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AND ITS FRECHET DERIVATIVE
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1. The statement of the result. Let E be a compact subset of
the complex plane C. Denote by D the complement of E in C. We shall
consider the plane Lebesgue measure on E. Let M (E) be the open unit ball
in L*>(FE). Denote by By(D) the Banach space of holomorphic functions
f on D such that || f]l2 = sup,cp 0(2) 72|f(2)] < o0; o(z) denotes here the
element of the Poincaré metric on components of D (for nonhyperbolic D
we put By(D) = {0}). Let up € M(FE). Let g be equal to p on E and to
zero on D. Denote by w* the quasiconformal map C — C defined by the
Beltrami equation
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The mapping w* is determined up to composition with Mcbius maps.
The restriction of w* to D is a univalent meromorphic function on D. If f
is any meromorphic function then one can define the Schwarzian derivative

of f,
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1.1. DEFINITION. The generalized Bers projection is the mapping & :

M(E) — Bs(D) defined by ¢(u) = Syr. The Beardon-Gehring theorem
implies Sy € Ba(D) [Be-Ge].

The mapping @ is holomorphic (see Sugawa [Su], Appendix). We shall
denote its Fréchet derivative at p € M(E) by D®[u].

T. Sugawa proved in [Su] that if Int E = () and C \ E consists of a finite
number of hyperbolic components then @ is an injection. Moreover, if C\ E

is connected then for every p € M(FE) the Fréchet derivative D®[u] is also
an injection.
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The aim of the present note is to extend Sugawa’s result to the case of
compact sets E for which C\ E has countably many components.
We shall need the following:

'1.2. DEFINITION. Let E be a compact set in C. Let Ag be the component
of C\ E containing co. Define inductively the set A;1; as the sum of all
components D’ of (C\ E) \ Ui:o Ay, such that D' N J],_, Ax contains at
least three distinct points.

We shall say that E has a regular complement iff C\ E = U;io Aj.

1.3. Remark. Each compact set E in C with Int £ = () such that @\E
consists of a finite number of components has a regular complement.

Each Carathéodory compact set E (E = 0Ag) has a regular complement.

There are also many compact sets E which have irregular complements.

1.4. THEOREM. Let E be a compact subset of C with Int E = (). Assume
that E has a reqular complement. Then the generalized Bers projection is
injective. Moreover, for each u € M(E) the derivative D®[u] is a linear
injection L*°(F) — Ba(D).

1.5. Remark. Sugawa [Su] gave an example of a compact set E in
C for which @ is not injective. For this E the following is true: If D;, D;
are two distinct components of C \ E then D; N D; = {oo}. (By using the
Mobius transform we can map E into C.)

1.6. Remark. The condition that E has a regular complement is not
a necessary condition for the validity of our result.

It is possible to formulate far weaker (and far more complicated) con-
ditions on E, which are sufficient for the validity of Theorem 1.4. See Re-
mark 3.4 at the end of this paper for some details.

Following again Sugawa we can state

1.7. COROLLARY. Let E be as in Theorem 1.4. Then E has Lebesgue
measure zero iff Zf\he OZl\ly conformal maps on C\ E which extend to quasi-
conformal maps C — C are Mébius mappings.

1.8. COROLLARY. Assume that there exists a constant ¢ such that each

conformal map w on C\ E for which ||Su|2 < ¢ is Mobius. Then E has
Lebesgue measure zero.

Corollary 1.8 is due to Overholt [Ov].

2. Proof of Theorem 1.4. The proof of the injectivity of @ is the
same as in Sugawa’s paper [Su]. Assume that @(u;) = @(uz2). Note that
we can always assume that w*! and w*? fix 0, 1, oo since Sy,or = S for
each Mobius map m. Now, @(u1) — P(u2) = Swmi — Syre implies that
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wh o (wh2)~1 restricted to a component of D = C\ E is a Mdbius map.
Since E has a regular complement it must be the same M6bius map on every
component of D. Thus Int £ = () implies that w#* o (w#2)~1 is a Mobius
map on C fixing 0, 1, 0o and therefore w*!* = w2 and p1 = po.

We must now prove the injectivity of D®[u|. Sugawa [Su] proved that
it is sufficient to establish the injectivity of D@[0]. It can be proved by
differentiating the formula

T,0®,=PoR, —P(u)
at 0 € M(E,), where E,, = w'(E), @, is the Bers projection @, : M(E,) —
B2(Du)v B = @ \ Ey,
dwh\?
1= (fou)- (U ) T Ba(D,) — BalD),

and R, (v) is the Beltrami differential of w"” o w*,

0z ) -
R,(v) = Dok or R,:M(E,) — M(E).
+vowt— 0
0 0z

We shall use in the sequel the Bers formula (see [Su, Appendix])
6 v(t)
Do =—— | —dV.
0106 =3 [ G

We shall need the following:

2.1. LEMMA. Suppose that ¢ € L°°(D) and supp ¢ is bounded. The
function

Fo(z) = fitldvt
C

belongs to the Holder space Ay (C) for each a € (0,1).

Proof. F, is a solution of the differential equation du/0zZ = . Take R
so large that suppp C B(0, R). Let v = %GR @, where G is the operator
solving the Dirichlet problem

0%v 1

5205 = ZAv:cp on B(0,R), wv=0 ondB(0,R).

By the classical LP estimates of the solution of the Dirichlet problem and the
Sobolev imbedding theorem, v € A, (B(0, R)), 0 < a < 1. By the ellipticity
of d/dz, also F, € A,(B(0,R)). Since F, is holomorphic on C \ supp @,
F, € A,(C).




184 E. LIGOCKA

LEMMA 2.2. Let E be a compact set in C. Assume that Int E = () and E
has a regular complement. Let ¢ € L>°(E). If

Hy(z) = f (t(p—(tz))‘* dV; =0 foreachze D=C\E
E

then
o(t)
t—=z

F,(z) = f dVy =0  for each z € D.
E

Proof. We have
3

Hy(2) = e Fy2).

This implies that on each component D; of D, F,(z) = a;z® + bz + ¢;.
Since F,, is Holder on C (by Lemma 2.1) and E has a regular complement,
a; = aj, by =bj, ¢; = ¢; for all 4, j and F,(z) = az® + bz + c on C. However,
F,(z) vanishes at infinity and therefore F,(z) = 0.

End of the proof of Theorem 1.4. Let DP[0](v) = 0, v €
M(E). Then H,(z) = [[,(v(t)/(t — 2)*) dV; vanishes on D, and so does
F,(2) = [[,(w(t)/(t — 2)) dV; by Lemma 2.2.

Take a € D and consider the expansion of F), at a,

= v(t
Fy(z):;(z—a)néfﬁ&ﬂdw
We have [[,(v(t)/(t —a)*)dV; =0 for k > 1.

Putting a = oo we obtain the expansion
F,(z) = Z 2! f t"v(t) dV;.
n=0 E

Hence [ [ r(t)v(t)dV; = 0 for every rational function v(t) with poles out-
side E.

The Brennan theorem (see [Brl] and [Me-Si, Th. 7.4 and the proof of
Th. 1.7]) implies that for every compact set E in C and every p with 1 <
p < 2 the space R(FE) of rational functions with poles outside E is dense
in LP(F) N Hol(Int E), the space of those functions from LP(E) which are
holomorphic on Int E. Thus we have L'(E) = R(E) if Int E = (. Hence
[z ft)v(t)dV; = 0 for every f € L'(E) and v =0 a.c. on E.

Proof of the corollaries. If the only conformal maps as in the
statement of Corollary 1.7 are Mobius then @ = 0. The injectivity of @
implies that M(F) = {0} and E has measure zero. If each w for which
|Sw|l2 < ¢ is Mobius then {0} is an isolated point of (M (E)). By the
identity theorem, ® = 0 and F has measure zero.
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3. Remarks

3.1. Remark. If we drop the assumption that Int £ = () we can put
our Theorem 1.4 in a (seemingly) more general form.

THEOREM 1.4'. Let E be a compact set in C with a regular complement
and let @ be the Bers projection.

1) @ is injective iff Int E = (Z)

2) Ker DB[0] = {pn € M(E) : [[,f(t)u(t)dVi = 0, ¥f € LY(E) N
Hol(Int E)}.

3) Ker D&[0] = {0} < 3u € M(E) Ker D&[u] = {0}

S Vue M(E) Ker DP[u] = {0} < Int E = 0.

The proof remains almost the same. Note that if Int £ # () then the
fiber #1(0) is very large. It contains in particular all C! diffeomorphisms
of C equal to the identity on C \Int E. If E = B(0,1) = A then &~ 1(0)

is the known class F' of q.c. homeomorphisms of the unit disc equal to the
identity on the circle.

3.2. Remark. Theorem 1.4’ can be valid for some compact sets E with
irregular complement and Int F # (). It suffices that polynomials are dense
in L'(E) N Hol(Int E). An interesting class of such domains was described
by Brennan [Br2]:

Let E4 be a compact set in C with connected complement and let D; be
a Jordan domain with C?-smooth boundary such that D; C E;. Take E =
E1\ D;. The polynomials are dense in L!(E)NHol(E) iff faD Ino(z) |dz| =
—o00, where §(z) = dist(z,C \ E).

Note that if Int F = () then F has a regular complement.

3.3. Remark. The formula T, 0®, =®o R, —P(u), p € M(E), used
in the proof of Theorem 1.4 yields

D®[p] = Ty, 0 D9, [0] o (DR,[0]) ™"

Thus by the Bers formula
ow* 2 owH 2
(%) o(%5e)
6 f 6t aZ d‘/t

Do[u)(v)(2) =~ a
: P (wr () — wh (2)

™

for v € L>*(E).
Moreover, if E has a regular complement then by Theorem 1.4,
Ker Dip|y]
dwr\ 2
= {l/ € L>®(E): f v- <> ~fowt=0Vfe L' (E,) ﬂHol(IntEu)}.

E 0z
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3.4. Remark. As was mentioned before, the condition that E has
a regular complement can be weakened in the following way: Put A9, =
component of C \ E containing oo. Define inductively Agj = A; as in
%ﬁnition 1.2. Put AJ = U;'io Ag;. Let A9, be any component of (C\ E) \
AS. Construct the sets A?j in the same way as before. Take A9 = U;‘;l Ag.

Let AY, be a component of (C\ E)\ AY U Al. Construct the set A9 =
U A3;, and so on. After constructing A), k = 1,2,..., put Agy = Ag
and repeat the previous construction taking A% instead of components of
C \ E to obtain a sequence of sets Aj,. Put A} = U;io A(l)j and proceed
to define A}. Take A3) = A} and repeat the construction with A} instead
of A9. As a result we get a sequence of sets A%. We shall say that F has
a wi-regular complement if C\ E = |J,-_,Aj. Since in the construction

in Definition 1.2 the closure of U?:o Ay, always had three distinct points in

common with Ay, and we repeated the same construction again and again,
all our results remain true for compact sets with wi-regular complement.
Moreover, we can take (C\ E)\ J,~, A%, choose some component of it and
repeat this construction to formulate a weaker condition of having ws-regular
complement. In this way one can in principle define a sequence of weaker
and weaker conditions of w,-regularity of the complement of E. Each of
those conditions will be sufficient for the validity of Theorem 1.4 and of the
rest of our results, but none will be necessary.
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