
FUNDAMENTA

MATHEMATICAE

144 (1994)

On the representation type of tensor product algebras

by

Zbigniew Le s z c z y ń s k i (Toruń)

Abstract. The representation type of tensor product algebras of finite-dimensional
algebras is considered. The characterization of algebras A, B such that A⊗B is of tame
representation type is given in terms of the Gabriel quivers of the algebras A, B.

Introduction. In this paper by an algebra we mean a finite-dimensional
algebra over a fixed algebraically closed field K. All algebras are assumed
to be basic indecomposable with respect to the direct product. Our aim is
to determine the representation type of the tensor product algebra B⊗K C
of two algebras B and C in terms of the quivers with relations describing
the algebras B and C.

One of the motivations for our study is to introduce a unified approach
to the investigation of the representation type of several important classes
of algebras including:

(i) The group algebras B[G] of a finite group G with coefficients in an
algebra B (studied in [MS, S1]).

(ii) The lower triangular n× n matrix algebras

(0.1) Tn(B) =




B 0 . . . 0
B B . . . 0
...

...
. . .

B B . . . B




with n ≥ 2 and with coefficients in an algebra B (studied in [AR, Br2, L1,
L2, LS, S2]).

(iii) The factor algebras Tn,r(B) := Tn(B)/Jr
n(B) of Tn(B), n, r ≥ 2,

studied in [HM], where Jn(B) the ideal of strictly lower triangular n × n
matrices.

(iv) The path algebra BQ of a bound quiver Q with coefficients in an
algebra B.

1991 Mathematics Subject Classification: Primary 16G60.
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Indeed, we note that there are algebra isomorphisms

(0.2)
B[G] ∼= B ⊗K K[G], Tn(B) ∼= B ⊗K Tn(K) ,

BQ ∼= B ⊗K KQ, Tn,r(B) ∼= B ⊗K Tn,r(K) ,

in cases (i)–(iv) respectively. The algebras Tn(K), Tn,r(K) are very simple
of finite representation type, whereas the representation type of K[G] is well
understood for a long time [BD].

Another motivation is the study of the category of B-representations of
a quiver over an algebra B [Br1] (see 1.6). On the other hand, some of
our results on the representation type of B ⊗K C are inspired by the facts
established earlier for the classes (i)–(iii). In particular, we essentially use
the results of Skowroński on tame group algebras [S1] and on tame triangular
matrix algebras over Nakayama algebras [S2].

In Section 1 we make some preliminary observations including the asser-
tion that the tensor product B⊗KC⊗KD of indecomposable non-semisimple
algebras B, C, D is of tame type if and only if B ∼= C ∼= D ∼= T2(K). More-
over, we show that if B⊗C is of tame representation type, then the algebras
B and C are standard [R] of finite representation type.

This approach is also used in Section 2 to show that B ⊗K Tn(K) is of
wild type for n ≥ 6, and to describe all simply connected algebras B such
that B ⊗ Tn(K) is of tame type for some n ≥ 3. The case n = 2 is studied
in [LSk].

One of our main results is Theorem 3.2 containing a full classification of
pairs of weakly sincere simply connected algebras B and C which are not of
type Tn(K) and have the property that B ⊗K C is of tame representation
type. All such pairs are listed in a table. In the final part of the paper the
representation type of B ⊗K C when at least one of the algebras B and C
is not simply connected is briefly discussed.

The reader is referred to [G1], [D] and [S1] for the definitions of the finite
(resp. tame, wild) representation type and of the polynomial growth of an
algebra.

1. Preliminaries and notations. In this section we collect basic defini-
tions and elementary properties of bound quivers and their tensor products.

We recall from [G1] that a bound quiver is a pair Q̂ = (Q, I), where
Q = (Q0, Q1) is an oriented graph with a set of vertices Q0 and a set of
arrows Q1, and I is an admissible two-sided ideal (called a relation ideal) in
the path algebra KQ of Q, that is, I is generated by a set of K-combinations
of paths of length ≥ 2 in Q and ∃n Qn

1 ⊆ I. We call Q̂ trivial if |Q0| = 1,
Q1 is empty and I is zero. If I = 0 we write Q instead of (Q, I). If (Q, I) is
a bound quiver, then the factor algebra

K(Q, I) := KQ/I
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is called the bound quiver algebra of (Q, I). It is known [G1] that any basic
K-algebra is isomorphic to a bound quiver algebra.

In order to describe the bound quiver of the algebra B ⊗K C we define
the tensor product (Q, I) ⊗ (Q′, I ′) of two bound quivers (Q, I), (Q′, I ′) to
be the bound quiver (Q⊗Q′, I � I ′), where

(Q⊗Q′)0 = Q0 ×Q′

0, (Q⊗Q′)1 = (Q0 ×Q′

1) ∪ (Q1 ×Q′

0)

and I � I ′ is the ideal in K(Q⊗Q′) generated by (Q0 × I ′) ∪ (I ×Q′

0) and
by elements of the form

(1.1) (αrp, t) ◦ (p, βts)− (r, βts) ◦ (αrp, s)

where αrp and βts run through all arrows αrp : p→ r in Q1 and βts : s→ t
in Q′

1.

If Q̂ and Q̂′ are non-trivial, then I � I ′ 6= 0 (even in case I = 0, I ′ = 0),
because I � I ′ contains the ideal generated by the set of elements (1.1). It
is clear that I � I ′ is an admissible ideal in K(Q ⊗ Q′) and we denote the

bound quiver (Q ⊗ Q′, I � I ′) by Q̂ ⊗ Q̂′ (even for I = 0, I ′ = 0). The
following simple lemma can be easily verified.

Lemma 1.2. If Q̂, Q̂′, Q̂′′ are bound quivers then there exist bound quiver

isomorphisms:

(a) Q̂⊗ Q̂′ ∼= Q̂′ ⊗ Q̂,

(b) Q̂⊗ (Q̂′ ⊗ Q̂′′) ∼= (Q̂⊗ Q̂′)⊗ Q̂′′,

(c) Q̂⊗ (Q̂′ ∪ Q̂′′) ∼= (Q̂⊗ Q̂′) ∪ (Q̂⊗ Q̂′′),

(d) Q̂⊗ Q̂′ ∼= Q̂ if and only if Q̂′ is trivial ,

(e) (Q̂⊗ Q̂′)op ∼= Q̂op ⊗ (Q̂′)op.

Moreover ,

(f) the bound quiver Q̂⊗ Q̂′ is connected if and only if the quivers Q̂ and

Q̂′ are connected.

Now we are able to prove a useful technical result.

Lemma 1.3. For any bound quivers Q̂ and Q̂′ there is a K-algebra iso-

morphism

(KQ̂)⊗K (KQ̂′) ∼= K(Q̂⊗ Q̂′) .

P r o o f. Let us first construct the isomorphism for the case I = 0, I ′ = 0.
Let Ic denote the ideal in K(Q⊗Q′) generated by the set of elements (1.1).
We define an algebra epimorphism

f : K(Q⊗Q′)→ (KQ)⊗K (KQ′)
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by setting

f(p, q) = p⊗ q &for p ∈ Q0, q ∈ Q′

0 ,

f(p, β) = p⊗ β for p ∈ Q0, β ∈ Q′

1 ,

f(α, q) = α⊗ q for α ∈ Q′

0, q ∈ Q′

0 .

The epimorphism f induces an epimorphism f : K(Q̂ ⊗ Q̂′) → (KQ) ⊗K

(KQ′), because Ker f contains the ideal Ic. Now, we define an epimorphism

h : K(Q)×K(Q′)→ K(Q⊗Q′)/Ic
∼= K(Q̂⊗ Q̂′)

by setting

h(p, q) = p⊗ q + Ic for p ∈ Q0, q ∈ Q′

0 ,

h(p, β) = p⊗ β + Ic for p ∈ Q0, β ∈ Q′

1 ,

h(α, q) = α⊗ q + Ic for α ∈ Q′

0, q ∈ Q′

0 .

One can check that h induces an epimorphism h : (KQ) ⊗K (KQ′) →
K(Q⊗Q′)/Ic. Observe that h is the inverse to f .

Now we note that h(I⊗KQ′+KQ′⊗I ′) ⊆ I � I ′/Ic and f(I � I ′/Ic) ⊆ I⊗
KQ′+KQ⊗I ′, because f(I � I ′) ⊆ I⊗KQ′+KQ⊗I ′. Hence f(I � I ′/Ic) =

I⊗KQ′ +KQ⊗ I ′. Let π : (KQ)⊗K (KQ′)→ (KQ̂)⊗K (KQ̂′) denote the

tensor product of the natural epimorphisms KQ→ KQ̂, KQ′ → KQ̂′. One
can see that Ker π = I⊗KQ′+KQ⊗I ′. Hence, there exists an isomorphism
f̃ such that the following diagram commutes:

K(Q⊗Q′)/Ic (KQ)⊗K (KQ′)
f

K(Q̂⊗ Q̂′) (KQ̂)⊗K (KQ̂′),
f̃

//

π′

��
π
��

//

where π′ is a natural epimorphism.

Given a bound quiver Q̂ = (Q, I) and n ≥ 2 we define the triangular
bound quiver (see [LS] for the case n = 2) to be the tensor product quiver

Tn(Q̂) = Q̂⊗An ,

where An is the quiver

(1.4) An : 1→ 2→ . . .→ n, n ≥ 1 .

Corollary 1.5. There are algebra isomorphisms

Tn(KQ̂) ∼= KTn(Q̂) ∼= KAn ⊗K KQ̂ .

P r o o f. In view of the obvious K-algebra isomorphism KAn
∼= Tn(K),

Lemma 1.3 together with (0.2) yields Tn(KQ̂) ∼= KQ̂⊗K Tn(K) ∼= KQ̂⊗K

KAn
∼= K(Q̂⊗An) = KTn(Q̂).
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R e m a r k 1.6. The category of B-representations of a bound quiver
Q̂ over an algebra B (see [Br1]) is equivalent to the category mod(BQ̂),

where BQ̂ is the bound quiver algebra of Q̂ with coefficients in B. In
view of the isomorphism BQ̂ ∼= B ⊗K KQ̂ the study of indecomposable
B-representations of Q̂ reduces to the study of indecomposable (B⊗K KQ̂)-
modules.

We recall from [G4, DLS] that a surjective bound quiver map f : (Q̃, Ĩ)→
(Q, I) is a Galois covering with group G if G is a group of automorphisms

of (Q̃, Ĩ) acting freely on Q̃1 and such that f(α) = f(β) if and only if

G∗α = G∗β, that is, Q is a quiver of G-orbits of Q̃ and the ideal I is
induced by Ĩ.

Lemma 1.7. Suppose that f : (Q̃, Ĩ)→ (Q, I) and f ′ : (Q̃′, Ĩ ′)→ (Q′, I ′)
are bound quiver Galois coverings with groups G and G′, respectively.

(a) The induced maps

f ⊗ f ′ : (Q̃, Ĩ)⊗ (Q̃′, Ĩ ′)→ (Q, I) ⊗ (Q′, I ′) ,

f ⊗ id : (Q̃, Ĩ)⊗ (Q′, I ′)→ (Q, I)⊗ (Q′, I ′) and

Tn(f) : Tn(Q̃, Ĩ)→ Tn(Q, I)

are Galois coverings with groups G ×G′ (for the first map) and G, respec-

tively.

(b) The bound quiver Tn(Q̂) is simply connected (in the sense of [AS,

DLS, DS1]) if and only if so is Q̂. The bound quiver Q̂ ⊗ Q̂′ is simply

connected if and only if so are Q̂ and Q̂′.

The proof is left to the reader.

A bound quiver Q̂ = (Q, I) is called of tame representation type (resp.
finite, wild representation type, or of polynomial growth) if the algebra

KQ̂ = KQ/I is of tame representation type (resp. finite, wild representation
type, or of polynomial growth).

In the paper a subquiver means a convex subquiver.

We start by proving some necessary conditions for tameness of tensor
product algebras.

Proposition 1.8. Suppose that P̂ = (P,L), Q̂ = (Q, I) and R̂ = (R,M)
are non-trivial connected bound quivers.

(a) If the algebra K(P̂ ⊗ Q̂) is not of wild representation type, then the

algebras KP̂ , KQ̂ are standard (in the sense of [G4]) and of finite represen-

tation type.

(b) The algebra K(P̂ ⊗ Q̂⊗ R̂) is of tame representation type if and only

if P = Q = R = A2 (see (1.4)).
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P r o o f. (a) If P̂ ⊗ Q̂ is not of wild representation type and (P̃ , L̃) is the

universal covering of P̂ , then (P̃ , L̃)⊗ Q̂ is a covering of P̂ ⊗ Q̂, and hence

is not of wild representation type. Since P̂ is non-trivial, the quivers P̂ and
(P̃ , L̃) each contain a subquiver A2. Hence (P̃ , L̃)⊗ Q̂ contains A2⊗ Q̂ and

there is an algebra isomorphism K(Â2⊗Q) ∼= T2(K(Q̂)). According to [S2],

KQ̂ must be a standard algebra of finite representation type (the same is

true for KP̂ ).
(b) We recall from [R] that a standard quiver has no double arrow nor

double loop. Assume that P̂ ⊗ Q̂⊗ R̂ is not of wild representation type and
denote by (P̃ , L̃), (Q̃, Ĩ), (R̃, M̃) Galois coverings of P̂ , Q̂, R̂ respectively.

The quiver P̃ ⊗ Q̃⊗ R̃ contains a subquiver of the form A2 ⊗A2 ⊗A2, and

if P 6= A2, then P̃ 6= A2. In this case P̃ (or P̃ op) contains • — • −→ •, and

P̃ ⊗ Q̃⊗ R̃ (or (P̃ ⊗ Q̃⊗ R̃)op) contains

• • •

• • •

• • •

• • •

��

//

�� ��

��

CC��
��

//

CC��
��

CC��
//CC�� //

CC�� CC��
Hence (P̃ , L̃)⊗ (Q̃, Ĩ)⊗ (R̃, M̃) contains

• •

•

• •

• •

//

��

CC��
��//

CC��
which is of wild type (see [DR]) and we get a contradiction. It follows that

P̂ = Q̂ = R̂ = A2 and the “if part” is proved.
Conversely, if P̂ = Q̂ = R̂ = A2 then in view of Corollary 1.5 there is an

isomorphism KP̂ ⊗KQ̂⊗KR̂ ∼= T2(T2(T2(K))) and according to [FGR, R]
the last algebra is of tame representation type.

2. The representation type of algebras B ⊗K Tn(K) for n ≥ 3.
Our aim is to study algebras of tame type of the form B⊗K Tn(K) ∼= Tn(B),
where n ≥ 3. The case n = 2 is considered in [LSk]. We use freely the ele-
mentary facts and notations pertaining to tame and wild algebras collected
in [DS2]. In particular, we assume that algebras of finite representation type
are of tame representation type.

Let us start with a general observation.

Proposition 2.1. Let B, C, D be indecomposable non-semisimple bound

quiver algebras. Then
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(a) The algebra B⊗K C⊗K D is of tame representation type if and only

if B ∼= C ∼= D ∼= T2(K).
(b) If n ≥ 2 and B ⊗K Tn(K) is of tame (resp. of finite) representation

type, then B is standard of finite representation type and n≤5 (resp. n≤4).

P r o o f. Statement (a) is a consequence of Proposition 1.8.

(b) Assume that B = KQ̂, where Q̂ is not trivial. It follows that the

universal bound quiver covering (Q̃, Ĩ) of Q̂ contains the quiver A2 (1.4) and

therefore Tn((Q̃, Ĩ)) contains Tn(A2) ∼= T2(An), which is of wild representa-
tion type for n ≥ 6 [L1] and is not of finite representation type for n ≥ 5
[LS]. Since B⊗K Tn(K) ∼= Tn(B) ∼= KTn(Q, I), it follows that B⊗K Tn(K)
is of wild representation type for n ≥ 6 and is not of finite representation
type for n ≥ 5.

We recall that B is called a Nakayama algebra if all submodules of any
indecomposable projective right and left ideal of B form a uniserial chain.

Lemma 2.2. A bound quiver algebra B = KQ̂ is a Nakayama algebra

if and only if the quiver Q contains neither A∗

3 = • ←− • −→ • (with two

extremal points) nor (A∗

3)
op.

The proof is left to the reader.

Corollary 2.3. If B = KQ̂ is a Nakayama algebra, then either Q = An

for some n (if Q̂ is simply connected) or Q is an oriented cycle (if Q̂ is not

simply connected , and then I 6= 0).

Theorem 2.4. (a) The algebra Ts(K)⊗K (KA2) is of finite representa-

tion type if and only if s ≤ 4.
(b) If B = KQ̂ is a Nakayama algebra with J2(B) = 0, then T3(B) is of

finite representation type.

P r o o f. Statement (a) follows from the isomorphisms Ts(KA2) ∼=
T2(KAs), Ts(K)⊗K (KA2) ∼= Ts(KA2) and [AR, LS].

In case (b) the quiver T3(Q̂) of T3(B) is of the form

... • • • • ...

... • • • • ...

... • • • • ...

α1 //

��

α2 //

��

α3 //

�� ��α′

1 //

��

α′

2 //

��

α′

3 //

�� ��α′′

1 //
α′′

2 //
α′′

3 //

with αi+1αi ∈ I, α′

i+1α
′

i ∈ I, α′′

i+1α
′′

i ∈ I, i ∈ Q0, where all squares com-
mute. In view of Corollary 2.3, Q must be an oriented cycle or Q= An for
some n. In the case Q= An, T3(Q̂) does not contain any subquiver R̂ such

that the algebra K(R̂) is concealed (see [R] for the definition of a concealed



150 Z. Leszczyński

algebra) and T3(KQ̂) is of finite representation type. If Q is a cycle then

T3(Q̂) is a cylinder and has a Galois covering T3(Q̃) (where Q̃ is a Galois

covering of Q̂) such that T3(Q̃) does not contain infinite lines without rela-
tions and any of its finite subquivers is contained in a subquiver of the form
T3(Am) (for some natural m). Hence T3(KQ̂) is of finite representation type
[DS1].

Suppose that Ẑ = (Z, J) is a bound quiver. The figure

where γ1, . . . , γn are composable arrows from Z1 means that γn ◦γn−1 ◦ . . .◦
γ2 ◦ γ1 ∈ J and γn−1 ◦ . . . ◦ γ2 ◦ γ1 6∈ J , γn ◦ γn−1 ◦ . . . ◦ γ2 6∈ J .

We say that the quiver Ẑ has the property (∗) if either Z is an oriented
cycle or Z = As (for some natural number s) and for any composable arrows
α2, α3 in Z1 such that α3α2 6∈ J we have α2α1 ∈ J and α4α3 ∈ J for any
sequence

•

α1−→ •

α2−→ •

α3−→ •

α4−→ •

of composable arrows in Z1.

It is easy to see that Ẑ has the property (∗) if and only if Ẑ is a factor
quiver of

(possibly α = ω), or equivalently, if and only if Ẑ is either a factor of some
oriented cycle or a factor quiver of As (for some natural s) such that Z3

1 ⊆ J

and Ẑ does not contain (so J is generated by paths of length 2).

Theorem 2.5. Suppose that Q̂ = (Q, I) is a connected and simply con-

nected bound quiver. Then

(a) The algebra KQ̂ ⊗ T5(K) ∼= T5(KQ̂) is of tame representation type

if and only if Q̂ = A2.

(b) KQ̂⊗ T4(K) ∼= T4(KQ̂) is of tame representation type if and only if

Q̂ = An (for some natural number n ≥ 3) with J2(KQ̂) = 0.

(c) KQ̂⊗ T3(K) ∼= T3(KQ̂) is of tame representation type if and only if

one of the following conditions holds:

(i) Q = A∗

3 or Qop = A∗

3 (see Lemma 2.2).

(ii) There exists n ≥ 1 such that Q̂ = An and Q̂ has the property (∗).

P r o o f. (a) If Q = (•), then Ts(KQ) ∼= Ts(K) is of finite representation
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type. If Q̂ contains

•

α1−→ •

α2−→ •

then T5(Q̂) contains
• •

• •

• •

• •

•

//

��//

�� ��//

�� ��//

��

(even in the case α2α1 ∈ I), which is of wild representation type as a quiver
of a one-point coextension by a simple injective module of a concealed tame
algebra of type Ẽ7 [R, p. 130]. The tameness of T5(A2) ∼= T2(A5) has been
established in [L1].

(b) Suppose Q̂ contains either A∗

3 or (A∗

3)
op. Hence T4(Q̂) or T4(Q̂)op

contains
•

• •

• • •

•

��

��

//

��oo

��

//

which is of wild representation type as a one-point extension by a projective
module of a concealed quiver of type D̃5. In a similar way one can show
that if Q̂ contains A3 then T4(Q̂) is of wild representation type.

Assume now that for the quiver Q̂ = (An, I) we have Q2
1 ⊆ I. Then

T4(Q̂) is the quiver
• • • • •...

• • • • •...

• • • • •...

• • • • •...

//

��

//

�� ��

//

�� ��//

��

//

�� ��

//

�� ��//

��

//

�� ��

//

�� ��// // //

with four rows and n columns and with the following relations:

(i) The squares are commutative.
(ii) The composition of any pair of composable horizontal arrows is zero.

If n = 3, then T4(Q) contains exactly one concealed quiver

• •

• •

• •

• •

//

�� ��//

��//

�� ��//
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(of type D̃7) and T4(Q̂) is of tame representation type as a finite extension
and a coextension of the above quiver [R, p. 130]. If card(Q0) ≥ 4, then

T4(Q̂) contains a finite number of concealed quivers each of them isomorphic
to the above one or to the quiver

• •

• •

• •

• •

��

//

//

�� ��//

��//

(of type Ẽ7). The reader can show, applying the method of a one-point

(co-) extension, that the algebra T4(KQ̂) is a finite extension and a finite
coextension of tubular algebra. Ringel has studied the representation type
of tubular algebras obtained by extensions by simple regular modules [R,
p. 228]. The above tubular algebra is of type (2, 3, 6) in Ringel notation
and it is of tame representation type.

(c) Suppose that Q̂ contains A∗

3 or (A∗

3)
op. If Q̂ contains the quiver

•

α
←− •

β
−→ •

γ
−→ •

with γβ ∈ I, then T3(Q̂) or T3(Q̂)op contains the quiver

• • •

• • •

• • •

��

//

��

��

oo

��

//

��oo //

(of type
≈

E :7). Hence T3(Q̂) is of wild representation type. If Q (or Qop) is

equal to A∗

3, one can show that the algebra T3(KQ̂) is of tame representation
type as a tubular algebra with two concealed subalgebras with quivers of
the form [R, p. 228]

• •

• • •

• • •

�� ��

�� ��

//oo

��oo //

• • •

• • •

• •

��

oo //

�� ��

��

oo //

��

Assume now that Q̂ contains neither A∗

3 nor (A∗

3)
op. If Q̂ contains

•

α
−→ •

β
−→ •

γ
−→ •

with βα 6∈ I, γβ 6∈ I, then T3(Q̂) is of wild type, because it contains

• • •

• • •

• •

//

��

//

��//

��

//

��//
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(of type
≈

D6). If Q̂ is the quiver of a Nakayama algebra and satisfies the

condition (∗), then one can show that T4(KQ̂) is an iterated tubular algebra
of type (2, 3, 6) and it is of tame representation type.

3. Tameness of B ⊗C in the general case. Throughout we assume
that the algebras B = KP̂ , C = KQ̂ are not hereditary Nakayama (i.e.
neither B nor C is isomorphic to the algebra Tn(K), see (1.4)), because

the case when one of the quivers P̂ , Q̂ is equal to An was studied in the
preceding section.

We consider the following quivers:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

where • — • means either •−→• or •←−• and a dotted curve over (under)
an oriented path means that the composition of the arrows from that path
lies in I.
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We say that the quiver Ẑ has the property (∗∗) if either Z is an oriented
cycle or Z = As (for some natural number s) and for any composable arrows
α3, α4 in Z1 such that α4α3 6∈ J , we have α2α1 ∈ J , α3α2 ∈ J , α5α4 ∈ J ,
α6α5 ∈ J for any sequence

•

α1−→ •

α2−→ •

α3−→ •

α4−→ •

α5−→ •

α6−→ •

of composable arrows in Ẑ.
Note that Ẑ has the property (∗∗) if and only if Ẑ is a factor quiver of

(possibly α = ω).
One can see that (∗∗) implies (∗).

Definition 3.1. The quiver P̂ ⊗ Q̂ is called weakly sincere if there
exists an indecomposable representation of P̂ ⊗ Q̂ such that its support is
not contained in a tensor product R̂⊗T̂ , where R̂ ⊆ P̂ , T̂ ⊆ Q̂ are subquivers
and R̂ 6= P̂ or T̂ 6= Q̂.

It follows that a non-weakly sincere bound quiver P̂ ⊗ Q̂ is of tame
representation type if and only if R̂ ⊗ T̂ is of tame representation type for
any subquiver R̂ of P̂ and any subquiver T̂ of Q̂ (see [D]). Therefore, the
study of tame algebras B⊗K C reduces to the study of weakly sincere tensor
product bound quiver algebras.

We recall that in this paper finite representation type algebras are as-
sumed to be tame.

Theorem 3.2. Suppose P̂ = (P,L), Q̂ = (Q, I) be bound quivers such

that the tensor product P̂ ⊗ Q̂ is weakly sincere. Assume that B = KP̂ ,
C = KQ̂ are connected and simply connected bound quiver K-algebras non-

isomorphic to the algebra Tn(K) for any n ≥ 1.

(a) If B and C is not a Nakayama algebra, then the following conditions

are equivalent :
(i) B ⊗K C is of tame representation type;
(ii) dimK B = dimK C = 5;

(iii) P̂ and Q̂ is isomorphic either to A∗

3 or to (A∗

3)
op.

(b) Suppose that C = KQ̂ is a Nakayama algebra and B is not. Then

B ⊗K C is of tame representation type if and only if one of the following

conditions holds:
(i) J2(C) = 0, dimK C ≥ 9, dimK B ≥ 6 and P̂ or P̂ op is the

quiver (1).

(ii) J2(C) = 0, 6 ≤ dimK C ≤ 8, dimK B ≥ 6 and P̂ is a factor

quiver of the quiver (2).
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(iii) J2(C) = 0, dimK C ≤ 5, dimK B ≥ 6 and P̂ is a factor quiver

of one of the quivers (2), . . . , (8).

(iv) dimK B ≤ 5 and Q̂ has the property (∗∗).
(c) Suppose that B and C are Nakayama algebras.

(c1) If J3(B) 6= 0, then the algebra B ⊗K C is of tame representation

type if and only if J2(C) = 0, dimK C = 5 and P̂ is a factor quiver of one

of the quivers (9), (10).

(c2) If J3(B) = 0, J3(C) = 0 and P̂ contains , then B⊗K C
is of tame representation type if and only if one of the following conditions

holds:
(i) dimK B ≥ 10, J2(C) = 0 and dimK C = 5.

(ii) dimK B ≤ 9 and J2(C) = 0.

(c3) If both P̂ and Q̂ have the property (∗) and P̂ does not have the

property (∗∗), then B ⊗K C is of tame representation type if and only if

J2(C) = 0.

(c4) If J2(B) 6= 0, J2(C) 6= 0, and both P̂ and Q̂ have the property (∗∗),
then B⊗K C is of tame representation type if and only if one of the following

conditions holds:

(i) Each of the quivers P̂ , Q̂ is of the form (11) (for some natural

numbers s and s′ respectively).

(ii) dimK B = dimK C = 8.

(Observe that the condition (c4; ii) for the Nakayama algebras means that

P̂ or P̂ op is equal to the quiver (11) for s = 4 and Q̂ or Q̂op is equal to the
quiver (11) for s = 4.)

P r o o f. The division into types of algebras and the order of the for-
mulation of the theorem agree with the table below. One can see that
up to duality (see Lemma 1.2(e)) and up to the order of tensor products
(Lemma 1.2(a)) all cases of pairs of bound quivers providing tameness of
their tensor product quivers are mentioned in the table and all cases of
pairs of bound quiver algebras providing tameness of their tensor products
are mentioned in Theorem 3.2.

The letters (A), (B), . . . , (F) in the table designate the following state-
ments:

(A): P̂ ⊗ Q̂ is of tame representation type if and only if P̂ is of the form

(1) (and in this case P̂ ⊗ Q̂ is of finite representation type).

(B): P̂ ⊗ Q̂ is of tame representation type if and only if P̂ is a factor
quiver of the quiver (2).

(C): P̂ ⊗ Q̂ is of tame representation type if and only if P̂ is a factor
quiver of one of the quivers (2), . . . , (8).
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D): P̂ ⊗ Q̂ is of tame representation type if and only if P̂ is a factor
quiver of one of (9) or (10).

(E): P̂ ⊗ Q̂ is of tame representation type if and only if either each of

P̂ , Q̂ is a factor quiver of (11) or P̂ = Q̂op = or P̂ op = Q̂ =

.

(F): If we divide this case into subcases: card(P0) ≥ 5, card(P0) = 4,
card(P0) = 3, then the representation type of each subcase is determined by

statements (A), (B), (C) respectively (after interchanging P̂ and Q̂ wherever
they occur).

Statement (F) follows from Lemma 1.2(e), (a) and from the fact that

for any Nakayama algebra KẐ, the dual algebra (KẐ)op is Nakayama (see

Corollary 2.3) and if J2(KẐ) = 0, then Ẑ = Ẑop.

TAB LE. Type of P̂ ⊗ Q̂

N
(∗) holds (∗∗)

Q̂ ! A∗3 Q̂ = A
∗

3 for Q̂ and holds Q21 ⊆ I , card(Q0) = s

(∗∗) does for Q̂,

not Q21 6⊆ I s ≥ 5 s = 4 s = 3

P̂ ! A∗3 or P̂ ! (A∗3)
op WT WT WT WT (A) (B) (C)

P̂ = A∗3 or P̂ = (A
∗

3)
op WT TT WT TT TT TT TT

P 31 6⊆ L WT WT WT WT WT WT (D)

P̂ !
WT WT WT WT WT WT TT

and P 31 ⊆ L

P̂ = WT WT WT WT TT TT TT
N

(∗) holds for P̂ ,
WT WT WT WT TT TT TT

(∗∗) does not

(∗∗) holds for P̂ ,
WT WT WT (E) TT TT TT

P 21 6⊆ L

P 21 ⊆ L (F) TT TT TT TT TT TT

“N” stands for “Quivers of Nakayama algebras”.

In the table, TT and WT means tame and wild representation type
respectively.

The determination of the representation type of any tensor product
quiver from the table is obtained by the use of the one point (co-) extension
method [R].
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(a) Assume that B, C are not Nakayama algebras. Then the quivers P̂ ,

Q̂ contain A∗

3 or (A∗

3)
op. Suppose P̂ and Q̂ contains A∗

3, and P̂ 6= A∗

3. If P̂

contains the quiver (1), then P̂ ⊗ Q̂ is of wild representation type, because
it contains

• • •

• • •

• • •

oo //OO

��

OO

��

//

oo //

which is a wild tree-quiver of type
≈

A8.
If P̂ contains one of the quivers:

(3.3) • • • •oo //
• •

• •

//OO

//

OO •

• • •

OO

//

then similarly one can show that (even if P 2
1 ⊆ L) P̂ ⊗ Q̂ is also of wild

representation type. Hence P = A∗

3. On the other hand, either Q̂ = A∗

3 or

Q̂ = (A∗

3)
op. This is equivalent (for non-Nakayama algebras) to dimK B =

dimK C = 5.
Assume now that P̂ = A∗

3 = Q̂ (or Q̂op = P̂ = A∗

3). One can prove by

the one-point extension method [R] that P̂ ⊗ Q̂ is the quiver of a tubular
algebra of type (2, 4, 4) and hence it is of tame representation type.

(b) First observe that a Nakayama bound quiver algebra C = KQ̂ with
J2(C) = 0 is of dimension s if and only if s = 2n− 1 for n = card(Q0).

(i) Suppose P̂ ⊇ A∗

3 and dimK C ≥ 9 (⇔ card(Q0)≥ 5). In much the

same way as above one can prove that the tameness of B⊗C implies P̂ = (1).

Assume now that P̂ = (1) and Q2
1 ⊆ I. Then P̂ ⊗ Q̂ contains no quiver

of a concealed algebra and it is of finite representation type.
(ii) Suppose P̂ ⊇ A∗

3 6= P̂ and card(Q0) = 4. If P̂ contains one of the

quivers (3.3), then P̂ ⊗ Q̂ contains a subquiver of wild representation type.

For example, if P̂ contains the last quiver of (3.3), then P̂ ⊗ Q̂ contains a
subquiver of the form

•

• •

• •

• •

•

��

��zzz==

//

��//

��

which is a wild quiver of type
≈

E 6. Assume now that P̂ contains the quiver

(1) and P̂ 6= (1). Suppose P̂ contains . Then P̂ ⊗ Q̂ contains
a subquiver of wild representation type of the form
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• •

• • • •

• • •

•

�� ��

�� ��

//

//oo

��

Hence P̂ contains . If P̂ is not equal to the latter quiver, then

P̂ does not contain (for any orientation of the last arrow).

Hence P̂ contains and if it is not equal to the latter, then

P̂ contains either (2) or Û : . One can show that if P̂

contains (2), then P̂ = (2). It is easy to check that the quiver Û ⊗ Q̂ is not

weakly sincere. If P̂ 6= Û , then by the above part of the proof we observe
that (for P̂ ⊗ Q̂ of tame representation type) there is only one possibility to

add some arrow to the quiver Û , that is, to add an arrow reaching the point
ω. Then P̂ ⊗ Q̂ also will not be weakly sincere. Hence P̂ = (2).

The proof of tameness of the tensor product P̂ ⊗ Q̂ for P̂ = (2) and the

quiver Q̂ of the form is left to the reader.

(iii) Now, if J2(C) = 0 and dimK C ≤ 5 (and C 6∼= T2(K)), then
card(Q0) = 3 and dimK C = 5. By a discussion similar to the above (but
with much more combinatorics) one can show that for B ⊗K C of tame

representation type the quiver P̂ is of one of the forms (2), . . . , (8).

If P̂ is one of the quivers (2), . . . , (8) and J2(C) = 0 with card(Q0) = 3
then one can show that the algebra is of tame representation type.

Similarly for the case (b; iv) with dimK B ≤ 5 (i.e. P̂ = A∗

3 or P̂ op = A∗

3)

one can prove that B ⊗K C is of tame representation type if and only if Q̂
has the property (∗∗).

Similarly one can easily prove part (c) of the theorem.
It might seem that we have to add a next case with both B, C having

the property (∗∗) and J2(C) = 0, but that case is already solved in (c3),
because (∗∗) implies (∗). This finishes the proof.

Now we present results for the general case with at least one of P̂ , Q̂ not
simply connected.

Proposition 3.4. Suppose P̂ , Q̂ are connected finite bound quivers such

that P̂ ⊗ Q̂ is of tame type, and P̃ , Q̃ are their simply connected coverings

such that P̃ ⊗ Q̃ contains an infinite (free) line. Then one of the following

conditions holds:

(a) The quivers P̂ , Q̂ are Nakayama with Q2
1 ⊆ I and the condition (∗∗)

holds for P̂ (or P 2
1 ⊆ L and (∗∗) holds for Q̂);



Tensor product algebras 159

(b) Q̂ is the quiver (with Q2
1 ⊆ I), and P̂ is of the form

(with P 2
1 ⊆ L).

P r o o f. By considering cases (of pairs) of quivers from the table of
Theorem 3.2 as parts of some larger quivers (which are weakly sincere and
of tame type) one can see that it is possible to construct an infinite line only
for the above cases.

Theorem 3.5. Suppose that the finite connected bound quivers P̂ , Q̂
are such that P̂ ⊗ Q̂ is of tame type, and P̃ , Q̃ are their simply connected

coverings such that P̃ ⊗ Q̃ contains an infinite line.

(i) If P̂ , Q̂ are Nakayama quivers, P̂ satisfies (∗∗) and P 2
1 6⊆ L, then

P̂ ⊗ Q̂ is not of polynomial growth (see [S1]).

(ii) If P̂ , Q̂ are as in Proposition 3.4(b), then P̂ ⊗ Q̂ is of tame type.

P r o o f. (i) The representation type of the bound quiver isomorphic to

P̂ ⊗ Q̂ has been determined in [S1] (Prop. 3).

(ii) Since the covering P̃ ⊗ Q̃ of P̂ ⊗ Q̂ is also a covering of T̂ ⊗ Q̂, where

T̂ = (T,M) is of the form

with T 2
1 ⊆ M , it is enough to show that the quiver T̂ ⊗ Q̂ is of tame type.

The bound quiver T̂ ⊗ Q̂ is a finite extension and coextension of the quiver
Ã10:

Hence it is of tame type [R].

To summarize, in the paper the representation type of tensor product
algebras B ⊗K C is determined with the exception of the following cases:

(i) B or C is isomorphic to one of the algebras: K, T2(K),
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(ii) B = KP̂ , C = KQ̂, where P̂ and Q̂ are considered in statement (i)
of Theorem 3.5.

The representation type of the tensor product algebra B ⊗K C for the
algebras from (ii) is unknown to the author. The characterization of the
bound quiver algebras A such that the algebra A ⊗K T2(K) is of tame
representation type contains long lists (to be published).

The author wishes to thank Prof. O. Kerner and Prof. R. Wisbauer for
fruitful discussions and friendly care during the preparation of the manus-
cript. He is also grateful to Prof. H. Lenzing and Prof. D. Simson for their
helpful remarks and comments.
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[AS] I. Assem and A. Skowroń sk i, On some classes of simply connected algebras,
Proc. London Math. Soc. 56 (1988), 417–450.

[AR] M. Auslander and I. Reiten, On the representation type of triangular matrix
rings, J. London Math. Soc. (2) 12 (1976), 371–382.

[BD] V. M. Bondarenko and Yu. A. Drozd, The representation type of finite groups,
in: Modules and Representations, Zap. Nauchn. Sem. LOMI 57 (1977), 24–41
(in Russian).

[Br1] S. Brenner, Large indecomposable modules over a ring of 2 × 2 triangular ma-
trices, Bull. London Math. Soc. 3 (1971), 333–336.

[Br2] —, On two questions of M. Auslander, ibid. 4 (1972), 301–302.
[DR] V. Dlab and C. M. Ringe l, Indecomposable representations of graphs and alge-

bras, Mem. Amer. Math. Soc. 173 (1976).
[DLS] P. Dowbor, H. Lenz ing and A. Skowroń sk i, Galois coverings of algebras by
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