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ON THE INJECTIVITY OF THE
GENERALIZED BERS PROJECTION
AND ITS FRÉCHET DERIVATIVE

BY

EWA L IGOCKA (WARSZAWA)

1. The statement of the result. Let E be a compact subset of
the complex plane C. Denote by D the complement of E in Ĉ. We shall
consider the plane Lebesgue measure on E. Let M(E) be the open unit ball
in L∞(E). Denote by B2(D) the Banach space of holomorphic functions
f on D such that ‖f‖2 = supz∈D %(z)−2|f(z)| < ∞; %(z) denotes here the
element of the Poincaré metric on components of D (for nonhyperbolic D
we put B2(D) = {0}). Let µ ∈ M(E). Let µ̃ be equal to µ on E and to
zero on D. Denote by wµ the quasiconformal map Ĉ → Ĉ defined by the
Beltrami equation

∂wµ

∂z
= µ̃

∂wµ

∂z
.

The mapping wµ is determined up to composition with Möbius maps.
The restriction of wµ to D is a univalent meromorphic function on D. If f
is any meromorphic function then one can define the Schwarzian derivative
of f ,

Sf =
(

f ′′

f ′

)′

− 1
2

(
f ′′

f

)2

.

1.1. Definition. The generalized Bers projection is the mapping Φ :
M(E) → B2(D) defined by Φ(µ) = Swµ . The Beardon–Gehring theorem
implies Swµ ∈ B2(D) [Be-Ge].

The mapping Φ is holomorphic (see Sugawa [Su], Appendix). We shall
denote its Fréchet derivative at µ ∈ M(E) by DΦ[µ].

T. Sugawa proved in [Su] that if IntE = ∅ and Ĉ \E consists of a finite
number of hyperbolic components then Φ is an injection. Moreover, if Ĉ\E
is connected then for every µ ∈ M(E) the Fréchet derivative DΦ[µ] is also
an injection.
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The aim of the present note is to extend Sugawa’s result to the case of
compact sets E for which Ĉ \ E has countably many components.

We shall need the following:

1.2. Definition. Let E be a compact set in C. Let A0 be the component
of Ĉ \ E containing ∞. Define inductively the set Aj+1 as the sum of all
components D′ of (C \ E) \

⋃j
k=0 Ak such that D′ ∩

⋃j
k=0 Ak contains at

least three distinct points.
We shall say that E has a regular complement iff C \ E =

⋃∞
j=0 Aj .

1.3. R e m a r k. Each compact set E in C with IntE = ∅ such that Ĉ\E
consists of a finite number of components has a regular complement.

Each Carathéodory compact set E (E = ∂A0) has a regular complement.
There are also many compact sets E which have irregular complements.

1.4. Theorem. Let E be a compact subset of C with IntE = ∅. Assume
that E has a regular complement. Then the generalized Bers projection is
injective. Moreover , for each µ ∈ M(E) the derivative DΦ[µ] is a linear
injection L∞(E) → B2(D).

1.5. R e m a r k. Sugawa [Su] gave an example of a compact set E in
Ĉ for which Φ is not injective. For this E the following is true: If Dj , Di

are two distinct components of Ĉ \ E then Di ∩Dj = {∞}. (By using the
Möbius transform we can map E into C.)

1.6. R e m a r k. The condition that E has a regular complement is not
a necessary condition for the validity of our result.

It is possible to formulate far weaker (and far more complicated) con-
ditions on E, which are sufficient for the validity of Theorem 1.4. See Re-
mark 3.4 at the end of this paper for some details.

Following again Sugawa we can state

1.7. Corollary. Let E be as in Theorem 1.4. Then E has Lebesgue
measure zero iff the only conformal maps on Ĉ \ E which extend to quasi-
conformal maps Ĉ → Ĉ are Möbius mappings.

1.8. Corollary. Assume that there exists a constant c such that each
conformal map w on Ĉ \ E for which ‖Sw‖2 < c is Möbius. Then E has
Lebesgue measure zero.

Corollary 1.8 is due to Overholt [Ov].

2. Proof of Theorem 1.4. The proof of the injectivity of Φ is the
same as in Sugawa’s paper [Su]. Assume that Φ(µ1) = Φ(µ2). Note that
we can always assume that wµ1 and wµ2 fix 0, 1, ∞ since Sm◦f = Sf for
each Möbius map m. Now, Φ(µ1) − Φ(µ2) = Swµ1 − Swµ2 implies that
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wµ1 ◦ (wµ2)−1 restricted to a component of D = C \ E is a Möbius map.
Since E has a regular complement it must be the same Möbius map on every
component of D. Thus IntE = ∅ implies that wµ1 ◦ (wµ2)−1 is a Möbius
map on Ĉ fixing 0, 1,∞ and therefore wµ1 = wµ2 and µ1 = µ2.

We must now prove the injectivity of DΦ[µ]. Sugawa [Su] proved that
it is sufficient to establish the injectivity of DΦ[0]. It can be proved by
differentiating the formula

Tµ ◦ Φµ = Φ ◦Rµ − Φ(µ)

at 0 ∈ M(Eµ), where Eµ = wµ(E), Φµ is the Bers projection Φµ : M(Eµ) →
B2(Dµ), Dµ = Ĉ \ Eµ,

Tµf = (f ◦ wµ) ·
(

dwµ

dz

)2

, Tµ : B2(Dµ) → B2(D),

and Rµ(v) is the Beltrami differential of wν ◦ wµ,

Rµ(v) =
µ

∂wµ

dz
+ ν ◦ wµ ∂wµ

∂z
∂wµ

∂z
+ ν ◦ wµ

∂wµ

∂z
· µ

, Rµ : M(Eµ) → M(E).

We shall use in the sequel the Bers formula (see [Su, Appendix])

DΦ[0](ν)(z) = − 6
π

∫
E

ν(t)
(t− z)4

dVt.

We shall need the following:

2.1. Lemma. Suppose that ϕ ∈ L∞(D) and suppϕ is bounded. The
function

Fϕ(z) =
∫
C

ϕ(t)
t− z

dVt

belongs to the Hölder space Λα(C) for each α ∈ (0, 1).

P r o o f. Fϕ is a solution of the differential equation ∂u/∂z = ϕ. Take R
so large that suppϕ ⊂ B(0, R). Let v = ∂

∂z GR ϕ, where GR is the operator
solving the Dirichlet problem

∂2v

∂z∂z
=

1
4
∆v = ϕ on B(0, R), v ≡ 0 on ∂B(0, R).

By the classical Lp estimates of the solution of the Dirichlet problem and the
Sobolev imbedding theorem, v ∈ Λα(B(0, R)), 0 < α < 1. By the ellipticity
of d/dz, also Fϕ ∈ Λα(B(0, R)). Since Fϕ is holomorphic on C \ suppϕ,
Fϕ ∈ Λα(C).
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Lemma 2.2. Let E be a compact set in C. Assume that IntE = ∅ and E
has a regular complement. Let ϕ ∈ L∞(E). If

Hϕ(z) =
∫
E

ϕ(t)
(t− z)4

dVt = 0 for each z ∈ D = C \ E

then

Fϕ(z) =
∫
E

ϕ(t)
t− z

dVt = 0 for each z ∈ D.

P r o o f. We have

Hϕ(z) = c
d3

dz3
Fϕ(z).

This implies that on each component Di of D, Fϕ(z) = aiz
2 + biz + ci.

Since Fϕ is Hölder on C (by Lemma 2.1) and E has a regular complement,
ai = aj , bi = bj , ci = cj for all i, j and Fϕ(z) = az2 + bz + c on C. However,
Fϕ(z) vanishes at infinity and therefore Fϕ(z) = 0.

E n d o f t h e p r o o f o f T h e o r e m 1.4. Let DΦ[0](ν) = 0, ν ∈
M(E). Then Hν(z) =

∫∫
E

(ν(t)/(t − z)4) dVt vanishes on D, and so does
Fν(z) =

∫∫
E

(ν(t)/(t− z)) dVt by Lemma 2.2.
Take a ∈ D and consider the expansion of Fν at a,

Fν(z) =
∞∑

n=0

(z − a)n
∫
E

ν(t)
(t− a)n+1

dVt.

We have
∫∫

E
(ν(t)/(t− a)k) dVt = 0 for k ≥ 1.

Putting a = ∞ we obtain the expansion

Fν(z) =
∞∑

n=0

z−n−1
∫
E

tnν(t) dVt.

Hence
∫∫

E
r(t)ν(t) dVt = 0 for every rational function ν(t) with poles out-

side E.
The Brennan theorem (see [Br1] and [Me-Si, Th. 7.4 and the proof of

Th. 1.7]) implies that for every compact set E in C and every p with 1 ≤
p < 2 the space R(E) of rational functions with poles outside E is dense
in Lp(E) ∩ Hol(IntE), the space of those functions from Lp(E) which are
holomorphic on IntE. Thus we have L1(E) = R(E) if IntE = ∅. Hence∫∫

E
f(t)ν(t) dVt = 0 for every f ∈ L1(E) and ν = 0 a.e. on E.

P r o o f o f t h e c o r o l l a r i e s. If the only conformal maps as in the
statement of Corollary 1.7 are Möbius then Φ ≡ 0. The injectivity of Φ
implies that M(E) = {0} and E has measure zero. If each w for which
‖Sw‖2 < c is Möbius then {0} is an isolated point of Φ(M(E)). By the
identity theorem, Φ ≡ 0 and E has measure zero.
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3. Remarks

3.1. R e m a r k. If we drop the assumption that Int E = ∅ we can put
our Theorem 1.4 in a (seemingly) more general form.

Theorem 1.4′. Let E be a compact set in C with a regular complement
and let Φ be the Bers projection.

1) Φ is injective iff IntE = ∅.
2) KerDΦ[0] = {µ ∈ M(E) :

∫∫
E

f(t)µ(t) dVt = 0, ∀f ∈ L1(E) ∩
Hol(IntE)}.

3) KerDΦ[0] = {0} ⇔ ∃µ ∈ M(E) KerDΦ[µ] = {0}
⇔ ∀µ ∈ M(E) KerDΦ[µ] = {0} ⇔ IntE = ∅.

The proof remains almost the same. Note that if IntE 6= ∅ then the
fiber Φ−1(0) is very large. It contains in particular all C1 diffeomorphisms
of Ĉ equal to the identity on Ĉ \ IntE. If E = B(0, 1) = ∆ then Φ−1(0)
is the known class F of q.c. homeomorphisms of the unit disc equal to the
identity on the circle.

3.2. R e m a r k. Theorem 1.4′ can be valid for some compact sets E with
irregular complement and Int E 6= ∅. It suffices that polynomials are dense
in L1(E) ∩ Hol(IntE). An interesting class of such domains was described
by Brennan [Br2]:

Let E1 be a compact set in C with connected complement and let D1 be
a Jordan domain with C2-smooth boundary such that D1 ⊂ E1. Take E =
E1 \D1. The polynomials are dense in L1(E)∩Hol(E) iff

∫
∂D1

ln δ(z) |dz| =
−∞, where δ(z) = dist(z, C \ E1).

Note that if IntE = ∅ then E has a regular complement.

3.3. R e m a r k. The formula Tµ ◦ Φµ = Φ ◦Rµ − Φ(µ), µ ∈ M(E), used
in the proof of Theorem 1.4 yields

DΦ[µ] = Tµ ◦DΦµ[0] ◦ (DRµ[0])−1.

Thus by the Bers formula

DΦ[µ](ν)(z) = − 6
π

∫
E

(
∂wµ

∂t
(t)

)2

· ν(t)
(

∂wµ

∂z
(z)

)2

(wµ(t)− wµ(z))4
dVt

for ν ∈ L∞(E).
Moreover, if E has a regular complement then by Theorem 1.4′,

Ker Dϕ[µ]

=
{

ν ∈ L∞(E) :
∫
E

ν ·
(

∂wµ

∂z

)2

· f ◦ wµ = 0 ∀f ∈ L1(Eµ) ∩Hol(IntEµ)
}

.
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3.4. R e m a r k. As was mentioned before, the condition that E has
a regular complement can be weakened in the following way: Put A0

00 =
component of C \ E containing ∞. Define inductively A0

0j = Aj as in
Definition 1.2. Put A0

0 =
⋃∞

j=0 A0
0j . Let A0

10 be any component of (C \E) \
A0

0. Construct the sets A0
1j in the same way as before. Take A0

1 =
⋃∞

j=1 A0
j .

Let A0
20 be a component of (C \ E) \ A0

0 ∪A1
1. Construct the set A0

2 =⋃∞
j=0 A0

2j , and so on. After constructing A0
k, k = 1, 2, . . . , put A1

00 = A0
0

and repeat the previous construction taking A0
k instead of components of

C \ E to obtain a sequence of sets A1
0k. Put A1

0 =
⋃∞

j=0 A1
0j and proceed

to define A1
k. Take A2

00 = A1
0 and repeat the construction with A1

k instead
of A0

k. As a result we get a sequence of sets An
0 . We shall say that E has

a w1-regular complement if C \ E =
⋃∞

n=0 An
0 . Since in the construction

in Definition 1.2 the closure of
⋃k

j=0 Ak always had three distinct points in
common with Ak+1 and we repeated the same construction again and again,
all our results remain true for compact sets with w1-regular complement.
Moreover, we can take (C \E) \

⋃∞
n=0 An

0 , choose some component of it and
repeat this construction to formulate a weaker condition of having w2-regular
complement. In this way one can in principle define a sequence of weaker
and weaker conditions of wn-regularity of the complement of E. Each of
those conditions will be sufficient for the validity of Theorem 1.4 and of the
rest of our results, but none will be necessary.
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