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The theory of dual groups

by

A. M e k l e r and G. S c h l i t t (Abbotsford, B.C.)

Abstract. We study the L∞,ω-theory of sequences of dual groups and give a complete
classification of the L∞,ω-elementary classes by finding simple invariants for them. We
show that nonstandard models exist.

1. Introduction. In this paper we begin a study of dual groups and
duality from a logical point of view. Recall that if A is an Abelian group, its
dual is the group A∗ = Hom(A,Z), where Z denotes the group of integers.
There is a canonical map σA from a group A to its double dual A∗∗ = (A∗)∗

taking an element a to evaluation at a. The group A is said to be reflexive
if σA is an isomorphism.

In his lecture series [7], Reid was interested in the structure of dual
groups, and asked whether every dual group is reflexive. In recent years there
have been several different constructions showing otherwise ([3], [5], [4]), and
some progress has been made on other questions about their structure ([4],
[8]). Here we continue this investigation by analyzing the theory of dual
groups.

In fact, we will not concentrate literally on the theory of dual groups,
but rather on the theory of structures derived naturally from a given dual
group. For example:

Definition 1.1. A standard short sequence is a 4-sorted structure

A = (Ai (i < 3); 〈−,−〉; σ; Z)

for the language (〈−,−〉,σ), where A0 is a dual group, Ai+1 = A∗i , σ is
the natural map from A to A∗∗, for (a, f) ∈ Ai × Ai+1, 〈a, f〉 = f(a) (for
i = 0, 1), and Z is a copy of the Abelian group of integers. The sequence A
will be called the short sequence associated with A0.
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It is easy to check that for any dual group A, the map σA is an embedding
(such A are said to be torsionless), so that A may be seen as a subgroup
of A∗∗, which is itself a subgroup of ZA∗ . It follows that A is ℵ1-free, that
is, every countable subgroup is free. (In fact, the map σA is even a pure
embedding, so that A is separable.) Thus A is L∞,ω-equivalent to a free
group (see [1]). So in the language L∞,ω, one can only distinguish between
dual groups of differing rank. (Here and below, the rank of a group will take
values in the set {0, 1, 2, . . . ,∞}.) Hence we cannot, for example, distinguish
between a nonreflexive and a reflexive dual group (both of infinite rank), an
important structural division among dual groups. In the structure defined
in Definition 1.1 one can do this, however; we will consider these structures
in Section 2 and show exactly what may be said in the language L∞,ω.

The important gain made by considering these extended structures in
place of dual groups is that we are able to speak about how a dual group
sits inside its double dual; this suggests extending the idea by considering
the following structures:

Definition 1.2. A standard (long) sequence is an ω+1-sorted structure

A = (An (n ∈ ω); 〈−,−〉; σn (n ∈ ω); Z)

for the language (〈−,−〉,σn (n ∈ ω)), in which A0 is a dual group, Ai+1 =
A∗i , σn is the natural map from An to An+2, and for (a, f) ∈ Ai × Ai+1,
〈a, f〉 = f(a) (for i ∈ ω). We shall say that the sequence A is associated
with, or generated by , A0.

Sometimes we will subscript the maps of a long sequence when it is
necessary to distinguish between the maps of two different sequences.

In Section 3 we will give invariants for the L∞,ω-theories of long se-
quences, which will describe exactly what the theory can say. But we also
show that the nontrivial theories are undecidable (Section 4). Our work in
Section 3 will enable us to show that there are nonstandard, even count-
able, models of the L∞,ω-theory of long sequences, structures related to the
“models” of [5].

For future reference, note that as we have already done in the definitions,
we shall not explicitly include the language of Abelian groups in our struc-
tures. All universes of structures discussed should be regarded as Abelian
groups. By “group” we will mean “Abelian group.”

Suppose we have a pair of groups A1 and A2 along with a bilinear map
〈−,−〉 : A1 × A2 → Z. If H is a subgroup of A1, then H⊥ will denote the
subgroup of A2 consisting of elements which annihilate H,

H⊥ = {f ∈ A2 | 〈a, f〉 = 0 ∀a ∈ H} .
(When there is a third group A3 also acting on A1 the location of H⊥ will
be made clear from context.)
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The book [4] contains most of what is known about dual groups. Any
concepts we leave undefined here may be found there.

2. Short sequences of dual groups. In this section we show what
may be said in L∞,ω about short sequences of dual groups. The methods
used here will be important when we consider long sequences in Section 3.
Our main result is the following

Theorem 2.1. Suppose that A0 and B0 are dual groups. Then rank(A0)
= rank(B0) and rank(A2/σ0[A0]) = rank(B2/σ0[B0]) iff the associated short
sequences A and B are L∞,ω-equivalent.

P r o o f. Towards a proof of “necessity”, but also with an axiomatization
of the theory of short sequences in mind, we isolate some facts which are
true of any short standard sequence A. The reader may easily verify (see [1]
if necessary) that all of the following statements may be formulated in L∞,ω.

Axiom (i). The groups Ai are ℵ1-free, for i = 0, 1, 2. (In particular, this
implies that if a ∈ Ai, there is an element a′ ∈ Ai so that a = na′ for some
integer n and 〈a′〉 is a pure subgroup.)

Axiom (ii). If 〈a〉 is pure and nonzero in Ai, then there exists f ∈ Ai+1

so that 〈a, f〉 = 1 (for i = 0, 1).

Axiom (iii). If 〈f〉 is pure and nonzero in Ai+1 then there is a ∈ Ai so
that 〈a, f〉 = 1 (for i = 0, 1).

Axiom (iv). 〈a− b, f〉 = 〈a, f〉 − 〈b, f〉 for all a, b ∈ Ai and f ∈ Ai+1.

Axiom (v). 〈a, f − g〉 = 〈a, f〉 − 〈a, g〉 for all a ∈ Ai and f, g ∈ Ai+1.

Axiom (vi). 〈a, f〉 = 〈f, σ(a)〉. (Notice that Axioms (ii)–(v) imply that
σ is a pure embedding.)

Axiom (vii). If H is a finite rank pure subgroup of A2/σ0[A0] then
(A2/σ0[A0])/H is ℵ1-free.

(Axiom (vii) holds for any standard sequence since σ0[A0] splits A2, by
Lemma 3.3.)

Notice that the proof of “necessity” is trivial if rank(A0) is finite, for
then A and B are isomorphic. Suppose then that rank(A0) =∞.

We define a set P of isomorphisms between substructures of A and B
and show that it has the back-and-forth property. This suffices to show that
A and B are L∞,ω-equivalent (see [1]).

The set P consists of isomorphisms φ = (φ0, φ1, φ2) between substruc-
tures F = (F0, F1, F2) of A and G = (G0, G1, G2) of B with the following
properties:
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(A) The groups Fi are finite-rank pure subgroups of Ai (for i = 0, 1, 2).
(And likewise for the Gi.)

(B) The groups F0 and F1 have dual bases, that is, bases {a1, . . . , an}
and {f1, . . . , fn} so that 〈ai, fj〉 = 0 if i 6= j and 1 otherwise. (And
likewise for the Gi.)

(C) σ[F0] = F2 ∩ σ[A0], and likewise for G.
(D) (F2 + σ[A0])/σ[A0] is pure in A2/σ[A0] and of the same rank as

G2 + σ[B0]/σ[B0] (which is pure in B2/σ[B0]).

Note that (B) implies that F0 ⊕ F⊥1 = A0 and F1 ⊕ F⊥0 = A1 (and
likewise for B).

Assume then that we have an isomorphism φ satisfying statements (A)
through (D). We must show how to extend φ when an element is added to
F0, F1 or F2. (The cases for the Gi are symmetric.) The reader should be
careful to note that our arguments use only properties implied by Axioms
(i) through (vii).

C a s e I: We pick a ∈ A0 − F0.
Write a = a0 + a1 where a0 ∈ F0 and a1 ∈ F⊥1 , and a1 = na2 for some

integer n, so that 〈a2〉 is pure. Since σ[B0]/(σ[B0] ∩ G2) is of infinite rank
(by hypothesis), we may choose b2 ∈ G⊥1 so that 〈b2〉 is pure and σ(b2) 6∈ G2.
Now that we have b2, pick f ∈ F⊥0 so that 〈f, a2〉 = 1 and g ∈ G⊥0 so that
〈g, b2〉 = 1 (using Axiom (ii)). Now extend F0 to F0 ⊕ 〈a2〉, F1 to F1 ⊕ 〈f〉
and F2 to F2 + 〈σ(a2)〉, and likewise for the Gi. Extend φ to φ′ by letting
φ′ take a2 to b2, f to g, and σ(a2) to σ(b2). It is clear that hypotheses (B),
(C) and (D) are still met in the extended structures. Obviously requirement
(A) still holds for i = 1, 2; we check that F2 + 〈σ(a2)〉 is pure in A2. (The
case for G2 is similar.)

Suppose then that h ∈ A2 and nh = j + mσ(a2) for some j ∈ F2 and
m ∈ Z. By hypothesis (D) on F, we know that h ∈ F2 + σ[A0], so that
h = k + σ(c) for some k ∈ F2 and c ∈ A0. Then

nk − j + nσ(c)−mσ(a2) = 0

so that nσ(c)−mσ(a2) is in F2, and therefore by hypothesis (C) on F, is in
σ(F0). Thus nσ(c) ∈ σ[F0 + 〈a2〉]. Now σ[F0 + 〈a2〉] is a pure subgroup of
A2 by hypothesis (A) on F, the choice of a2, and the fact that σ is a pure
embedding (Axiom (vi)). Thus σ(c) ∈ σ[F0 + 〈a2〉], so that h ∈ F2 + 〈σ(a2)〉.

Since a is in the domain of φ′, we are done. This concludes Case I.
For the next case we will need the following lemma, due to Chase [2] (or

see Theorem XI.3.2 in [4]).

Lemma 2.2. Suppose that A1 and A2 are groups, and 〈−,−〉 : A1×A2 →
Z is a bilinear map so that Axioms (i)–(v) are satisfied. If a1, . . . , an are
independent elements of A1 which generate a pure subgroup, and m1, . . . ,mn
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are integers, then there is an element f ∈ A2 so that 〈f, ai〉 = mi for
i = 1, . . . , n.

C a s e II: We pick f ∈ A1 − F1.
Write f = f0 + f1 where f0 ∈ F1, f1 ∈ F⊥0 , and f1 = nf2 so that 〈f2〉

is pure. Next, pick a ∈ F⊥1 so that 〈a, f2〉 = 1 (so that 〈a〉 is pure). Now
we may engage Case I, finding a b ∈ G⊥1 corresponding to a. Extend the
map φ2 on F2 to an isomorphism φ′2 from F2 + 〈σ(a)〉 to G2 + 〈σ(b)〉 in the
obvious way (possible since σ(a) is independent of F2, by hypothesis (C)).
Now we may apply Lemma 2.2 to find a g2 ∈ B1 so that 〈g2, φ

′
2(h)〉 = 〈f2, h〉

for all h ∈ F2 + 〈σ(a)〉. Then g2 ∈ G⊥0 and 〈b, g2〉 = 1, so that the extension
G1 ⊕ 〈g2〉 is pure in B2. We extend the other groups in the obvious way,
and complete the extension of φ to an isomorphism between the extended
structures, just as in Case I. As above, one can check that requirements (A)
to (D) are still satisfied.

C a s e III: We pick k ∈ A2 − F2.
There are two possibilities:

C a s e III(a): If k ∈ F2 +σ0[A0], we may add the appropriate element to
A0, proceeding as in Case I.

C a s e III(b): k 6∈ F2 + σ0[A0]. Notice that

A2/σ[A0]
(F2 + σ[A0])/σ[A0]

is ℵ1-free, by induction hypothesis (D) and Axiom (vii). So we may choose
k1 in A2 so that k + F2 + σ[A0] = n(k1 + F2 + σ[A0]) for some integer n,
and 〈k1 + F2 + σ[A0]〉 is pure in A2/(F2 + σ[A0]). By hypothesis (D), and
theorem hypothesis, we may choose l1 ∈ B2 so that 〈l1 + G2 + σ[B0]〉 is
pure and nonzero in B2/(G2 +σ[B0]). Applying Lemma 2.2, we may choose
b ∈ G0 so that 〈φ1(f), σ(b) + l1〉 = 〈f, k1〉, for all f ∈ F1. Finally, we extend
G2 to G2 +〈σ(b)+ l1〉, F2 to F2 +〈k1〉, and φ to an isomorphism between the
extended structures taking k1 to σ(b) + l1. Our choice of k1 and l1 ensure
that requirement (D) is still met, and the other requirements obviously still
hold.

Now we may engage Case III(a) to make the necessary extension to an
isomorphism with k in its domain. This completes Case III and the proof of
the “necessity” direction.

It is easy to see that two short sequences A and B which are L∞,ω-
equivalent must satisfy the rank conditions in the hypothesis.

Corollary 2.3. Axioms (i)–(vii) axiomatize the L∞,ω-theory of short
sequences of dual groups.
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P r o o f. Suppose B is some structure (Bi (i < 3); 〈−,−〉; σ; Z) which
satisfies Axioms (i)–(vii). Let A be a short standard sequence for which
rank(A0) = rank(B0) and rank(A2/σ[A0]) = rank(B2/σ[B0]). (There are
many constructions of such groups A0, see for example [3], [4], [8].) Then we
may carry out the argument in the proof of Theorem 2.1 to see that B and
A are L∞,ω-equivalent. It follows that B models the L∞,ω-theory of short
sequences of dual groups.

Since a dual group A0 is a direct summand (under σ) of its double dual
A2 (Lemma 3.3), it may seem convenient to include in the structure of a
short sequence a splitting % : A2 → A0, so that %σ = IdA0 . Then in the proof
of Theorem 2.1, Case III would seem easier to establish. Doing the analogous
thing for long sequences will be especially tempting in Section 3. But for
this strengthened notion of a short sequence, Theorem 2.1 does not hold:

Example 1. Denote by G the torsionless but not separable group Z(ω) +
2Zω, a subgroup of Zω. It is not hard to see that G∗ = Z(ω). Let A be a tor-
sionless group such that A∗∗/σ[A] ∼= G ([8]) and let B be a torsionless group
such that B∗∗/σ[B] ∼= Z(ω). Now consider the augmented short sequences

A = (Ai (i < 3); σ; %A; Z) and B = (Bi (i < 3); σ; %B; Z)

in which A0 = A∗, B0 = B∗, and %A and %B are the corresponding re-
striction maps. (That is, for a ∈ A and f ∈ A2, %A(f)(a) = f(σA(a)), and
likewise for B.)

Then we have rank(A0) = rank(B0), and since A2/σ[A0] ∼= G∗ (Lemma
3.3) (and similarly for B), rank(A2/σ[A0]) = rank(B2/σ[B0]). But A and
B are not L∞,ω-equivalent. For the fact that G and Z(ω) are torsionless
ensures that the subgroup of A1 (B1) annihilated by the kernel of %A (%B)
is σA[A] (σB [B]). Thus we can say in L∞,ω sentences about A and B that
A1/ ker(%A)⊥ (∼= G) is not separable, while B1/ ker(%B)⊥ (∼= Z(ω)) is sepa-
rable. So A and B are not L∞,ω-equivalent.

We will return to these observations in Section 4.

3. Sequences of dual groups. Here we consider the L∞,ω-theories of
the long sequences defined in Definition 1.2, and prove a result analogous to
Theorem 2.1. We will need the following definition from [4].

Definition 3.1. Given a dual group A, by induction on n define D0(A)
= A, and Dn+1(A) = (Dn(A))∗∗/σ[Dn(A)]. Then the length rank of A is
the pair (n,m) of elements of ω ∪ {∞} where n = sup{k | Dk(A) 6= 0},
m =∞ if n =∞ and rank(Dn(A)) otherwise. (We set sup ∅ = 0.)

Theorem 3.2. The length rank of A0 is equal to the length rank of B0

iff the associated sequences A and B are L∞,ω-equivalent.
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Towards a proof of this we make the following definitions. Given a (long)
sequence A, we define the quotient sequence A1 with universe A1,n (n ∈ ω),
by A1,0 = A2/σ0[A0] and A1,n = (σn−1[An−1])⊥ (a subgroup of An+2) for
n ≥ 1. We denote the projection map from A2 to A2/σ0[A0] by π and define
the bracket map for A1 as follows: Given a ∈ A1,n and f ∈ A1,n+1, we let

〈a, f〉1 =
{ 〈a, f〉A if n ≥ 1,
〈a′, f〉A (where π(a′) = a) if n = 0.

We claim that with this bracket map, each group A1,n+1 may be seen
as the dual of A1,n. This follows easily from repeated applications of the
following (purely categorical) result of [4]:

Lemma 3.3. Suppose that A is a dual group, A = B∗. Then A splits A∗∗

via σA. That is, there is a homomorphism % : A∗∗ → A so that %σ = IdA.
Also, ker(%) = (σB [B])⊥, and this kernel is itself a dual group.

P r o o f. Let % be the restriction map, that is, 〈b, %(f)〉 = 〈σB(b), f〉 for
all f ∈ A∗∗ and b ∈ B. Then %σ = IdA, clearly ker(%) = (σB [B])⊥, and it is
straightforward to show that (σB [B])⊥ ∼= (A∗/σB [B])∗.

Applying the lemma also establishes that A1,0 is a dual group. Now
since each group is the dual of the previous, we may define the σ maps
appropriately, to obtain a standard sequence,

A′ = (A1,n (n ≥ 0); 〈−,−〉1; σ1,n (n ≥ 0); Z) ,

isomorphic to the sequence associated with A2/σ0[A0].
We may extend the definition above, and define by induction the nth

quotient model An for n ≥ 0 setting A0 equal to A and An+1 equal to the
quotient sequence of An. For n ≥ 0 we will denote the mth group in An by
An,m, the mth σ map by σn,m, and the bracket map by 〈−,−〉n (or possibly
just 〈−,−〉 when no confusion is possible).

Let πn be the projection map linking An with An+1.
With quotient models in hand, we further define the derived sequence of

a sequence A. This is an ω + 1-sorted structure

A = (An,i (n ∈ ω, i < 3); 〈−,−〉, σn, πn,Z)

for the language (〈−,−〉; σn (n ≥ 0); πn (n ≥ 0)) for which

(i) σn : An,0 → An,2 has the same action as σn,0 in the nth quotient
model An.

(ii) 〈−,−〉 : An,i×An,i+1 → Z (i = 0, 1) has the same action as 〈−,−〉n
restricted to An,i ×An,i+1 in An.
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(iii) πn : An,2 → An+1,0 has the action described above.

An,0 An,1 An,2 An,3 An,4 An,5 An,6 . . .

# �σn,0 '' ¶¶
# �σn,2 ''¶¶

# �σn,4 '' ¶¶ 

σn,1

KK�� 

σn,3

KK��

The nth quotient model An (bracket maps not shown)

A0,0 A0,1 A0,2

A1,0 A1,1 A1,2 The derived sequence A

A2,0 A2,1 A2,2
...

# "σ0

²²

π0

²² !
σ1

OO
π1

²² !
σ2

OO

In the sequel, we will reserve Fraktur letters for structures with the type
of long sequences, and calligraphic letters for structures with the type of
derived sequences. By the length rank of a structure

A = (An,i (n ∈ ω, i < 3); 〈−,−〉, σn, πn,Z)

we mean the pair (n,m) where n is the greatest integer such that An,0 6= {0}
(or ∞ if no such integer exists), and m = ∞ if n = ∞ or rank(An,0)
otherwise. Thus the derived sequence A of the sequence A generated by a
group A0 of length rank (n,m) is of length rank (n,m).

Lemma 3.4. If the derived sequences A and B of two models A and B
are isomorphic, then A and B are isomorphic.

P r o o f. We show how to recover a model A from its derived sequence A.
For later purposes we will isolate a portion of this proof, and set it in a more
general context:

Construction Technique. We present a technique for transforming
a structure of the type of a derived sequence,

A = (An,i (n ∈ ω, i < 3); 〈−,−〉A, σA,n, πn,Z) ,

into a structure with the type of a long sequence,

A = (An (n ∈ ω); 〈−,−〉A; σA,n (n ∈ ω); Z) .
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The definition of the Ai proceeds by induction on i. First, we let Ai =
A0,i (i = 0, 1, 2). Now suppose i ≥ 3, and we have given the technique for
constructing the groups Aj for j < i. Let Ai = Ai−2 ⊕ A′i−2 where A′i−2 is
the result of applying the construction technique to the truncated structure

A′ = (An,i (n ≥ 1, i < 3); 〈−,−〉A, σA,n, πn,Z) .

Define the map τi : Ai → A′i−2 to be π0 if i = 2 and the natural
projection if i > 2. Thus for example in the following diagram the top row
consists of the groups Ai for 0 ≤ i ≤ 5 and the bottom row consists of the
groups A′i for 0 ≤ i ≤ 3.

A0,0 A0,1 A0,2

A0,1

⊕
A1,1

A0,2

⊕
A1,2



A0,1 A1,1

⊕ ⊕ ⊕
A1,1 A2,1




A1,0 A1,1 A1,2

A1,1

⊕
A2,1

τ2

²²

τ3

²²

τ4

²²

τ5

²²

We define the bracket map as follows. For i = 0, 1 and (a, b) ∈ Ai×Ai+1,
we let 〈a, b〉A = 〈a, b〉A. Suppose i ≥ 2 and that we have shown how to define
the bracket map for all j < i. Given (a, b) as above, write b = c + d where
c ∈ Ai−1 and d ∈ A′i−1. Now let

〈a, b〉A = 〈c, a〉A + 〈τi(a), d〉A1

where A1 is the model being constructed from A′. Finally, we let σA,0 = σA,0
and σAi be inclusion for i ≥ 1. This completes the construction technique.

We now show that given a long sequence A, if we apply the construction
procedure to the derived sequence A, we obtain a sequence isomorphic to A.
This will establish Lemma 3.4.

Given a standard long sequence A, a k-truncation of A is the structure

(An (n < k); 〈−,−〉; σn (n < k − 2); Z) .

We show by induction that for all k the k-truncation of A is isomorphic to
the k-truncation of the sequence resulting from applying the construction
procedure to A. Since the isomorphisms for various k are compatible, the
result follows immediately.

The cases for k = 1, 2 or 3 are trivial, by definition of the construction
procedure. Suppose that l ≥ 3, and that the result holds for every integer
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1 ≤ k < l. Now the derived sequence A′ of the quotient model A1 is equal
(via an obvious shift) to the structure

(An,i (n ≥ 1, i < 3); 〈−,−〉, σn, πn,Z),

and so applying the induction hypothesis, the construction procedure recon-
structs the (l− 1)-truncation of A1. Now Lemma 3.3 says that Al−2 ⊕A′l−2
is isomorphic to Al, so that the construction procedure applied to A does
give the correct group in the lth position. One may also use the lemma to
easily check that the procedure gives the correct σ and bracket maps.

We may now prove Theorem 3.2.

P r o o f (necessity). Suppose that the dual groups A0 and B0 have the
same length rank. Form the two corresponding standard models A and B.
To show that these two models are L∞,ω-equivalent we will first show that
their derived sequences A and B are L∞,ω-equivalent, by an argument
similar to that for the short sequences in Section 1. Then by taking a forcing
extension which collapses the cardinalities of A and B to ℵ0, we will know
by Lemma 3.4 that they are isomorphic in the extended universe. It follows
(via a standard argument, or see [6]) that they are L∞,ω-equivalent in the
ground model. (This forcing argument may be replaced with a back-and-
forth argument, but at the cost of greater complexity of proof.)

In the nontrivial case, we assume that A0 and B0 are of infinite rank.
It follows directly from the definition of length rank that

rank(An,2/σn[An,0]) = rank(Bn,2/σn[Bn,0])

for all n. We show that we can build a set of partial isomorphisms between
substructures of A and B which satisfy the back-and-forth property, primar-
ily by appealing to the short sequence case.

As we did in the case of short sequences, we shall list various properties
(“axioms”) that any sequence derived from a long sequence must have. In
our proof we shall use only these properties, a fact we will appeal to in the
next section.

(i) Each An,i is an ℵ1-free Abelian group.
(ii) If 〈a〉 is pure and nonzero in An,i, then there exists f ∈ An,i+1 so

that 〈a, f〉 = 1 (for i = 0, 1).
(iii) If 〈f〉 is pure and nonzero in An,i+1, then there exists f ∈ An,i so

that 〈a, f〉 = 1 (for i = 0, 1).
(iv) For a ∈ An,i, f, g ∈ An,i+1, 〈a, f − g〉 = 〈a, f〉 − 〈a, g〉 (for i = 0, 1).
(v) For a, b ∈ An,i, f ∈ An,i+1, 〈a− b, f〉 = 〈a, f〉 − 〈b, f〉.

(vi) 〈a, f〉 = 〈σn(a), f〉 for all a ∈ An,i, f ∈ An,i+1.
(vii) πn is a surjection with kernel σn[An,0].
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Our set P of partial isomorphisms will consist of isomorphisms φ between
substructures F of A (with universe (Fn,i (n ∈ ω, i < 3)) and G of B (with
universe (Gn,i (n ∈ ω, i < 3)), which have the following properties:

(A) Each group Fn,i is a finite rank pure subgroup of An,i (and likewise
for G).

(B) The groups Fn,0 and Fn,1 have dual bases, for all n (and likewise
for G).

(C) σn[An,0] ∩ Fn,2 = σn[Fn,0].
(D) The map πn maps Fn,2 onto Fn+1,0, and likewise for G.

We claim that the set P of isomorphisms between substructures with
the properties above has the back-and-forth property. Since the cases are
symmetric we prove only the case when a new element of A is chosen.

Suppose that we have an isomorphism φ between substructures F and
G with the properties above. We will use the proof we gave for short se-
quences, referring to the cases covered there as Case S-I, S-II and S-III. The
corresponding cases here are:

C a s e I: We choose a ∈ An,0 − Fn,0. If n = 0 then we may proceed as
in Case S-I, adding new elements in positions (0, 0), (0, 1) and (0, 2), and
extending φ as we do there. There is no need to add elements at lower levels
(that is, at levels k where k > n).

If n ≥ 1 we proceed as in Case S-I, extending the groups on level n as we
do there (and keeping the same notation). There is no need to add elements
on lower levels (by axiom (vii)) but we must extend the groups in position
(n − 1, 2): Let k1 ∈ An−1,2 be a representative for a2, and l1 ∈ Bn−1,2 be
a representative for b2. The choice of a2 and b2 and hypothesis (D) ensure
that k1 and l1 are chosen as in Case S-III(b) (on level n − 1). So we can
continue to follow S-III(b) on level n−1 to incorporate k1 and l1. Note that
the choice of a2 and b2 also implies that we need not extend the groups in
position (n−1, 0). Thus we are done, and φ may be extended in the obvious
manner to an isomorphism with a in its domain. We can check as we did in
Section 2 that hypotheses (A) to (D) hold for the extended structures.

C a s e II: We choose f ∈ An,1 − Fn,1. We follow Case S-II to make the
necessary extensions on level n, and Case I for level n − 1 (if n ≥ 1). No
extensions are necessary for lower levels.

C a s e III: We choose k ∈ An,2 − Fn,2. There are two cases:

C a s e III(a): k ∈ σn[An,0]+Fn,2. In this case we may follow the procedure
of Case I on level n to add the necessary element of An,0. The image of k
under πn is in Fn+1,0 by axiom (vii), so there is no need to extend the groups
at lower levels.



140 A. Mekler and G. Schlitt

C a s e III(b): k 6∈ σn[An,0] +Fn,2. Let a = πn(k), an element of An+1,0−
Fn+1,0. Now follow Case S-I on level n + 1, extending the groups as we
do there. This process produces elements a2 ∈ An+1,0 and b2 ∈ Bn+1,0;
pick k1 ∈ An,2 and l1 ∈ Bn,2 such that πn(k1) = a2 and πn(l1) = b2. The
properties of a2 and b2 ensure that k1 and l1 have the properties required
by Case S-III(b); so we may continue with the methods of that case on level
n, to incorporate k1 and l1. Finally, we may need to add elements to Fn,0
to ensure that k itself is incorporated; to do this we may use Case I.

This establishes the “necessity” case of Theorem 3.2. For sufficiency, we
first notice that by the same sort of forcing argument as above, two L∞,ω-
equivalent sequences A and B have L∞,ω-equivalent derived sequences. It is
then clear from the definitions that A0 and B0 must have the same length
rank.

4. Countable models. We show that countable models of the theory of
long sequences exist, and discuss the connection with the “models” of [5]. We
finish by showing that the first order theory of long sequences is undecidable.

Lemma 4.1. For any length rank , there is a countable model of the
L∞,ω-theory of long sequences of the given rank.

P r o o f. Fix a length rank, and let A be a standard model of that rank.
(The existence of this is established in [4], Theorem XIV.4.9.) We may form
its derived sequence A. Now it follows directly from the form of the listed
axioms (see the proof of Theorem 3.2) that we may use a Löwenheim–Skolem
type argument to find a countable L∞,ω submodel S of A, of the same length
rank, and thus by (the proof of) Theorem 3.2, L∞,ω-equivalent to A. Now
we may extend the set-theoretic universe to a new universe in which the
cardinality of A is countable. It follows that S and A are isomorphic in this
new universe. In the ground universe we may carry out the reconstruction
procedure (see the proof of Lemma 3.4) on both A and S to obtain A (by
Lemma 3.4) and some structure S, and since the reconstruction procedure
is absolute, we know that in the extended universe A and S are isomorphic.
It follows that they are L∞,ω-equivalent in the ground model. So S is a
countable model for the theory of sequences of dual groups (of the given
length rank).

In [5] the authors employed structures similar to our long sequences;
these are ω + 1-sorted structures

F = (Fn (n ∈ ω); 〈−,−〉; σn (n ∈ ω); %n (n ≥ 2); Z)

for the language (〈−,−〉,σn (n ∈ ω),%n (n ≥ 2)). The reader should refer
to the definitions and results given there; we will comment briefly on the
connection with our notion of long sequence.



The theory of dual groups 141

In a standard sequence of this type, F0 is a dual group, each group Fn+1

is the dual of Fn, the bracket and σ maps are interpreted as usual, and the
map %n is interpreted as restriction, for n ≥ 3. That is,

〈a, %n(f)〉 = 〈σn−3(a), f〉
for all a ∈ Fn−3 and f ∈ Fn. The map %2 is chosen to be the restriction
map arising from the existence of a predual B for A0. The existence of the
%2 maps changes the situation considerably from what we have considered
here: for the reasons discussed in Example 1, Theorem 3.2 does not hold for
these structures, and of course, having a specified predual B for a given dual
group A0 misses the point of the program we discussed in the introduction.

However, if one removes the %2 map from the language, then the [5]
models are really the same as those considered here, since the %n maps for
n ≥ 3 are definable in the reduct of a model to the language of Definition 1.2.
One could hope that the axioms for sequences given in [5] axiomatize the
L∞,ω-theory of long sequences, but the following example shows otherwise:

Example 2. Let C be a group which is torsionfree but not ℵ1-free, and
F a separable group so that F ∗∗/σ[F ] ∼= C ([8]). Let F be the sequence (of
the [5] type without %2) generated by F . Then F satisfies the axioms for
sequences listed in [5], but in any model G of the theory of long sequences,
one must have G2/σ0[G0] ℵ1-free. So F does not model the theory of long
sequences.

One can in fact extend the axioms given in [5] to obtain an axiomatiza-
tion of the theory of long sequences, but since this is somewhat clumsy, and
not particularly useful, we do not discuss this here.

We finish by establishing the following theorem.

Theorem 4.2. The first order theory of any nontrivial sequence of dual
groups is undecidable.

P r o o f. To prove the theorem we embed the first order theory of the
ring Z into the theory of a (long or short) sequence A. We will assume that
A0 has rank at least 1. Fix the element 1 in Z, a ∈ A0 and f ∈ A1 so that
〈a, f〉 = 1. Notice that we can say that “g is a multiple of f” and “b is a
multiple of a” by saying that ker g = ker f and ker a = ker b. Given this
observation it is easy to define addition and multiplication. First to define
addition. Given n and m choose g, h in A1 so that 〈a, g〉 = n and 〈a, h〉 = m;
then n + m = 〈a, g + h〉. To define multiplication is a little trickier. Given
n and m choose b a multiple of a so that 〈b, f〉 = n and choose g a multiple
of f so that 〈a, g〉 = m. Then 〈b, g〉 = nm.

The proof may seem circular in that in the multiplicative case we choose
b so that b = na. The point is that there is a definable function ϕ (in the
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parameters a, f) so that for n ∈ Z, ϕ(n) = na; namely, ϕ(n) is the element
b such that ker b = ker a and 〈f, b〉 = n.
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