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COMPACTNESS IN APPROXIMATION SPACES

BY

M. A. FUGAROLAS (SANTIAGO DE COMPOSTELA)

In this paper we give a characterization of the relatively compact subsets
of the so-called approximation spaces. We treat some applications: (1)
we obtain some convergence results in such spaces, and (2) we establish a
condition for relative compactness of a set lying in a Besov space.

0. Introduction. In the following, all definitions concerning approxi-
mation spaces are adopted from [2].

A quasi-norm is a non-negative function ‖ · ‖X defined on a (real or
complex) linear space X for which the following conditions are satisfied:

(1) If ‖f‖X = 0 for some f ∈ X, then f = 0.
(2) ‖λf‖X = |λ| ‖f‖X for f ∈ X and all scalars λ.
(3) There exists a constant cX ≥ 1 such that

‖f + g‖X ≤ cX [‖f‖X + ‖g‖X ] for f, g ∈ X.

The quasi-norms ‖ · ‖(1)
X and ‖ · ‖(2)

X are said to be equivalent if

‖f‖(2)
X ≤ a‖f‖(1)

X and ‖f‖(1)
X ≤ b‖f‖(2)

X for all f ∈ X,

where a and b are suitable constants.
A quasi-norm ‖ · ‖X is called a p-norm (0 < p ≤ 1) if

‖f + g‖p
X ≤ ‖f‖p

X + ‖g‖p
X for f, g ∈ X.

The condition (3) is satisfied with cX := 21/p−1.
A quasi-Banach space is a linear space X equipped with a quasi-norm

‖ · ‖X such that every Cauchy sequence is convergent.
An approximation scheme (X, An) is a quasi-Banach space X together

with a sequence of subsets An such that the following conditions are satisfied:

(1) A1 ⊆ A2 ⊆ . . . ⊆ X.
(2) λAn ⊆ An for all scalars λ and n = 1, 2, . . .
(3) Am + An ⊆ Am+n for m,n = 1, 2, . . .

We put A0 := {0}.
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Let (X, An) be an approximation scheme. For f ∈ X and n = 1, 2, . . . ,
the nth approximation number is defined by

αn(f,X) := inf{‖f − a‖X : a ∈ An−1}.

Let 0 < % < ∞ and 0 < u < ∞. Then the approximation space
X%

u, or more precisely (X, An)%
u, consists of all elements f ∈ X such that

(n%−1/uαn(f,X)) ∈ lu, where n = 1, 2, . . . We put

‖f‖X%
u

:= ‖(n%−1/uαn(f,X))‖lu for f ∈ X%
u.

Then X%
u is a quasi-Banach space.

We mention (see [2]) that an element f ∈ X belongs to X%
u if and only if

(2k%α2k(f,X)) ∈ lu, where k = 0, 1, . . .

Moreover,

‖f‖∗X%
u

:= ‖(2k%α2k(f,X))‖lu

defines an equivalent quasi-norm on X%
u.

In the sequel c1, c2, . . . are positive constants depending on certain ex-
ponents, but not on natural numbers.

1. Relatively compact sets in X%
u. The main result of our work is

Theorem 1. Let (X, An) be an approximation scheme. Let A be a subset
of X%

u. Then A is relatively compact in X%
u if and only if the following two

conditions are satisfied :

(1) A is relatively compact in X.
(2) limn

∑∞
k=n[2k%α2k(f,X)]u = 0 uniformly on A.

P r o o f. If A is a relatively compact set in X%
u then, from the inequality

‖f‖X ≤ ‖f‖∗
X%

u
for f ∈ X%

u, it is obvious that A is relatively compact in X.
Since A is a precompact set in X%

u, given ε > 0, we can find f1, . . . , fm ∈ A
such that, for every f ∈ A,

‖f − fj‖∗X%
u
≤ ε for some j ∈ {1, . . . ,m}.

Moreover, given ε > 0, there exists a natural number n1 such that for n ≥ n1

and i ∈ {1, . . . ,m} we have
∞∑

k=n

[2k%α2k(fi, X)]u ≤ εu,

and then
∞∑

k=n

[2k%α2k(f,X)]u = 2u%
∞∑

k=n−1

[2k%α2·2k−1(f − fj + fj , X)]u
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≤ c12u%
∞∑

k=n−1

[2k%α2k(f − fj , X) + 2k%α2k(fj , X)]u

≤ c22u%
( ∞∑

k=n−1

[2k%α2k(f − fj , X)]u +
∞∑

k=n−1

[2k%α2k(fj , X)]u
)

≤ c22u%+1εu for n ≥ n1 + 1.

Conversely, if (fn) is a sequence of points of A we will prove that (fn)
contains a subsequence (fnk

) which is a Cauchy sequence in X%
u. Then (fnk

)
is convergent in X%

u, and therefore A is relatively compact in X%
u.

Let (βn) be a sequence of real numbers such that 0 ≤ βn ≤ 1 for n =
1, 2, . . . We have

α2·2k−1(fn − fm, X)

= (1− βk)α2·2k−1(fn − fm, X) + βkα2·2k−1(fn − fm, X)

≤ (1− βk)‖fn − fm‖X + cXβk(α2k(fn, X) + α2k(fm, X)).

Hence

(‖fn − fm‖∗X%
u
)u

= ‖fn − fm‖u
X +

∞∑
k=1

[2k%α2k(fn − fm, X)]u

≤ ‖fn − fm‖u
X +

∞∑
k=0

[2(k+1)%α2k+1−1(fn − fm, X)]u

= ‖fn − fm‖u
X + 2%u

∞∑
k=0

[2k%α2k+1−1(fn − fm, X)]u

≤ ‖fn − fm‖u
X + c12%u‖fn − fm‖u

X

∞∑
k=0

[(1− βk)2k%]u

+ c22%u
∞∑

k=0

[βk2k%α2k(fn, X)]u + c22%u
∞∑

k=0

[βk2k%α2k(fm, X)]u.

By condition (2), given ε > 0, there exists a natural number n0 such
that, for all f ∈ A,

∞∑
k=n0

[2k%α2k(f,X)]u ≤ ε.

Since, by condition (1), A is relatively compact in X, the sequence (fn)
contains a subsequence (fnk

) which converges in X and therefore (fnk
) is a
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Cauchy sequence in X. We put

K := 1 + c12u%
n0−1∑
k=0

2k%u.

Then there exists a natural number n1 such that p, q ≥ n1 implies

‖fnp − fnq‖X ≤ (ε/K)1/u.

If we take (βn) with βn = 0 for 1 ≤ n < n0 and βn = 1 for n ≥ n0, from the
above inequalities we arrive at

(‖fnp − fnq‖∗X%
u
)u

≤ ‖fnp
− fnq

‖u
X

[
1 + c12%u

n0−1∑
k=0

2k%u
]

+ εc22%u+1 ≤ ε[1 + c22%u+1].

This completes the proof.

We also give a compactness criterion in a particular case. For standard
notions of bases in Banach spaces we refer to [5].

Theorem 2. Let X be a Banach space with a basis {fn}. Let (X, An)
be the approximation scheme built from the sequence of subsets

An := [f1, . . . , fn] for n = 1, 2, . . .

Let A be a subset of X%
u. Then A is relatively compact in X%

u if and only if
the following two conditions are satisfied :

(1) A is bounded in X.
(2) limn

∑∞
k=n[2k%α2k(f,X)]u = 0 uniformly on A.

P r o o f. The necessity follows from Theorem 1.
To prove the sufficiency, we define the operator Pn : X → X by

Pn(f) :=
n∑

i=1

f∗i (f)fi for f ∈ X,

where {f∗n} is the sequence of coefficient functionals associated with the
basis {fn}. The approximation scheme (X, An) is linear in the sense of [2],
and it follows that

‖f − Pn−1(f)‖X ≤ cαn(f,X)

for all f ∈ X and n = 1, 2, . . . , where c := 1+ sup ‖Pn‖. From condition (2)
we obtain

lim
n

∞∑
k=n

[2k%‖f − P2k−1(f)‖X ]u = 0 uniformly on A.
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Hence, given ε > 0, there exists a natural number k such that, for all f ∈ A,

‖f − P2k−1(f)‖X ≤ ε/2.

Since A is bounded in X, P2k−1(A) is precompact in X, and then there exists
a set {g1, . . . , gm} such that for every f ∈ A there exists j ∈ {1, . . . ,m} with

‖P2k−1(f)− gj‖X ≤ ε/2,

and therefore

‖f − gj‖X ≤ ‖f − P2k−1(f)‖X + ‖P2k−1(f)− gj‖X ≤ ε.

Hence A is precompact in X, and then A is relatively compact in X. The
result now follows from Theorem 1.

2. Some applications. Now we obtain some consequences of the
preceding results. First, we establish various convergence theorems.

Theorem 3. Let (X, An) be an approximation scheme. Suppose that
fn → f in X and that

lim
n

∞∑
k=n

[2k%α2k(fm, X)]u = 0 uniformly on A,

where A := {fm : m ∈ N}. Then fn → f in X%
u.

P r o o f. Since fn → f in X, the set A ∪ {f} is compact, hence A
is relatively compact in X. From the uniform convergence assumption, we
have A ⊂ X%

u. Applying Theorem 1 we conclude that A is relatively compact
in X%

u. Then f is the only adherent value of the sequence (fn) and therefore
fn → f in X%

u.

The following dominated convergence theorem (see [4, p. 39] for opera-
tors in the Schatten classes) is an immediate consequence of Theorem 3.

Theorem 4. Let (X, An) be an approximation scheme. Suppose that
fn → f in X, with f ∈ X%

u, and that

αk(fn) ≤ αk(f) for k, n = 1, 2, . . .

Then fn → f in X%
u.

Theorem 5. Let X be a quasi-Banach space equipped with a p-norm
‖ · ‖X (0 < p ≤ 1). Let (X, An) be an approximation scheme. Suppose that
fn → f in X and that

‖fn‖∗X%
u
→ ‖f‖∗X%

u
.

Then fn → f in X%
u.

P r o o f. It follows from

|αk(fn, X)p − αk(f,X)p| ≤ ‖fn − f‖p
X
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and fn → f in X that limn αk(fn) = αk(f) for k = 1, 2, . . . Obviously, the
corresponding approximation numbers are defined from the p-norm ‖ · ‖X .

Since ‖fn‖∗X%
u
→ ‖f‖∗

X%
u
, given ε > 0, there exists a natural number n1

such that for n ≥ n1 we have
∞∑

k=0

[2k%α2k(fn, X)]u ≤ ε +
∞∑

k=0

[2k%α2k(f,X)]u.

Also f ∈ X%
u, and then there exists a natural number n0 such that

∞∑
k=0

[2k%α2k(f,X)]u ≤ ε +
n0∑

k=0

[2k%α2k(f,X)]u.

Combining the above inequalities we obtain

(∗)
∞∑

k=0

[2k%α2k(fn, X)]u ≤ 2ε +
n0∑

k=0

[2k%α2k(f,X)]u for n ≥ n1.

Using

lim
n

n0∑
k=0

[2k%α2k(fn, X)]u =
n0∑

k=0

[2k%α2k(f,X)]u,

we get a natural number n2 such that for n ≥ n2 we have

(∗∗)
n0∑

k=0

[2k%α2k(f,X)]u ≤ ε +
n0∑

k=0

[2k%α2k(fn, X)]u.

Hence (∗) and (∗∗) for n ≥ max(n1, n2) yield
∞∑

k=0

[2k%α2k(fn, X)]u ≤ 3ε +
n0∑

k=0

[2k%α2k(fn, X)]u,

and then
∞∑

k=n0+1

[2k%α2k(fn, X)]u ≤ 3ε.

We take m0 := max(n1, n2, 2). Since f1, . . . , fm0−1 ∈ X%
u, given ε > 0, we

obtain a natural number n3 such that n ≥ n3 and k ∈ {1, . . . ,m0−1} imply
∞∑

i=n

[2i%α2i(fk, X)]u ≤ 3ε.

Therefore, from the two preceding inequalities we see that for m ≥ max(n0+
1, n3) and n = 1, 2, . . . ,

∞∑
k=m

[2k%α2k(fn, X)]u ≤ 3ε.
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Thus

lim
n

∞∑
k=n

[2k%α2k(fm, X)]u = 0

uniformly on {fm : m ∈ N}, and the result follows from Theorem 3.

To prove a compactness criterion in Besov spaces, we start with some
notation. Let I be the interval [0, 1] and let m be an integer, m ≥ −1. We
consider the orthonormal systems {f (m)

n : n ≥ −m} of spline functions of
order m defined on I (for definition and properties see e.g. [1]). The system
{f (m)

n : n ≥ −m} is a basis in C(I) and Lp(I) for 1 ≤ p < ∞.
The best approximation in Lp(I) for 1 ≤ p < ∞ and in C(I) for p = ∞

is defined by

E(m)
n,p (f) := inf

{a−m,...,an}

∥∥∥f −
n∑

j=−m

ajf
(m)
j

∥∥∥
p
.

The modulus of smoothness of order r ≥ 1 of the function f ∈ Lp(I) is
defined for finite p and δr ≤ 1 by

ω(p)
r (f, δ) := sup

0<h≤δ

( 1−rh∫
0

|∆r
hf(t)|p dt

)1/p

and for p = ∞ by

ω(∞)
r (f, δ) := sup{|∆r

hf(t)| : 0 ≤ t < t + rh ≤ 1, h ≤ δ},

where ∆r
h denotes the forward progressive difference of order r with incre-

ment h.
Let 0 < α < m + 1 + 1/p, 1 ≤ ϑ < ∞. The space Bα,m

p,ϑ (I) is defined as
the set of functions which belong to Lp(I) for 1 ≤ p < ∞ and to C(I) for
p = ∞, and for which

|f |α,m
p,ϑ :=

( 1∫
0

[t−αω
(p)
m+2(f, t)]ϑ

dt

t

)1/ϑ

is finite. It is a Banach space with respect to the norm

‖f‖Bα,m
p,ϑ

(I) := ‖f‖p + |f |α,m
p,ϑ .

For f ∈ Bα,m
p,ϑ (I) we put

‖f‖′Bα,m
p,ϑ

(I) := ‖f‖p +
( ∞∑

n=0

[2nαE
(m)
2n,p(f)]ϑ

)1/ϑ

.

It was proved in [3] that ‖ · ‖Bα,m
p,ϑ

(I) and ‖ · ‖′
Bα,m

p,ϑ
(I)

are equivalent norms.
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Theorem 6. Let m ≥ −1, 1 ≤ p ≤ ∞, 1 ≤ ϑ < ∞ and

0 < α < m + 1 + 1/p.

Let A be a subset of Bα,m
p,ϑ (I). Then A is relatively compact in Bα,m

p,ϑ (I) if
and only if the following two conditions are satisfied :

(1) A is bounded in Lp(I) for 1 ≤ p < ∞ and in C(I) for p = ∞.
(2) For every ε > 0, there exists a δ > 0 such that for every measurable

set E ⊂ I of measure m(E) < δ and for all f ∈ A,∫
E

[t−αω
(p)
m+2(f, t)]ϑ

dt

t
≤ ε.

P r o o f. Suppose that A is relatively compact in Bα,m
p,ϑ (I). Then, given

ε > 0, there exists a finite set {f1, . . . , fq} ⊂ A such that for every f ∈ A,
there exists i ∈ {1, . . . , q} with

‖f − fi‖Bα,m
p,ϑ

(I) ≤ ε.

Hence
1∫

0

[t−αω
(p)
m+2(f − fi, t)]ϑ

dt

t
≤ εϑ.

Since {f1, . . . , fq} ⊂ A, given ε > 0, there exists a δ > 0 such that for every
measurable set E ⊂ I of measure m(E) < δ and for every j ∈ {1, . . . , q},∫

E

[t−αω
(p)
m+2(fj , t)]ϑ

dt

t
≤ εϑ.

Consequently,∫
E

[t−αω
(p)
m+2(f, t)]ϑ

dt

t

≤
∫
E

[t−αω
(p)
m+2(f − fi, t) + t−αω

(p)
m+2(fi, t)]ϑ

dt

t

≤
(( ∫

E

[t−αω
(p)
m+2(f − fi, t)]ϑ

dt

t

)1/ϑ

+
( ∫

E

[t−αω
(p)
m+2(fi, t)]ϑ

dt

t

)1/ϑ)ϑ

≤ (2ε)ϑ.

The set A is bounded in Lp(I) or in C(I) since

‖f‖p ≤ ‖f‖Bα,m
p,ϑ

(I) for f ∈ Bα,m
p,ϑ (I).

Conversely, assume that (1) and (2) are satisfied. There exists a natural
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number n0 such that for n ≥ n0 we have 1/2n < δ and 2n ≥ m + 2. If

F :=
⋃
k≥n

[1/2k+1, 1/2k],

then m(F ) < δ. For k ≥ n we have 2k+1 ≥ 2k ≥ 2n ≥ m + 2 and from [1]
we obtain

E
(m)

2k+1,p
(f) ≤ Mmω

(p)
m+2(f, 1/2k+1),

hence for q > 1 and for all f ∈ A we have

2−αϑ

2Mϑ
m

n+q∑
k=n

2(k+1)αϑ[E(m)

2k+1,p
(f)]ϑ ≤

n+q∑
k=n

1/2k∫
1/2k+1

[t−αω
(p)
m+2(f, t)]ϑ

dt

t

≤
∫
F

[t−αω
(p)
m+2(f, t)]ϑ

dt

t
≤ ε.

Therefore, given ε > 0, there exists a natural number n1 such that for n ≥ n1

we have

(∗) sup
f∈A

∞∑
k=n+1

(2k)αϑ[E(m)

2k,p
(f)]ϑ ≤ ε.

Define A
(m)
n := [f (m)

−m , . . . , f
(m)
−m+n−1] and consider the approximation

scheme (Lp(I), A(m)
n ) for 1 ≤ p < ∞ and (C(I), A(m)

n ) for p = ∞. By (∗),
given ε > 0, there exists a natural number n2 such that for n ≥ n2 we have

sup
f∈A

∞∑
k=n

[2kαα2k(f, Lp(I))]ϑ ≤ ε,

with 1 ≤ p < ∞, and the same holds for p = ∞. Applying Theorem 2 we
conclude that A is relatively compact in Lp(I)α

ϑ for 1 ≤ p < ∞ and in C(I)α
ϑ

for p = ∞. Finally, using the norm ‖ · ‖′
Bα,m

p,ϑ
(I)

we obtain the embeddings

Lp(I)α
ϑ ⊆ Bα,m

p,ϑ (I) for 1 ≤ p < ∞, C(I)α
ϑ ⊆ Bα,m

∞,ϑ(I)

(in fact, in both cases there are equalities), and then A is relatively compact
in Bα,m

p,ϑ (I).
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