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CYCLES OF POLYNOMIALS IN ALGEBRAICALLY CLOSED
FIELDS OF POSITIVE CHARACTERISTIC

BY

T. P E Z D A (WROC lAW)

1. Let K be a field and f a polynomial with coefficients in K. A k-tuple
x0, x1, . . . , xk−1 of distinct elements of K is called a cycle of f if

f(xi) = xi+1 for i = 0, 1, . . . , k − 2 and f(xk−1) = x0.

It follows from the results of I. N. Baker ([1], [2]) that ifK is an algebraically
closed field of zero characteristic and f is a non-linear polynomial over K
then f has in K cycles of all lengths with at most one exception. Moreover,
the exceptional case may occur only when f is linearly conjugate to the
polynomial X2−X. (Two polynomials f and g are called linearly conjugate
if f(aX + b) = ag(X)+ b for some a, b ∈ K, a 6= 0.) In this exceptional case
there are no cycles of length 2.

For n = 1, 2, . . . denote by fn the nth iterate of f and let Z(n) = {m :
m |n, m < n}. Put also N = {1, 2, . . .}, and let CYCL(f) denote the set
of all lengths of cycles for f ∈ K[X]. Thus in algebraically closed fields of
zero characteristic one has for non-linear polynomials f either CYCL(f) =
N or CYCL(f) = N \ {2}. Here we shall consider the same question in
algebraically closed fields of prime characteristic. It has been established
by G. Chassé [3] that in this case CYCL(f) is infinite for all non-linear f .
We shall make this result more precise and describe this set up to finitely
many elements. Since for linearly conjugate polynomials the sets of their
cycle lengths coincide it is sufficient to consider f monic and vanishing at 0.

Theorem. Let K be an algebraically closed field of characteristic p > 0,
let f ∈ K[X] be monic of degree d ≥ 2 and assume f(0) = 0.

(i) If p - d then CYCL(f) contains all positive integers with at most 8 ex-
ceptions. At most one of those exceptional integers can exceed max{4p, 12}.

(ii) If p | d and f is not of the form
∑

i≥0 αiX
pi

then CYCL(f) = N or
CYCL(f) = N \ {2}.
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(iii) If f(X) = αX +
∑

i>0 αiX
pi

then

(a) if α is not a root of unity , then CYCL(f) = N;
(b) if α = 1 then CYCL(f) = N for f(X) 6= X+Xd, and CYCL(f)

= N \ {p, p2, . . .} for f(X) = X +Xd;
(c) if α 6= 1 is a root of unity of order l and l is not a prime power

then CYCL(f) = N;
(d) if α is a root of unity of a prime power order l = qr with prime

q 6= p then CYCL(f) = N unless

fqr−1(q−1)(X)+fqr−1(q−2)(X)+. . .+fqr−1(X)+X = Xdqr−1(q−1)
.

In this exceptional case CYCL(f) = N \ {qr, qrp, qrp2, . . .}.

2. Proof of (i). Assume that f has no cycles of lengths n and k, with
n > k. We consider (following [1]) the rational function

T (X) =
fn(X)−X

fn−k(X)−X
=
R(X)
Q(X)

,

where R, Q are relatively prime polynomials. Write R = rpM

and Q = qpM

with a maximal possible M ≥ 0. Then obviously (r/q)′ 6= 0.
Put m = degQ. Then

(1)
degR = dn − dn−k +m, deg r = p−M (dn − dn−k +m),

deg q = p−Mm.

If ξ is a zero of T then fn(ξ)− ξ = 0 and since f has no cycles of length
n, we must have fl(ξ) − ξ = 0 for some l ∈ Z(n), and this shows that the
number of different zeros of T does not exceed

∑
l∈Z(n) d

l.
Similarly we estimate the number of different elements ξ satisfying T (ξ)

= 1. In this case fn(ξ) = fn−k(ξ), hence fk(fn−k(ξ)) = fn−k(ξ) and as
f has no cycles of length k, we get fj(fn−k(ξ)) = fn−k(ξ) for some j ∈
Z(k). This shows that the number of solutions of T (ξ) = 1 is bounded by∑

j∈Z(k) d
n−k+j .

If ξ is a zero of r/q of order l then it is a zero of (r/q)′ of order ≥ l − 1
and the same applies to zeros of r/q − 1.

This finally shows that the number of solutions of r/q = 0 and r/q = 1
counted with multiplicities is bounded by∑

l∈Z(n)

dl +
∑

j∈Z(k)

dn−k+j + deg r + deg q − 1.

On the other hand, this number equals 2 deg r, and thus we get

2 deg r ≤
∑

l∈Z(n)

dl +
∑

j∈Z(k)

dn−k+j + deg r + deg q − 1.
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Equalities (1) now lead to

(2) dn − dn−k ≤ pM
( ∑

l∈Z(n)

dl +
∑

j∈Z(k)

dn−k+j − 1
)

and

(3) dn ≤ pM (2dn/2 + 2dn−k/2 − 3) + dn−k.

This gives dn < 4pMdn−k/2, hence

(4) dk/2 < 4pM ,

and in view of pM | dn − dn−k one gets

(5) pM | dk − 1.

If now M = 0 then (4) gives k ≤ 3 and so in this case at most three
positive integers can lie outside CYCL(f) in view of 1 ∈ CYCL(f).

In the case M ≥ 1 denote by w0 the order of d mod 4 if p = 2 and the
order of d mod p otherwise.

If p is odd then (5) shows that k = cw0 for some c. Now observe that
the highest power of p dividing dk − 1 does not exceed c(dw0 − 1). Indeed,

dk − 1 = ((dw0 − 1) + 1)c − 1 =
∑
r≥1

(
c

r

)
(dw0 − 1)r,

and for r ≥ 2 the number
(

c
r

)
(dw0 − 1)r is divisible by a larger power of p

than c(dw0 − 1).
If p = 2 then d ≥ 3 so in case M = 1, (4) implies k ≤ 3 and in case

M ≥ 1 we find (as in the case of p odd) that the highest power of 2 dividing
dk − 1 does not exceed c(dw0 − 1), where w0 is the smallest positive integer
with dw0 ≡ 1 mod 4.

From (3) and (5) we see that if k ≥ 4 then

dcw0/2 = dk/2 < 4c(dw0 − 1),

which implies d(c/2−1)w0 < 4c. Therefore, in case w0 ≥ 3 one has c ≤ 4 and
so k ∈ {2, 3, w0, 2w0, 3w0, 4w0}, while in case w0 = 2 we get c ≤ 6, hence
k ∈ {2, 3, 4, 6, 8, 10, 12}.

Finally, if w0 = 1 then d ≥ 4, thus 4c/2−1 < 4c and c ≤ 6. Hence in this
case k ∈ {2, 3, 4, 5, 6}.

We see that k can assume at most seven values and in view of w0 ≤ p
they are bounded by max{4p, 12}. This implies (i).

3. Now we deal with the case p | d.

Lemma 1. If n is not the length of a cycle for f then f ′n(X) = 1.
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P r o o f. Let f(X) =
∑

r≥1 brX
r, assume that there exists 1 < t < d

with p - t and bt 6= 0, and let a be the smallest such t. Put

fj(X) =
∑
r≥1

b(j)r Xr.

A simple recurrence shows that the highest r with p - r and b
(j)
r 6= 0 equals

(a− 1)(1 + d+ . . .+ dj−1) + 1. From the formula

dn ≤ #{ξ : fn(ξ) = ξ}+ deg((fn(X)−X)′)

we get

dn ≤
∑

k∈Z(n)

dk + (a− 1)(1 + d+ . . .+ dn−1),

but in view of a ≤ d− 1 we have 1+1+d+ . . .+dn−1 ≤
∑

k∈Z(n) d
k, which

leads to a contradiction.
If there is no t as above and our lemma is false then f ′n− 1 is a non-zero

constant and we get dn ≤
∑

k∈Z(n) d
k, which is clearly impossible.

4. Proof of (ii). Assume f has no cycles of length n. So (fn(X)−X)′

= 0 by Lemma 1 and hence f(X) = αX +
∑

r brX
pr , with αn = 1.

By assumption there exists m ≥ 1 such that f contains terms of the
form bXupm

with u not divisible by p and exceeding 1. Let m be the
smallest such integer and choose u to be the largest possible. So f(X) =
αX +

∑
0<i≤m ciX

pi

+
∑

p - k,k>1 bkX
kpm

+
∑

r drX
rpm+1

. By induction we
get

fn(X) = αnX +
∑

0<i≤m

CiX
pi

+
∑

p - k,k>1

BkX
kpm

+
∑

r

DrX
rpm+1

where the highest power appearing in the second sum equals
X(1+(u−1)dn−1)pm

. Write fn(X) − X = (ψ(X))pM

with non-zero ψ′ and
consider two cases:

(α) M < m. Then ψ′ is a non-zero constant and this gives dn ≤ pM ×∑
l∈Z(n) d

l. Thus dn < 2ddn/2, leading to n ≤ 3 and dn < d · d, a contradic-
tion.

(β) M = m. Then dn ≤ pm(
∑

l∈Z(n) d
l + (u− 1)dn−1) and

dn−1u ≤
∑

l∈Z(n)

dl + (u− 1)dn−1.

So dn−1 ≤
∑

l∈Z(n) d
l and n = 2, d = pmu follows.
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5. Proof of (iii). Assume that f is of the form

(6) αX +
∑
i≥1

αiX
pi

and has no cycle of length n.

Lemma 2. For s = 1, 2, . . . one has, with suitable α(s), α(s)
i ,

fs(X) = α(s)X +
∑
i≥1

α
(s)
i Xpi

,

all roots of fs have the same multiplicity and fs defines an Fp-linear map
K → K.

P r o o f. Easy induction.

Let q be a prime and denote by A(X) the divisor of fq(X) − X which
is prime to f(X)−X and has a maximal degree. Write B(X) = (fq(X)−
X)/A(X). Since f(X) − X is of the form (6), Lemma 2 implies that all
zeros of f(X) − X have the same multiplicity. Since the same applies to
fq(X)−X we get degB(X) = dqc(f, q), where c(f, q) = c1/cq, ci denoting
the number of different zeros of fi(X)−X.

Lemma 3. Let q be a prime and let f be a polynomial of the form (6).

(i) If α = 1, then

c(f, q) =
{

1/dq−1 if q 6= p,
(r/d)p−1 if q = p,

where r = r(f) is the smallest degree of a monomial occurring in f(X)−X
and d = d(f) is the degree of f .

(ii) If α 6= 1 and q 6= p then either c(f, q) = 1 or c(f, q) ≤ p−λ, where λ
denotes the order of p mod q.

P r o o f. (i) Write f(X) = X + aXr + . . . = X +h(X) with a 6= 0. Using
Lemma 2 we deduce that all roots of h have multiplicity r, thus c1 = d/r.
Similarly one gets

cq =
{
dq/r if q 6= p,
(d/r)p if q = p,

leading to the assertion.
(ii) In this case we have q 6= p. If we put h(X) = f(X)−X then

fq(X)−X =
(
q

1

)
h(X) +

(
q

2

)
h2(X) + . . .+

(
q

q

)
hq(X).

Let H = {x : h(x) = 0} and L = {x : fq(x) = x}. Then H is a subspace of
L treated as linear spaces over Fp. Notice that h(H) ⊂ H and h(L) ⊂ L.

Let x ∈ L. In this case h(x), h2(x), . . . ∈ L. Since L is finite, there exist
m ∈ N and β1, . . . , βm ∈ Fp with βm = 1 such that β1h(x) + β2h2(x) +
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. . . + βmhm(x) = 0. Choose m as small as possible and define g0(X) =
g0(x,X) = β1X + . . .+ βmX

m.
Consider the linear map T : Fp[X] → Fp[X] defined for g(X) = β0 +

β1X + . . . + βwX
w by T (g)(X) = β0X + β1h(X) + . . . + βwhw(X). Then

T (g1 · g2) = T (g1) ◦ T (g2) and T (g)(0) = 0.
Put Q(X) =

(
q
1

)
X + . . . +

(
q
q

)
Xq. For our x we have T (Q)(x) = 0 and

T (g0)(x) = 0. So T (G1 · Q + G2 · g0)(x) = 0 for every G1, G2 ∈ Fp[X].
Hence T ((Q, g0))(x) = 0 and using (Q, g0)(0) = 0 and the minimality of m
we arrive at g0 |Q.

If H = L then c(f, q) = 1, so consider the case H 6= L. Let x ∈ L \H.
Notice that g0(x,X) 6= Xm as q 6= p and h(x) 6= 0. So there exists a
polynomial G irreducible over Fp with G | g0 and G 6= cX. Let degG =
s ≤ m− 1. Then G |Xps −X. This shows that Q(X) and Xps −X have a
common divisor different from X, and this means that

((1 +X)q − 1, Xps

−X) 6= X,

thus (Xq − 1, Xps − 1) 6= X − 1 and q | ps − 1 follows. Further, no non-zero
linear combination of x, h(x), . . ., hm−2(x) lies in H, and this shows that
either c(f, q) = 1 or c(f, q) ≤ p−(m−1) ≤ p−s ≤ p−λ.

Corollary. If c(f, q) = 1, then either α 6= 1 and q 6= p, or α = 1, q = p
and f(X) = X +Xd.

6. We need two lemmas:

Lemma 4. Assume that n is not the length of a cycle for f(X) = αX +∑
i>0 αiX

pi

. Then c(fn/q, q) = 1 for some prime q |n.

P r o o f. Assume that c(fn/q, q) < 1 for all primes q dividing n. In view
of Lemma 1 we have αn = 1 and Lemma 3 shows that the following must
hold:

1) If p |n then c(fn/p, p) = (r/d)p−1 ≤ 1/pp−1;
2) If q |n, q 6= p and αn/q = 1 then c(fn/q, q) = 1/dn(q−1)/q ≤ 1/pq−1;
3) If q |n and αn/q 6= 1, then c(fn/q, q) ≤ 1/ps where s satisfies q | ps−1.

Now we show that our assumption implies∑
:=

∑
q |n

q prime

c(fn/q, q) < 1.

This will give the desired contradiction, since every zero of fn(X)−X is a
zero of fn/q(X)−X for some prime q |n (otherwise f would have a cycle of
length n) and thus

∑
≥ 1.
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Notice that ∑
≤ 1
pp−1

+
∑
s≥1

t(s)
ps

=
∑

(p)

where t(s) the number of primes q for which p has order s mod q. Obviously
t(s) ≤ s log2 p and thus for p ≥ 5 in view of log2 p < p/2 we get∑

(p) < 0.01 + log2 p ·
∑
s≥1

s

ps
= 0.01 +

p

(p− 1)2
log2 p < 0.8.

For p = 3 one has t(1) = 1 and t(2) = 0, hence∑
(3) ≤ 1

9
+

1
3

+
log 3
log 2

∑
n≥3

n

3n
< 0.76,

and finally∑
(2) <

5∑
k=1

1
2k

+
10∑

k=7

1
2k

+
2

2048
+

1
4096

+
∑

n≥13

n

2n
≤ 0.9881.

Lemma 5. If d is a power of p, then the polynomial f(X) = X + Xd

has no cycles of length pk for k = 1, 2, . . . but does have cycles of all other
lengths.

P r o o f. It is easy to check that f has no cycles of lengths p, p2, . . . If now
1 < M 6= pα and f has no cycle of length M then the last lemma shows that
c(fM/r, r) = 1 for some prime divisor r of M . Since in our case α = 1, we
may invoke the Corollary to Lemma 3 to get r = p and fm(X) = X +Xdm

with m = M/p. As m is not a power of p there is 1 < j < m with p -
(
m
j

)
, but

this implies fm(X) = X+
(
m
1

)
Xd+. . .+Xdm 6= X+Xdm

, a contradiction.

7. In view of Lemma 4 there exists a prime divisor q of n with c(fn/q, q)
= 1.

First, suppose q = p. Then the Corollary to Lemma 3 gives fn/q(X) =
X+Xdn/q

, showing that both fn/q(X)−X and f(X)−X have exactly one
root, which can happen only for f(X) = X +Xd, and the assertion follows
from Lemma 5.

Lemma 6. If f is as in case (iii) of the Theorem, q is a prime and
αn/q 6= 1 then the following conditions are equivalent :

(a) c(fn/q, q) = 1,

(b) fn(X)−X = (fn/q(X)−X)dn(q−1)/q

,

(c) fn(X)−X = βXdn(q−1)/q

+ higher powers of X.
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P r o o f. (a)⇒(b). If c(fn/q, q) = 1 then every root of fn(X) − X is a
root of fn/q(X) − X. The last polynomial has all its roots distinct, f is
monic, and all roots of fn(X)−X have the same multiplicity by Lemma 2.
By comparing degrees we arrive at

fn(X)−X = (fn/q(X)−X)dn(q−1)/q

.

(b)⇒(c). Follows immediately from αn/q − 1 6= 0.
(c)⇒(a). The multiplicity of every root of fn(X)−X is dn(q−1)/q, since

that is the multiplicity of 0. So one has

(fn/q(X)−X)dn(q−1)/q

| fn(X)−X

and it suffices to compare the degrees.

Let l be the smallest positive integer such that αl = 1. Then n = mpβl
where p -m since αn = 1.

Write fl(X)−X = β1X
A + . . . (β1 6= 0) where we omitted, as we shall

also do in the sequel, terms containing higher powers of X. Then with
suitable non-zero β2, β3 we get

flm(X)−X = β2X
A + . . . and fn(X)−X = β3X

Apβ

+ . . .

Since the degree of fl(X) − X equals dl we get A ≤ dl. Note that in case
A = dl we would have f(X) = X+Xd, and since all possible cycle-lengths of
this polynomial have been determined in Lemma 5, we can assume A < dl.

In view of αn/q − 1 6= 0 using Lemma 6 one obtains

Apβ

= dn(q−1)/q

and A = dlm(q−1)/q follows. From A < dl one gets m(q − 1)/q < 1 and so
m = 1. Thus n = lpβ and A = dl(q−1)/q. Finally, using αl/q 6= 1 we get
c(fl/q, q) = 1 by Lemma 6 and this shows that there are no cycles of length l.

Now we show that if there are no cycles of length l then there are none of
lengths l, lp, lp2, . . . Assume, therefore, that there are no cycles of length l.
Then for some prime q 6= p dividing l we have fl(X)−X = β1X

dl(q−1)/q

+. . . ,
and

flpβ (X)−X = β4X
lpβ(q−1)/q + . . .

Now in view of αlpβ/q 6= 1 and using Lemma 6 one obtains c(flpβ/q, q) = 1,
showing that there are no cycles of length lpβ for any positive integers β.

Finally, we obtained the following assertion:

(a) if there are no cycles of length l then CYCL(f) = N \ {l, lp, lp2, . . .};
(b) if there is a cycle of length l then CYCL(f) = N.

It suffices hence to consider, for some q | l, q 6= p, the equality

fl(X)−X = (fl/q(X)−X)dl(q−1)/q

.
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Let fl/q = G, dl/q = D, so that Gq(X) − X = (G(X) − X)Dq−1
. This is

equivalent to

(Gq−1(X) +Gq−2(X) + . . .+G(X) +X) ◦ (G(X)−X) = (G(X)−X)Dq−1

and
Gq−1(X) +Gq−2(X) + . . .+G(X) +X = XDq−1

.

Now we show that l must be a power of q. Suppose that there exists a
prime divisor k 6= q of l. Then every root of fl/k(X)−X would be a root of
fl(X)−X, fl/q(X)−X, and fδ(X)−X where δ = (l/k, l/q). But δ < l/k
and this leads to a contradiction as fl/k(X)−X has all its roots distinct.

Example. If d ≡ 3 (mod 4) and α2 = −1 then f(X) = αX+Xd, where
d is a power of p, has no cycles of lengths {4, 4p, . . .}.
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