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Abstract. We prove that an ultrametric space can be bi-Lipschitz embedded in R™ if
its metric dimension in Assouad’s sense is smaller than n. We also characterize ultrametric
spaces up to bi-Lipschitz homeomorphism as dense subspaces of ultrametric inverse limits
of certain inverse sequences of discrete spaces.

1. Introduction. A map f: M — M’ of metric spaces is said to be
bi-Lipschitz if there is a constant L > 1 such that d(x,y)/L < d(f(x),
f(y)) < Ld(z,y) for all z,y € M; then f is also called L-bi-Lipschitz (we
denote every metric by d if not otherwise specified). It is an open problem
to characterize the metric spaces which can be bi-Lipschitz embedded in
a (finite-dimensional) Euclidean space. If a compact metric space M can
locally be bi-Lipschitz embedded in R™, n > 2, then M can be bi-Lipschitz
embedded in R™"*+1) by [13, Remark 4.6]; in particular, a compact Lipschitz
n-manifold has a bi-Lipschitz embedding in R?"*+! by [12, Corollary 4.6]. By
[4, Lemme 4.9], a metric space admits an L-bi-Lipschitz embedding in R™ if
all of its finite subsets have this property.

These results cannot be considered satisfactory characterizations, but
Assouad [2]-[4] takes a promising approach. For a metric space (M, d), he de-
fines a bi-Lipschitz invariant called the metric dimension (see Definition 3.2)
and proves that in order for (M, d) to be of finite metric dimension it is suf-
ficient that for some p € (0,1] and necessary that for each p € (0,1) the
metric space (M, dP) is bi-Lipschitz embeddable in a Euclidean space. How-
ever, whether the necessity also extends to the case p = 1 is not known, but
Assouad conjectures this is so.

In this paper we study the existence of bi-Lipschitz embeddings in Eu-
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clidean spaces for a more tractable, yet important subclass of metric spaces,
that of ultrametric ones. Recall that an ultrametric space is a metric space M
whose metric d, then also called an ultrametric, satisfies the strong trian-
gle inequality d(z,y) < max{d(zx, z),d(y,z)} for all z,y,z € M. Based on
the fact that every positive power of an ultrametric is also an ultramet-
ric, Assouad deduces from his result that an ultrametric space M can be
bi-Lipschitz embedded in a Euclidean space if and only if M is of finite met-
ric dimension (see Proposition 3.3). In our simple Proposition 3.1 we show
that ultrametric subspaces of Euclidean spaces are finite. This implies that
the Euclidean bi-Lipschitz image of an ultrametric space M of finite metric
dimension cannot itself be chosen ultrametric if M is infinite. On the other
hand, if M is finite and card M = n + 1, then M is evidently bi-Lipschitz
homeomorphic to the ultrametric vertex set of a regular n-simplex in R".
(See the paragraph after the next one for a more exact result.)

In our main result, Theorem 3.8, we prove that for each n € N an ultra-
metric space of metric dimension < n can be bi-Lipschitz embedded in R™.
Since every metric space which is bi-Lipschitz embeddable in R™ must be of
metric dimension < n, for ultrametric spaces of fractional metric dimension
our result thus gives the smallest possible Fuclidean bi-Lipschitz embedding
dimension. However, whether this also holds for all ultrametric spaces of
integral metric dimension remains open, but for each n € N we construct
an example of a compact ultrametric space of metric dimension n for which
this is really the case, that is, which is not bi-Lipschitz embeddable in R".
Crucial for our proof is the characteristic property of ultrametric spaces
that for every fixed radius the closed balls form a partition of the space.
A variant of our method was used by the second author in [15, Theorem 2.3]
to show that every compact ultrametric space is bi-Lipschitz embeddable in
a Hilbert space.

For the sake of comparison, let us recall results concerning other types of
embeddings of ultrametric spaces. Note first that a metrizable space admits
an ultrametric if and only if its topological dimension (in the large inductive
or covering sense) is at most zero [6, Theorem 4.1.24 and Problem 4.1.G].
Thus every separable ultrametric space can be topologically embedded in
the Cantor set in R! [6, Theorem 1.3.15]. By van Rooij [17, Corollary 2.2],
every compact ultrametric space can be topologically embedded in every
complete non-Archimedean (i.e., ultrametric) nontrivially valued field. The
result referred to above is that an ultrametric space can be isometrically
embedded in R" if and only if it has at most n + 1 points. This was proved
independently by Timan [19] (at least in a special case), Lemin [11], and
Aschbacher, Baldi, Baum, and Wilson [1, Theorems 1.1 and 6.7]. Further,
every ultrametric space can be isometrically embedded in a Hilbert space.
This was shown independently by Kelly ([8, Theorem 8.1], [9, Theorem 2],
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[21, Theorem 2.4]), Timan and Vestfrid [20], and Lemin [11]. Timan [19] also
constructed isometric embeddings of certain countable ultrametric spaces in
L,-spaces, p > 1. Finally, by Schikhof [18, Theorem A.10] every ultrametric
space can be isometrically embedded in a spherically complete (thus com-
plete) non-Archimedean valued field.

Section 2 deals with a related problem. Analogously to the characteri-
zation of ultrametrizable topological spaces up to homeomorphism as sub-
spaces of countable products of discrete spaces [17, Theorem 2.1], we ultra-
metrize the inverse limit of every doubly infinite inverse sequence of discrete
spaces satisfying a certain one-sidedness condition and show every ultra-
metric space to be bi-Lipschitz homeomorphic to a dense subset of such an
ultrametric inverse limit. These results generalize those of the second au-
thor in [15]. We also analogously generalize results due to Lemin [10] about
isometric characterization of ultrametric spaces. For compact ultrametric
spaces the results of Section 2 have earlier been obtained by Michon [14].

For basic properties of ultrametric spaces we refer to [17] and [18]. We
assume 0 ¢ N.

2. Bi-Lipschitz embeddings in inverse limits. We first construct a
class of ultrametric spaces as inverse limits.

2.1. CoNSTRUCTION. Let X; be a discrete topological space for each
Jj € Z,let gj: Xj41 — X; be amap for each j € Z, and let X' be the inverse
limit space lim. (X}, g;) of the doubly infinite (i.e., with Z as index set)
inverse sequence (Xj,g;)jez, i.e., X is the subspace {(z;) | gj(z;+1) = ;
for each j € Z} of the product space [] jez Xj- Moreover, suppose that if
x,y € X, then x; = y; for some j € Z, implying that x; = y; whenever 7 < j.
We call doubly infinite inverse sequences (X, g;) ez of this kind one-sided.

Let (rj)jez be a sequence of positive real numbers such that rj;1 < r;
for each j € Z, that lim;_, 7; = 0, and that lim;_,_ ., r; = 0o. Then we can
define a complete compatible ultrametric ¢ on X' by setting o(x,y) = r; for
two distinct points x,y if j is the greatest integer with x; = y;. We call this
metric g on X' a comparison ultrametric. If all spaces X; are countable, X is
separable; if they are finite, X is compact. If card X; = 1, guaranteeing the
one-sidedness property, then we may obviously reduce the index set Z to N
in the definition of (X, p) getting a canonically isometric copy of (X, o).

The following theorem shows that the class of ultrametric spaces con-
structed in 2.1 is in a certain sense universal for the category of ultrametric
spaces and bi-Lipschitz embeddings.

2.2. THEOREM. Let M be an ultrametric space. Then M is bi-Lipschitz
embeddable as a dense subset in the inverse limit of a one-sided doubly in-
finite inverse sequence of discrete spaces with a comparison ultrametric.
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Proof Let K > 1 be a constant and (r;)jez a sequence such that
0 < 7rjy1 <r; < Krjpq for each j € Z, that limj_..r; = 0, and that
limj_, o7 = 00. Let B(z,r) ={y € M | d(z,y) < r} for x € M, r > 0.
Noting that B(z,r) = B(y,r) if y € B(x,r), construct partitions X; =
{B(z,r;) | x € M} (j € Z) of M and maps g;: X411 — X;, B(x,rj41) —
B(z,7;) (j € Z). Then let X' = lim. (X}, g;). If (Bj)jez and (B}) ez are
points of X, there are j < 0 and B} € X; such that By U By C BY,
which implies B; = B = Bj. Thus, the inverse sequence (Xj,g;) ez is
one-sided. Now give X' the comparison ultrametric p associated with the
sequence (7;)jez.

Define a map f: M — X by f(z) = (B(z,r;))jez. Consider z,y € M,
x # y. Choose j € Z with rj;1 < d(x,y) < r;. Then x and y are in the same
member of X; but in distinct members of X 1. Hence, o(f(z), f(y)) = 75,
and therefore d(z,y) < o(f(z), f(y)) < Kd(x,y). Consequently, f is a bi-
Lipschitz embedding.

To see fM to be dense in X, note first that as fM = {(B))jecz € X |

Njez Bj # 0}, we have fM = X if and only if M is complete. Now let M be

~

the completion of M it, too, is an ultrametric space. Let (X}, g;);ez be the
inverse sequence, 5 = lim_ ()?j,/g\j) the ultrametric space, and ]? M5
the bi-Lipschitz homeomorphism associated with M and (rj)jez. For each
J € Z we have a bijection h;: X'j — X;, B— BN M. Since h;g; = gjhj1,
the sequence (h;);ez induces a bijection h: S5y 5] (Bj)jez — (BNM)jez,
and h is an isometry. From hﬂM = f we then conclude that fM is dense
inY. m

2.3. Remarks. 1) In the proof, M is totally bounded (respectively,
separable) if and only if the spaces X, are finite (respectively, countable).
If M is bounded (and nonempty), by choosing r; > diam M we have X; =
{M} for all 7 <1, and hence we could replace the index set Z by N in the
definition of (X, 0). Theorem 2.2 generalizes [15, Proposition 2.1], in which
the ultrametric space M is assumed to be bounded and complete and in
whose proof r; is chosen to be > diam M. For compact ultrametric spaces,
Theorem 2.2 also follows from results of Michon [14].

2) A consequence of Theorem 2.2, which is also easy to establish directly
[17, Exercise 2.F], is that every ultrametric is bi-Lipschitz equivalent to an
ultrametric whose positive values form a discrete set. As not all ultrametrics
satisfy the latter condition, in Theorem 2.2 bi-Lipschitz embeddings cannot
be replaced by isometric embeddings.

3) Analogously to the above characterization of ultrametric spaces up
to bi-Lipschitz homeomorphism, there is the following characterization of
ultrametric spaces up to isometry as dense subsets of ultrametric inverse



Bi-Lipschitz embeddings 185

limits of certain countable inverse systems of discrete spaces. For bounded
complete spaces this characterization has been given by Lemin [10, 6.4],
although not as explicitly as here, and for compact spaces by Michon [14].

First, fix a countable dense subset A of (0,00) for an index set. Now, if
S is an inverse system of discrete topological spaces X, (r € A) and maps
9o Xs — X, (r,s € A, s > r), if ¥ = lim_ S is the inverse limit of S,
and if S is one-sided in the sense that for all z,y € X there is r € A with
T, = Y-, then we can define a complete compatible ultrametric o on X
by o(z,y) = sup{1l/r | r € A, z, # y,}. Conversely, if M is an ultrametric
space, X, the partition {B(z,1/r) |x € M} of M (r € A), and g}: X5 — X,
the map B(z,1/s) — B(x,1/r) (r, s € A, s > r), then the inverse system
S = (X,,97)4 is one-sided, and if X = lim. S is ultrametrized as above,
then the map f: M — X, x — (B(x,1/r))rea, is an isometry onto a dense
subset, and fM = X if and only if M is complete.

3. Bi-Lipschitz embeddings in Euclidean spaces. Our first result
is a weaker form of a known one, but we present it as our proof is so simple.

3.1. PROPOSITION. No infinite ultrametric space is isometric to a subset
of R™ for any n € N.

Proof. Suppose the contrary, and assume that n € N is the smallest
number for which R™ contains an infinite ultrametric subspace M. Since
also M is ultrametric, we may assume M to be closed. For distinct points
x,y € M let T'(x,y) C R™ denote the perpendicular bisector of the segment
[z,y]. Then z € M and |z —y| < |z — 2| imply z € T'(x,y). In fact, |z — 2] <
max{|z —y|,|y — 2|} = |y — z[ and |y — 2| < max{|z —y|, |z — 2[} = [z — 2],
and so |z — z| = |y — z|.

We first show M to be discrete. If not, M has a cluster point x. Let
A = M \ {z}. Choose a sequence (y;) in A converging to x. Let Fj, =
ﬂj>kT(:U,yj) for k € N. Then F} C Fy C ... are proper affine subspaces
of R™ (possibly empty), which implies that such is also their union F'. If
z € A, choose k with |z —y; | < |v—z| for j > k; then z € F},. Thus, A C F'.
Consequently, M C F', a contradiction.

It follows that we can write M = {z; | j € N} with 21 # z2 and z; — oc.
Choose k with |21 —z2| < |z1—x; | for j > k,and let A = {z; | j > k}. Then
A C T(x1,x2). Since A is an infinite ultrametric set, this is a contradiction. m

The following definition for the metric dimension is equivalent to that of
Assouad [3], [4].

3.2. DEFINITION. Let M be a metric space. Suppose that s > 0 and
C > 0 are numbers such that cardY < C(b/a)® whenever a > 0 and b > a
are numbers and Y C M a set with a < d(x,y) <bfor z,y € Y and = # y.
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Then M is called (C, s)-homogeneous. We say that M is s-homogeneous if M
is (C, s)-homogeneous for some C. The infimum (in [0, oc]) of the numbers s
(if any) for which M is s-homogeneous is called the metric dimension of M
and denoted by Dim M or also by Dim(M, d).

We need the following basic properties of these concepts (cf. [3, Propo-
sition 2] or [4, 2.2]). An L-bi-Lipschitz image of a (C, s)-homogeneous space
is (L?*C, s)-homogeneous. Thus, Dim is a bi-Lipschitz invariant. Consider
A C M. If M is (C, s)-homogeneous, so is A, and conversely whenever A is
dense. Thus, Dim A < Dim M, with equality if A is dense. The space R" is
n-homogeneous and DimR"™ = Dim[0, 1] = n for all n > 0. If p € (0, 1),
then Dim(M,d?) = (1/p)Dim(M,d). If M = [J_, A;, then Dim M =
maxi<i<k Dim AZ

We also mention the following fact [3, Remarque 2] yielding a simple
characterization for being of finite metric dimension. A metric space is (C, s)-
homogeneous for some (C, s) if and only if there is ¢ € N such that for each
r > 0, each closed ball of radius r can be covered by (in the ultrametric
case: is the union of) k closed balls of radius /2 with & < ¢. Here (C,s)
and g can be chosen to depend only on each other.

Before proving our main result, Theorem 3.8, we first present and discuss
a weaker form of it due to Assouad [3, Remarque 2 and Proposition 3(g)].

3.3. PROPOSITION. Let M be an ultrametric space. Then there is a bi-
Lipschitz embedding of M in R™ for some ne€N if and only if Dim M < oco.

For the “if”-part note that the metric d of M can be written as d=(d?)'/?
with d?, too, being an ultrametric and that Dim(M,d*)=3 Dim(M,d)
<00; hence, the assertion follows from Assouad’s result ([2, Proposition 1.30],
[4, Proposition 2.6]) mentioned in the second paragraph of the introduction.
Both versions of Assouad’s proof show that in the “if”-part n and an up-
per bound for the bi-Lipschitz constant of the embedding can be chosen to

depend only on a pair (C, s) of numbers for which M is (C, s)-homogeneous.

3.4. Remark. The sufficiency part of Proposition 3.3 is not valid even
for compact spaces if the metric dimension Dim is replaced either by the
Hausdorff dimension dimy (cf. [7, (2.11)]) or by the upper fractal dimension
dimg¢ in the sense of [15, p. 558] (called the upper box-counting dimension
in [7, (3.5)]). This amounts to the fact that Dim M = oo implies neither
dimyg M = oo nor dims M = oo as we now establish.

Recall that for a metric space M we can define dim¢ M € [0,00] as
follows. If M = (), set dim¢ M = 0; if M is not totally bounded, set dim¢ M =
oo; otherwise, letting N,.(M) € N for r > 0 be the smallest number of open
r-balls needed to cover M, set dim¢ M = limsup,. ., log N,.(M)/log(1/r).
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We have dimyg M < Dim M [3, Proposition 2] and dimy M < dimg M
(cf. [7, (3.17)]) for all metric spaces M. By Proposition 3.5 below, dimg M <
Dim M if M is bounded.

Now in [13, 4.12] it was shown that the compact ultrametric space
M = NU {oco} with the metric defined by d(i,j) = 1/log(i + 1) if i < j has
no bi-Lipschitz embedding into any Euclidean space although dimg M = 0
as M is countable. In fact, dim¢ M = oo, and therefore there is not even
any embedding f: M — R”, n € N, with f~!|fM Hélder continuous; cf.
Example 3.6. More strongly, [15, Example 3.2] gives a compact ultrametric
space M homeomorphic to the Cantor set such that dim¢ M < oo and such
that M is not bi-Lipschitz embeddable in R™ for any n € N (see Example 3.6
for a countable example). This was established by showing dim,,, M = oo for
the metric dimension dim,, in the sense of [15, Definition 3.1]. The dimen-
sions dim,, and Dim are easily seen to coincide for totally bounded metric
spaces. Proposition 3.3 is not, however, valid for dim,, either, because for
arbitrary metric spaces M we only have the inequality dim,, M < Dim M,
and this assumes the form 0 < co if M is an infinite ultrametric space with

d(z,y) =1 for z # y.
3.5. PROPOSITION. If M is a bounded metric space, then dimy M <
Dim M.

Proof. If M is nonempty and totally bounded, we can replace N,.(M)
in the definition of dim¢ M by N/(M) = max{cardY | Y C M, d(z,y) > r
ifz,yeY,z#y}as N.(M) <N/ (M) <N, o(M).

We may assume that b = diam M > 0 and Dim M < oco. Suppose M
to be (C, s)-homogeneous. Let r € (0,b]. If Y € M and d(z,y) > r for
x,y €Y,z # y, then cardY < C(b/r)®. Thus, M is totally bounded and
N!(M) < C(b/r)*. This implies dim; M < s. Hence, dim; M < Dim M. m

3.6. EXAMPLE. It is an open problem to characterize the metric spaces,
or even the compact ultrametric ones, which are bi-Holder embeddable in
R™ for some n € N (cf. [5], [15]). We show that such spaces need not have
finite metric dimension and thus need not be bi-Lipschitz embeddable in R™
for any n € N.

Recall that a map f: M — N of metric spaces is called Hélder of expo-
nent a > 0if d(f(x), f(y)) < ed(z,y)* for all z,y € M with some ¢ > 0. If, in
addition, the inverse of f on fM exists and is Holder of exponent 8 > 0, we
call f bi-Hélder. Note that if M is compact and f: M — R™ an embedding
with f~! Hélder of exponent a, then dimg M < (1/a)dims fM < n/a < oco.
However, it is not known whether M can conversely be bi-Hoélder embedded
in a Euclidean space if dim¢ M < oo. In our example this is not possible
with an embedding f for which f is Holder of exponent v and f~! Holder
of exponent 1/v for some y > 0 as this implies Dim fM = (1/~) Dim M.
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Our example is a modification of an example in (a preliminary version
of) [5]. Thus, let M = NU {oo}, let & > 0, and endow M with the compact
ultrametric defined by d(i,j) = i~ if i < j. Then dimy M = 1/a. Define
an embedding f: M — R! by f(i) = i~® for i < co and f(oo) = 0. Let
B = af(a+ 1). Then there is ¢ > 0 such that |f(i) — f(j)| < d(i,j) <
c|f(i) — f(4)|° for all i,j € M, and so f is bi-Holder. The first inequality
is trivial, and the second inequality follows from the fact that if i,j € M,
i< j,and g(z) = (1 + x)~ %, then

d(i, I @) = fD)IT7 <l = (i + 1)
=i 01 -1 +iH))F
= ((9(0) —g(i™1))/i" )7 = h(i) < h(1)
as ¢'(x) < 0 < ¢g”(x) for x > 0. Finally, to see that Dim M = oo, let s > 0,
ieN,and Y ={i,i+1,...,2i + 1}. Then note that (2i)"* < d(j,k) <i™¢
if j,k €Y, j#k, and that cardY/(i%/(2i)"*)®* = (i +2)27*° — o0 as

7 — 00.

3.7. CONSTRUCTION. We now turn to our main result. We first con-
struct for each n € N a family {(U}},0) | £ € N} of ultrametric spaces,
which will be shown to be universal for the category of ultrametric spaces M
with Dim M < n and of bi-Lipschitz embeddings. Thus, fix n,k € N. Let
L =2k+1and A= {0,1,...,k}". Let ¢,: R — R"” for a € A be the
similarity map =z — L7!(z + 2a). Let F be the family of axis-parallel
closed cubes Ligq, ... ¢q,[0,1]" in [0,00)™ with i € NU {0}, j € N, and
ai,...,a; € A. Then, letting r; = L™7 for j € Z and endowing R" with
the box norm ||z|| = max{|x1],...,|zn|}, it is clear that F has the following
properties:

1) if F; ={F € F | diam I = r;} for j € Z, then F = {J;; F;

2) dist(F, F') > r; if j € Z and F, F' € F; with F # F’;

3) if j € Z, then each F' € F;,, is contained in a unique cube h(F') € Fj;

4) if j € Z, then each F € F; contains exactly (k+ 1)" cubes of Fj1;
and

5) F; = [0,r;]"™ € F; for each j € Z.

The third property defines a function h: ¥ — F. Let U = U] =
NjezUF; C R™. Then U is closed and perfect. Define an ultrametric o
on U by setting o(x,y) = r; for two distinct points z,y € U if j is the
greatest integer for which x and y are in the same member of F;. Then
[z =yl < o(x,y) < Lljz -yl and thus [z —y|/vn < o(z,y) < Llz —yl.
Hence, ¢ is bi-Lipschitz compatible.

We study U further, but the following properties of U are not really
needed later.
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We first show (U, || - ||) to be (Cp,t)-homogeneous with Cy = (k + 1)?"
and t = nlog(k + 1)/log(2k +1) < n. Thus, let 0 < a < b, let Y C U,
and let a < ||z —y| < bif z,y € YV and = # y. Choose i,j € Z with
riq1 < a < r; and rj4; < b < rj; then ¢ > j. Now each cube in Fjq
contains at most one point of Y, and Y is contained in one cube of Fj.
Hence card Y < (k + 1)"0+179) = Cy(r;41/ri)t < Co(b/a)t as needed.

It is also easily seen that Dim(U, || - ||) > t. Alternatively, this follows
from the equality dimy U = ¢ below. Hence, Dim U = t. Note that t — n as
k — 00. Obviously U is the union of countably many disjoint isometric copies
of the compact set Uy = U N Fy, which is homeomorphic to the middle third
Cantor set and for n = k = 1 even coincides with it. Since {p,Up | a € A} is
a partition of Uy, in the terminology of [7, p. 113], Uy is a self-similar fractal
invariant for the similarities ¢, with ratios L=!. Since card A- L™t = 1, from
[7, Theorem 9.3] we then conclude that dimg Uy = dim¢ Uy = t and that the
t-dimensional Hausdorff measure of Uy is positive and finite. Consequently,
dimH U=t.

3.8. THEOREM. Let M be an ultrametric space and n € N. If Dim M < n,
then M 1is bi-Lipschitz embeddable in R™. Conversely, if M is bi-Lipschitz
embeddable in R™, then Dim M < n; in fact, M is n-homogeneous.

Proof. It suffices to prove the first part. Here it is reasonable not to use
terminology developed in Section 2 although the structure of ultrametric
spaces related there to inverse limits is pertinent also now. Choose s < n
and C' > 0 such that M is (C, s)-homogeneous. Let k& € N be the smallest
number with C'(2k +1)° < (k+ 1)". In R™ we use the constructions of 3.7
with this value of k. For j € Z, let B; be the partition of M by closed balls of
radius ;. Let B be the sum (i.e., disjoint union) of the family {B, | j € Z}.
Define a function g: B — B such that if j € Z and B € B,1, then g(B) is the
unique ball in B; containing B. If B € B; and B’, B” € B4, with B’ # B”,
then diam B < r; and dist(B’, B”) > rj;1, which implies card g~!(B) <
C(rj/rj+1)® = C(2k +1)%. Thus, cardg~}(B) < (k+1)" = card h=}(F) for
all Be Band F € F.

We construct an injection a: B — F such that aB; C F; for each j € Z
and such that ha = ag. Fix a point xy € M (assuming M # (). For j € Z let
B; € B;j be the ball with x5 € B;. Construct inductively subfamilies By C
Bi C ... of Bbyletting By ={B; | j € Z} and B, = U{g"'(B) | B € B;}
for i > 0. Then B = |J,cy B;. Now define @ on Bi by letting alg~!(B;)
for each j € Z be an arbitrary injection g~'(B;) — h™!'(F};) which maps
Bj 1 to Fji1. Suppose inductively that ¢ > 1 and « is defined on B;. Then
define a on B, \ B; by letting a|g~*(B) for each B € B} \ Bf_; be an
arbitrary injection g~!(B) — h~!(a(B)). This procedure yields the desired
function a.
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Now we can define a function f: M — U (with f(z9) = 0) by setting
{f(z)} = ({a(B) | v € B € B} for each x € M. Consider z,y € M with
x # y. Choose j € Z with rj;1 < d(z,y) < rj. Then = and y are in the
same member of B; but in distinct members of B; ;. Hence, f(x) and f(y)
are in the same member of F; but in distinct members of F;;; implying
of (), (1) = 3. Tt follows that 1 < o(f(x), f(y))/d(z,y) < r3/rjer =
and thus that 1/L < |f(x) — f(y)|/d(z,y) < L/n. Hence, f: M — R™ is
L;-bi-Lipschitz with Ly = Ly/n depending only on (C,s,n). m

3.9. COROLLARY. Every ultrametric space of finite metric dimension ad-
mits a bi-Holder embedding in R'.

Proof. If Dim M < s < oo, then M’ = (M, d®) is an ultrametric space
with Dim M’ = (1/s) Dim M < 1; now compose the identity map M — M’
with a bi-Lipschitz embedding M’ — R! provided by Theorem 3.8. =

We say that an embedding between metric spaces is LIP if it is locally
bi-Lipschitz.

3.10. LEMMA. Let n € N, n > 2. If M is a locally compact separable
metric space which locally can be bi-Lipschitz embedded in R™, then there

is a closed LIP embedding f: M — R™"tY_ This also holds if “locally
compact” and “closed” are omitted.

Proof. See [13, Remark 4.6] for the first part. For the second part, let
M* be the completion of M. If x € M, choose an open neighborhood U,
of x in M* with a bounded bi-Lipschitz embedding f,: V, = U, N M — R".
Then f, extends to a bi-Lipschitz homeomorphism f}: cly+ V, — cl fi V.
Since U, C clp+ Vg, it follows that U, is locally compact. Hence, if M’ =
Uzeum Uz, then by the first part there is an LIP embedding f: M' —
R™"+1) Now f = f/|M is the desired embedding. m

By Lemma 3.10 we get the following consequence of Theorem 3.8.

3.11. COROLLARY. Let n € N, n > 2. If M is a separable ultrametric
space whose every point has a neighborhood of metric dimension < n, then
there is an LIP embedding f: M — RtV If M is locally compact, f can
be chosen closed.

3.12. EXAMPLE. Let n€N. Then there is a compact ultrametric space M
with Dim M = n but such that M is not n-homogeneous and consequently
has no bi-Lipschitz embedding in R™. In fact, let A = {2* | k € N}, let
N; =4"if j e Aand N; =27 if j € N\ A, let (X, g;) jen be an inverse se-
quence of finite discrete topological spaces and maps such that card X; = 1
and cardgj_l(a:) = Nj for all j € Nand z € Xj, let M = lim. (X}, g;),
and endow M with the comparison ultrametric associated with the se-
quence (277),en (see 2.1). Then for each s > n there is Cs > 0 such that
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[17 g Njyi < Cs(279/27797P)5 for all j > 1 and p > 0; this follows from the
estimate card(A N [j,7 + p]) < logy(1 + p) + 1. However, as A is infinite,
the same is not true of s = n. It can now be shown that M is (Cs,s)-
homogeneous for each s > n but not n-homogeneous. Then Dim M = n.

3.13. EXxAMPLE. If in Example 3.12 we choose N; = 2" for each j € N,
then M is a (2", n)-homogeneous compact ultrametric space with Dim M =
n. We conjecture that M cannot be bi-Lipschitz embedded in R™ and now
establish this conjecture for n = 1. In fact, we show that if n = 1, there is
no embedding f: M — R! with f~': fM — M a Lipschitz map.

Thus, suppose there is such an embedding f. Then we may assume that
|f(z)—f(y)| > d(x,y) forallz,y € M.For k € N, let I;, = {1,...,2F} let Ay
be the (nonempty) set of sequences = = (7;)icz, in M with d(z;,z;) > 27F
if i # j, and let [, be the minimum of the finitely many numbers [(z) =
2522 d(xi—1,x;) with x € Ay. Choosing x € Ay with f(z1) < ... < f(xgr)
we get

2k
diam fM > Z |f(@iz1) = fz)| = U(z) = b .
i=2
Thus, it suffices to show [ = %k as then fM cannot be bounded. Obviously,
each x € Aj has a permutation y € A such that if 1 < j < k, then
d(yi—1,y;) = 277 for 2771 of the indexes i, which implies I(y) = %k It is
now enough to prove by induction that [ > %k

This being obvious for k = 1, let k > 1 be such that l,_; > (k — 1).
Consider x € Ajy. There is an increasing injection ¢: I,_1 — [ with y =
(Tp(iy)ien_, € Ap—1. If 2 <0 < 281 then d(yi—1,v;) < max{d(zj_1, ;) |
w(i —1) < j < (i)}, and consequently,

21@71 LP(’L) 2]@71
Yoo D dlainz) = Y (dlyionyi) + () — (i = 1) = 1)27F)
i=2 j=p(i—1)+1 i=2

=1(y) + (2" — (1) =271+ 127"

Moreover,
e(1) 2"
Sdlay e+ S dlmyaas) = (1) - 1428 — p(2E )2k,
J=2 J=e(2F)+1

Hence, I(z) > I(y) + 287127% > [, + § > 1k. Tt follows that I, > 1k.

3.14. CONJECTURE. If n € N and M is an n-homogeneous ultrametric
space with Dim M = n, there is no bi-Lipschitz embedding f: M — R".

The conjecture is equivalent to the claim that an ultrametric space M
can be bi-Lipschitz embedded in R™ only if Dim M < n. In the conjecture we
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may clearly assume M to be complete. In seeking more examples (for n > 2)
to support or counterexamples to refute the conjecture, the results of the
second author [16] about compact metric spaces bi-Lipschitz homeomorphic
to an ultrametric space might be useful. For instance, we must disregard
the counterexample candidate M = {0, 1, %, %, ...} C R! with DimM =1
(cf. Example 3.6) as M has no bi-Lipschitz compatible ultrametric by [16,
Proposition 2.14]. Let us mention that, on the other hand, M gives an
example of a compact space for which Dim M is finite but different from
dim¢ M = $ [7, Example 3.5].

To establish Conjecture 3.14 for infinite compact spaces we may assume
them to have only one cluster point:

3.15. PROPOSITION. FEach infinite compact metric space M contains a

countable closed subset A with a unique cluster point for which Dim A =
Dim M.

Proof. We may assume s = DimM > 0. By the last of the basic
properties after Definition 3.2, there is a point o € M such that DimU = s
for each neighborhood U of xy. Choose a sequence s; € (0,s) with s; — s.
Then for each j € N there are numbers 0 < a; < b; and a finite set Y; C
B(zo,1/7) such that a; < d(x,y) < b; whenever z,y € Y},  # y, and such
that cardY; > j(b;/a;)%. It is easy to see that A = {zo} UJ;cyY; is the
desired set. m

Added in proof (September 1993). Assouad’s conjecture in the Introduction does not
hold; this has been shown by Stephen Semmes in his manuscript Bilipschitz embeddings
of metric spaces into Fuclidean spaces. Conjecture 3.14 has been confirmed by Kerkko
Luosto.
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