Theorem 3 it would be a residual set in F and hence F\ S of first
category in F.

THEOREM 5. We have S C 8¢ and F\ S C (F\S)°.

Proof. Let f € Fand 0 < e < 1. For 0 < n < ¢ define f,(z) =
f(z) +n (x € X). Then d(f, f,) = n < ¢ for all n € (0,¢); furthermore,
frpeSifandonlyif feS (0<n<e). m

Remark 3. It is easy to see that the set
S/:{fef:tlimf(t):—oo if and only if x € A}
—X

also has the properties established in Theorems 1-5 for S.
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