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Ordinal products of topological spaces

by

V. A. C h a t y r k o (Moscow)

Abstract. The notion of the ordinal product of a transfinite sequence of topological
spaces which is an extension of the finite product operation is introduced. The dimensions
of finite and infinite ordinal products are estimated. In particular, the dimensions of
ordinary products of Smirnov’s [S] and Henderson’s [He1] compacta are calculated.

Introduction. The necessary information about the notions and nota-
tions we use can be found in [A-Pa], [E1], [E2], [K-M] and in the appendix.

One of the main questions in transfinite dimension theory is

The problem of product dimension (PPD). Let DIM be a transfinite
dimension function, for example: ind, Ind, dimw, dimc, D, and suppose U
is a fixed class of topological spaces. What can be said about the dimension
DIM of the product of two spaces X, Y from the class U if this dimension
is defined for the factors?

Let us give some possible concretizations of (PPD):

(1) Does DIMX × Y exist?

(2) Is there an (optimal) transfinite function Φ = Φ(α, β) of two trans-
finite variables such that

DIMX × Y ≤ Φ(DIMX,DIMY ) ?

(The function Φ(α, β) is called optimal if for every pair of transfinite numbers
α, β there are spaces X = X(α, β) and Y = Y (α, β) in U such that DIMX =
α, DIMY = β, and DIMX × Y = Φ(α, β).)

(3) What is the value of DIMX × Y ?

In this paper we will be interested in questions (2), (3) and their gener-
alizations. In the introduction we discuss the case of metric compacta unless
otherwise stated.
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For the traditional transfinite dimensions ind and Ind (see [A-Pa]) the
inequality

(∗) DIMX × Y < ω1

is well known, and it is equivalent to the existence of DIMX × Y for these
dimensions. The analogous statement is true for dimc, the transfinite exten-
sion of the Lebesgue covering dimension dim to compact C-spaces ([B3] and
[Ha-Y]). A more delicate result for ind has been obtained by Toulmin [T]:
indX × Y ≤ (indX(+) indY ) + n, where n is a finite non-negative integer
which depends on the inductive dimensions of X and Y , and (+) is the
natural sum of Hessenberg [Hes].

For any metrizable compactum Z we have IndZ ≤ ω · indZ [Le], which
leads to a more precise estimate for Ind than (∗). Note that an improvement
of (∗) for Ind for a certain class of topological spaces has also been stated by
Polkowski [Po]. For the dimension D the inequality D(X×Y ) ≤ DX(+)DY
has been proved by Henderson [He2].

So PPD(2) for the dimensions indicated above reduces either to ob-
taining an optimal estimating function Φ or to the proof of optimality
of a given one. Note that for dimw, another transfinite extension of dim
to weakly infinite-dimensional compacta [B1], even the rough estimate (∗)
has not been obtained yet. This is the well-known problem of the weak
infinite-dimensionality of the product of weakly infinite-dimensional com-
pacta. Note that PPD(2) coincides with PPD(3) in the part which deals
with optimality—one has to calculate the dimension of the product of the
chosen pair of compacta. As far as I know the calculation of the dimension
of the product of two infinite-dimensional compacta has not been made yet.

In [S] Smirnov constructed compacta Sα with IndSα = α, α < ω1,
and from this he deduced that there are no universal spaces in the class
of countable-dimensional metric compacta. Smirnov’s construction turned
out to be very useful. Using its modification Henderson [He1] constructed
AR-compacta Hα ←↩ Sα with IndHα = α, α < ω1, and defined for them the
notion of an essential mapping. He also proved that DSα = α [He2]. In [B1],
[B2] Borst, having extended the covering dimension dim to ordinals, proved a
transfinite analog of Aleksandrov’s theorem on essential mappings for locally
compact metric spaces, namely: dimw X ≥ α iff X × C has an essential
mapping onto Hα, where C is the Cantor middle thirds set (dimw is the
above mentioned transfinite extension of dim). He also proved the equalities
dimw S

α = dimw H
α = α for α < ω1, from which one sees directly that

there is no universal space in the class of weakly infinite-dimensional metric
compacta (the weak infinite-dimensionality of a metric compactum X is
equivalent to the inequality dimw X < ω1 [B1]). Note that the non-existence
of universal spaces in the class of weakly infinite-dimensional compacta also
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follows from an earlier result of Pol [P] connected with Smirnov compacta.
Namely:

If a complete space X topologically contains every Smirnov compactum
Sα, then X topologically contains the Hilbert cube. Hence X is not weakly
infinite-dimensional.

Naturally PPD(3) arises for useful and easily constructed Smirnov and
Henderson compacta. In this paper this question is completely solved. It
turns out that

DIMXα ×Xβ = α(+)β ,
where DIM is Ind, Id (to be defined below), dimw, or D and Xγ , γ < ω1,
are either the Smirnov compacta Sγ or the Henderson compacta Hγ .

The paper consists of three parts. In the first part, starting from Smir-
nov’s construction we suggest the definition of an infinite product of topolog-
ical spaces—the ordinal ℵ0-product (Definition 1) for which, in contrast to
Tikhonov products, there are non-trivial solutions of the natural extension
of PPD to an infinite number of non-zero-dimensional factors (Theorem 4).

Let, for example, S = {Xγ , γ < β} be a set of compacta indexed by
ordinals < β (such sets will be called β-sequences). Then the compactum

∏ω,ord

γ<β

Xγ =





point if β = 0 ;( ∏ω,ord

γ<β−1

Xγ

)
×Xβ−1 if β is a non-limit ordinal;

Aleksandrov compactification of the free sum(
(+)
δ<β

(∏ω,ord

γ<δ

Xγ

))
× N if β is a limit ordinal, where

N are the natural numbers,
is the ordinal ℵ0-product of the β-sequence S. If all the Xγ are homeo-
morphic to X, then

∏ω,ord
γ<β Xγ is called the β-ordinal ℵ0-power and is de-

noted by Sωβ (X). In particular, if β < ω1 and I is the interval [0,1] then
Sβ ↪→ Sωβ (I) ↪→ Sβ , where Sβ is the Smirnov compactum (↪→ denotes
closed embedding).

The new product, just as the Tikhonov product, is an extension of the
notion of a finite topological product to an infinite number of factors, but
in contrast to the latter, it essentially depends on the order of the indexed
set of factors. For example, for two different countable ordinals α and β the
α- and β-ordinal ℵ0-powers of the interval are not homeomorphic because
IndSα = α 6= β = IndSβ . Let us state one of the main results of the paper
which explains why ℵ0-products are called products.

Theorem 1. Let X be an arbitrary topological space and α, β be count-
able ordinals. Then

Sωα (X)× Sωβ (X) = Sωα(+)β(X) .
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From Theorem 1 which reminds the main property of the power, one
directly obtains

Corollary 2. Let Φ be a numerical function on topological spaces,
monotone on closed subsets, for example a dimension (ind, Ind, dimw, D
or others). Then

Φ(Sωα (X)× Sωβ (X)) = Φ(Sωα(+)β(X)) .

In particular , for Smirnov compacta one has:

(a) DIMSα × Sβ = α(+)β, where DIM is dimw, Ind, Id or D;
(b) indSα × Sβ = indSα(+)β ;
(c) Sα×Sβ can be continuously mapped into [0, 1] so that every point of

the interval has a finite-dimensional preimage.

One can easily see that an upper estimate of the dimension of Sα × Sβ
is obtained from the inclusion Sα × Sβ ↪→ Sα(+)β , which is not true for
Henderson compacta. For these, the necessary estimate is deduced from the
second part of the paper, where for the transfinite extension of the finite
dimension Id, introduced by Pasynkov [Pa1], we give the optimal solution
of PPD(2), namely:

Let X, Y be compacta for which Id is defined. Then IdX × Y ≤
IdX(+) IdY .

This inequality, obtained as a corollary of the more general Theorem 3,
makes it possible to give an optimal upper bound for the dimensions Ind,
dimw of products of compacta under natural additional assumptions (Corol-
lary 6). Note that this inequality has been independently obtained by Vino-
gradov. Also note that the obtained estimate for Id, just as Henderson’s
inequality for D, is optimal (use Smirnov compacta).

In the third part questions connected with the dimension of infinite or-
dinal products are discussed. In particular, we prove the following trans-
finite generalization to ordinal ℵ0-products of the Brower theorem on the
n-dimensionality of the cube In.

Theorem 5. Let DIM be Ind, Id or dimw, and let Xγ , γ < β, be one-
dimensional metric compacta. Then

DIM
∏ω,ord

γ<β

Xγ = β .

1. Ordinal products of topological spaces (a special case). Let
Xα, α ∈ A, |A| ≥ ℵ0, be a family of topological spaces. The one-point
Aleksandrov extension of the free sum of the spaces Xα, α ∈ A, is the space
X = {∗} ∪ (+)α∈AXα, formed from (+)α∈AXα by adding the point ∗ with
the following topology:
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• Xα is clopen in X for all α ∈ A;
• the sets X\{Xα1(+) . . . (+)Xαk}, αi ∈ A, i = 1, . . . , k, k ∈ N, generate

the base of the topology at ∗.
Obviously, if all Xα, α ∈ A, are compact, then the one-point Aleksandrov

extension coincides with the one-point Aleksandrov compactification.
Let us list some elementary properties of the one-point Aleksandrov ex-

tension. The notation Z ' Y will mean that the spaces Z and Y are homeo-
morphic. Let X = {∗} ∪ (+)α∈AXα. Then

• if V is an open subset of X\{∗} such that B = {α ∈ A : (X\V ) ∩Xα

6= ∅} has cardinality ≥ ℵ0, then X\V = {∗} ∪ (+)α∈B(Xα\V ) ↪→ X;
• if Yα ↪→ Xα for all α ∈ A, then {∗} ∪ (+)α∈AYα ↪→ X;
• if for every α ∈ A the space Xα is Hausdorff (Tikhonov, pseudo-

compact, normal, paracompact, compact, S-weakly infinite-dimensional, a
C-space), then so is X;
• if |A| = ℵ0 and for every α ∈ A the space Xα is perfectly normal

(metrizable, with a countable base), then so is X;
• β({∗} ∪ (+)α∈AXα) = {∗} ∪ (+)α∈AβXα where β denotes the Čech–

Stone compactification.

A family S = {Xγ , γ < β} of topological spaces indexed by ordinals < β
will be called a β-sequence of topological spaces.

Definition 1. The ordinal product (resp. ordinal ℵ0-product) of a β-
sequence S = {Xγ , γ < β} of topological spaces is, respectively, the topo-
logical space

∏ord

γ<β

Xγ =





point if β = 0;(∏ord

γ<δ

Xγ

)
×Xδ if β = δ + 1;

{∗} ∪ (+)
δ<β

(∏ord

γ<δ

Xγ

)
if β is a limit ordinal,

and

∏ω,ord

γ<β

Xγ =





point if β = 0;(∏ω,ord

γ<δ

Xγ

)
×Xδ if β = δ + 1;

{∗} ∪ (+)
{(∏ω,ord

γ<δ

Xγ

)
i

: δ < β, i < ω
}

if β is limit.

Here (
∏ω,ord
γ<δ Xγ)i '

∏ω,ord
γ<δ Xγ , i < ω. The notation

∏(ω),ord
γ<δ Xγ will mean

either
∏ω,ord
γ<δ Xγ or

∏ord
γ<δXγ .

Let us list some elementary properties of ordinal products. Let X =∏(ω),ord
γ<β Xγ . Then
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• if Yγ ↪→ Xγ for every γ < β, then
∏(ω),ord
γ<β Yγ ↪→ X;

• if δ < β, then
∏(ω),ord
γ<δ Xγ ↪→ X;

• if for every γ < β the space Xγ is a Hausdorff (Tikhonov, compact,
compact C-) space, then so is X;
• if β < ω1 and for every γ < β the space Xγ is metrizable (with a

countable base), then so is X;
• if X is pseudocompact, then

βX =
∏(ω),ord

γ<β

βXγ .

Recall that the product of two compact C-spaces is a compact C-space
[Ha-Y], and if X × Y is pseudocompact, then β(X × Y ) = βX × βY [E1].

2. Ordinal power of a topological space (a special case). Let X
be a topological space and S = {Xγ , γ < β} be a β-sequence of topological
spaces such that Xγ ' X for every γ < β.

Definition 2. The β-ordinal power (resp. ℵ0-power) of X is the space
Sβ(X) =

∏ord
γ<β Xγ (resp. Sωβ (X) =

∏ω,ord
γ<β Xγ).

The notation S
(ω)
β (X) will mean either Sωβ (X) or Sβ(X).

It is clear that, if 1 ≤ β < ω1, then

• Sβ(I) is the Smirnov compactum Sβ ;
• C ↪→ Sβ(C) ↪→ C, where C is the Cantor set.

Let us state some elementary properties of ordinal powers:

• if X ↪→ Y , then S
(ω)
β (X) ↪→ S

(ω)
β (Y );

• if β < α, then S
(ω)
β (X) ↪→ S

(ω)
α (X).

The following statement will often be used below.

Lemma 1. Let α < ω1. Then

(a) if {αi}∞i=1 is a sequence of ordinals such that αi < αi+1 and supi αi =
α, then

S(ω)
α (X) ↪→ {∗} ∪

∞
(+)
i=1

S(ω)
αi (X) ↪→ S(ω)

α (X) ;

(b) Sα(X) ↪→ Sωα (X) ↪→ Sα(X);
(c) if α is a limit ordinal , then Sωα(X) ' Sωα (X)\{a finite number of

terms of the free sum defining Sωα (X)}.
The proof is obvious.
We now prove the finite multiplicativity of ℵ0-powers for countable or-

dinals.
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Theorem 1. Let α, β < ω1. Then

Sωα (X)× Sωβ (X) = Sωα(+)β(X)

(here α(+)β is the natural sum of the ordinals α and β; see appendix).

P r o o f. We use induction. Let β = 1, and let α be an ordinal < ω1. By
the definition we have

Sωα (X)×X = Sωα(+)1(X) .

Assume that for β < ν and for all α < ω1 our statement is true, and
let β = ν. Suppose β = ε + 1. Then by the definition and the inductive
assumption one can easily check that

Sωα (X)× Sωβ (X) = Sωα (X)× Sωε (X)×X
= Sωα+1(X)× Sωε (X) = Sω(α+1)(+)ε(X) = Sωα(+)β(X) .

Let now β be a limit ordinal. We now use induction on α. For α = 1 the
statement is obvious. Suppose that for every α < µ and the fixed limit β
the statement is true, and let α = µ. Assume that α = ε + 1. Then by the
definition and the inductive assumption we have

Sωα (X)× Sωβ (X) = Sωε (X)× Sωβ (X)×X = Sωε(+)β(X)×X = Sωα(+)β(X) .

Let now α be a limit ordinal. By Definition 1 one has

Sωα (X) = {∗1} ∪ (+){(Sωδ (X))i : δ < α, i < ω} .
Note that for a fixed δ < α the space Sωδ (X) appears in the free sum
countably many times. Let us number all spaces of the free sum by positive
integers:

Sωα (X) = {∗1} ∪
∞

(+)
i=1

Xi ,

and the same for Sωβ (X):

Sωβ (X) = {∗2} ∪
∞

(+)
i=1

Yi .

We also number by positive integers all different ordinals of the form δ(+)η,
where δ < α and η < β:

{δ(+)η : δ < α, η < β} = {γ1, γ2, . . .} .
By the inductive assumption the product Xk×Yl, k, l < ω, is homeomorphic
to Sωξ , where ξ = δ(+)η for some δ < α and η < β, and Xk = Sωδ (X),
Yl = Sωη (X). Consider an increasing sequence {m(i)}∞i=0 of positive integers
with m(0) = 1 such that for every i < ω the spaces Sγj (X), j = 1, . . . , i,
occur in the free sum

(+){Xk × Yl : m(i) ≤ k, l < m(i+ 1)} .
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Hence in the free sum

(+){Xk × Yl : m(i) ≤ k, l < m(i+ 1), i < ω}
there are countably many spaces Sγj (X), for j = 1, 2, . . . Clearly,

Sωα (X)× Sωβ (X) = {∗} ∪ (+){Xk × Yl
(+)Xk × (Sωβ (X)\(+){Yp : p < m(i+ 1)})
(+)(Sωα (X)\(+){Xp : p < m(i+ 1)})× Yl :

m(i) ≤ k, l < m(i+ 1), i < ω} .
By Lemma 1(c) for every i < ω one has

Sωα (X)\(+){Xp : p < m(i+ 1)} = Sωα (X) ,

Sωβ (X)\(+){Yp : p < m(i+ 1)} = Sωβ (X) .

Hence

Sωα (X)× Sωβ (X)

= {∗} ∪ (+){Xk × Yl(+)Xk × Sωβ (X)(+)Sωα (X)× Yl :

m(i) ≤ k, l < m(i+ 1), i < ω} .
Recall that Xk = Sωδ (X) and Yl = Sωη (X) for some δ < α and η < β,
k, l < ω. Hence by the inductive assumption one has

Xk × Sωβ (X) = Sωδ (X)× Sωβ (X) = Sωδ(+)β(X) ,

Sωα (X)× Yl = Sωα (X)× Sωη (X) = Sωα(+)η(X) .

Moreover, by Lemma A1 of the appendix for every γ < α(+)β there exist or-
dinals α1, β1 such that γ = α1(+)β1, α1 ≤ α, β1 ≤ β. So Sωα (X)×Sωβ (X) =
{∗} ∪ (+){(Sων (X))i : ν < α(+)β, i < ω}, where (Sων (X))i ' Sων (X),
i < ω. By Definitions 1, 2 one finally has Sωα (X) × Sωβ (X) = Sωα(+)β(X).
The theorem is proved.

Question 1. Can the assumption α, β < ω1 be omitted in Theorem 1?

R e m a r k 1. Sω(I)× Sω(I) 6' Sω(·)2(I), because in Sω(I)× Sω(I) there
is one isolated point and in Sω(·)2(I) there are two isolated points.

Note, however, that for the ordinal powers there is a relation very close
to equality:

Corollary 1. Let α, β < ω1. Then

(a) Sα(+)β(X) ↪→ Sα(X)× Sβ(X) ↪→ Sα(+)β(X);

(b) S(ω)
α (X × Y ) ↪→ S

(ω)
α (X)× S(ω)

α (Y ) ↪→ S
(ω)
p(α)(·)2+n(α)(X × Y ).

P r o o f. (a) follows directly from Theorem 1 by using Lemma 1(b). Let us
prove (b). We shall examine the case of ordinal products and use induction.
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Let α < ω. It is clear that Sα(X × Y ) = Sα(X) × Sα(Y ). Moreover,
p(α)(·)2 + n(α) = α.

Let us prove the embedding Sα(X × Y ) ↪→ Sα(X) × Sα(Y ) for α ≥ ω.
Assume that for α < ν ≥ ω the statement is true, and let α = ν. Suppose
that α = ε + 1. By the definition and the inductive assumption one easily
has

Sα(X)× Sα(Y ) = Sε(X)× Sε(Y )×X × Y
←↩ Sε(X × Y )× (X × Y ) = Sα(X × Y ) .

Let now α be a limit ordinal. Then there exists an increasing sequence
{αi}∞i=1 of ordinals such that supi αi = α. Consider the chain of embeddings:

Sα(X)× Sα(Y )

←↩
(
{∗1} ∪

∞
(+)
i=1

Sαi(X)
)
×
(
{∗2} ∪

∞
(+)
i=1

Sαi(Y )
)

(by Lemma 1)

←↩ {∗} ∪
∞

(+)
i=1

Sαi(X)× Sαi(Y )

←↩ {∗} ∪
∞

(+)
i=1

Sαi(X × Y ) (by the inductive assumption)

←↩ Sα(X × Y ) (by Lemma 1) .

Let us prove the inverse embedding

Sα(X)× Sα(Y ) ↪→ Sp(α)(·)2+n(α)(X × Y ) .

Assume that for α < ν ≥ ω the statement is true, and let α = ν. Suppose
α = ε+ 1. Clearly,

Sα(X)×Sα(Y ) ↪→ Sp(ε)(·)2+n(ε)(X×Y )× (X×Y ) = Sp(α)(·)2+n(α)(X×Y ) .

Suppose now that α is a limit ordinal. Then p(α)(·)2+n(α) = α(·)2. Clearly,

Sα(X)× Sα(Y ) ↪→ Sα(X × Y )× Sα(X × Y )

↪→ Sα(+)α(X × Y ) (by (a))

= Sα(·)2(X × Y ) .

The corollary is proved.

Now we get the following statement.

Corollary 2. Let Φ be a numerical function on topological spaces,
monotone on closed sets, for example a dimension (ind, Ind, dimw, D or
others). Then

Φ(S(ω)
α (X)× S(ω)

β (X)) = Φ(S(ω)
α(+)β(X)) .
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In particular , for Smirnov compacta Sγ , γ < ω1, one has

(a) DIMSα × Sβ = α(+)β, where DIM is dimw, Ind, Id or D;
(b) indSα × Sβ = indSα(+)β ;
(c) Sα × Sβ can be continuously mapped into I so that every point of I

has a finite-dimensional preimage.

P r o o f. Recall (see the introduction) that dimw S
α = IndSα = DSα =

IdSα = α for α < ω1 (for Id see Corollary 5 in §3).

R e m a r k 2. Since the product Hα×Hβ cannot be continuously mapped
into the interval with every point preimage finite-dimensional, and Hγ can
be mapped in such a way, the inclusion Hα ×Hβ ↪→ Hγ is not true for any
infinite α, β, γ < ω1. Therefore for the upper estimate of the dimension of
Hα×Hβ we need Corollary 5 of §3, namely: IdHα×Hβ ≤ IdHα(+) IdHβ =
α(+)β.

Since Sα(+)β ↪→ Sα × Sβ ↪→ Hα ×Hβ , the lower estimate is immediate;
recall that dimX ≤ IndX ≤ IdX for every compactum X. In the case
of the dimension D, we need the following statements mentioned in the
introduction: DSα = α, α < ω1, D(Hα × Hβ) ≤ DHα(+)DHβ and the
equalities DHγ = γ, γ < ω1, which one easily checks by induction using the
following properties of D in the class of metrizable spaces [He2]:

• if either IndX or DX is finite then they are equal;
• D(X × Y ) ≤ DX(+)DY ;
• if X is the union of a locally finite collection of closed subsets each

with D-dimension ≤ β, then DX ≤ β;
• if F is a closed subset of the space X then DX ≤ D(X\F ) +DF .

(For the definition of Henderson’s compacta Hγ , γ < ω1, see the proof of
Corollary 5.)

One finally has DIMHα ×Hβ = α(+)β, where DIM is Ind, Id, dimw or
D, and α, β < ω1.

In order to simplify formulas we write
∏ord
γ<β Xγ and Sβ(X) for ordinal

ℵ0-products and ordinal ℵ0-powers. The notation (+)γ<βαγ denotes the
inductive extension of the natural sum to infinite sequences of ordinals (see
appendix).

Theorem 2. Let X be an arbitrary topological space and let ordinals β
and αγ ≥ 1, γ < β, be countable. Then

(∗) S(+)γ<βαγ (X) ↪→
∏ord

γ<β

Sαγ (X) ↪→ S(+)γ<βαγ (X) .

P r o o f. We use induction. Let β < ω. Then (∗) is obvious by Corollary 1.
Suppose that the statement is true for all β < ν ≥ ω, and let β = ν ≥ ω.
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Assume that β = ε+ 1. Then by the inductive assumption one has

(∗∗) S(+)γ<εαγ (X) ↪→
∏ord

γ<ε

Sαγ (X) ↪→ S(+)γ<εαγ (X) .

Multiply (∗∗) by Sαε(X). By the definition one has ((+)γ<εαγ)(+)αε =
(+)γ<βαγ . Now we only need to use either Corollary 1 or Theorem 1.

Let now β be a limit ordinal. Then there exists a sequence {βi}∞i=1
of ordinals such that supi βi = β. Set σi = (+)γ<βiαγ . It is clear that
(+)γ<βαγ = supi σi. By the inductive assumption for every i < ω one has

Sσi(X) ↪→
∏ord

γ<βi

Sαγ (X) ↪→ Sσi(X) .

Moreover, obviously
∏ord

γ<β

Sαγ (X) ⊂ {∗} ∪
∞

(+)
i=1

∏ord

γ<βi

Sαγ (X) ↪→
∏ord

γ<β

Sαγ (X)

and

S(+)γ<βαγ (X) ↪→ {∗} ∪
∞

(+)
i=1

Sσi(X) ↪→ S(+)γ<βαγ (X) .

Our statement follows from these three chains of embeddings. The theorem
is proved.

R e m a r k 3. Sωω (Sω2 (I)) 6= Sωω (I), though 2× ω = ω.

Corollary 3. Let α, β < ω1. Then

Sα×β(X) ↪→ Sβ(Sα(X)) ↪→ Sα×β(X) .

P r o o f. Let us only note that if we set αγ = α for all γ < β, then by
the definition from the appendix we have α × β = (+)γ<βαγ , and by the
definition of the power

∏ord
γ<β Sαγ (X) = Sβ(Sα(X)).

Corollary 4. Let Φ be a numerical function on topological spaces,
monotone on closed sets, for example a dimension (ind, Ind, dimw, D or
others), and let αγ , β < ω1. Then

Φ
( ∏ord

γ<β

Sαγ (X)
)

= Φ(S(+)γ<βαγ (X)) .

Note that the product
∏ord
γ<β Sαγ (I) can be continuously mapped into

an interval with all point preimages finite-dimensional. For the product∏ord
γ<β Hαγ (I) there is no such mapping.

3. Solution of the product problem for the inductive dimension
functions id and idp. Let X be a normal space.
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Definition 3. Let IdX = −1 iff X = ∅. Let IdX ≤ α, where α is an
ordinal, if there are collections σ−1, σ0, . . . , σδ, δ ≤ α, of closed subsets of X
such that

(a) σ−1 = {∅}, σδ 3 X, σβ ⊆ σγ for all β, γ with −1 ≤ β ≤ γ ≤ δ;
(b) for all 0 ≤ γ ≤ δ and F ∈ σγ and every pair of disjoint closed subsets

A and B of X there exist β < γ and ψ ∈ σβ such that ψ ⊂ F and ψ is a
partition in F between A ∩ F and B ∩ F ;

(c) for every γ ≤ δ and every pair F1, F2 of elements of σγ there exists
F ∈ σγ such that F ←↩ F1 ∪ F2.

Let us put IdX = min{α : IdX ≤ α}.
If IdX ≤ α for no ordinal α, then we define IdX = ∞ (which means

that IdX does not exist).

Note that for every F ∈ σγ , γ ≤ δ, we have IdF ≤ γ.
If one of the sets from Definition 3, say A, is a single point, we get the

definition of the dimension id.
If both A, B are singletons, we get the definition of the dimension idp.

If both A, B are compacta we get the definition of the dimension cId.
Clearly, idpX ≤ idX ≤ IdX and idpX ≤ cIdX for every space X.

R e m a r k 4. (a) The definitions of the finite dimensions id and Id and
the statements given below for id and Id in the finite-dimensional case are
due to Pasynkov [Pa1].

(b) The transfinite extensions of id and Id were independently considered
by Vinogradov. He has independently proved the elementary properties of
these dimensions given below, as well as Theorem 3 (for id) and Corollar-
ies 5, 6.

Let DM be idp, id, Id or cId, and DIM be indp, ind, Ind or cInd (in
the definition of indp the partitions are taken between points and in the
definition of cInd—between compacta [Ha]).

Statement 1. DIMX ≤ α iff there exist collections σ−1, . . . , σδ, δ ≤ α,
of closed subsets of X satisfying conditions (a), (b) of Definition 3.

P r o o f. Let DIMX = δ ≤ α. Put σγ = {Y ⊆ X : Y is closed in X and
DIMY ≤ γ}, γ = −1, . . . , δ. It is clear that (a) and (b) are satisfied. Let us
prove the converse. We use induction. Let α = −1; then X = ∅ and, hence,
DIMX = −1. Suppose that for α < ν the statement is true, and let α = ν.
By (a), X ∈ σδ, δ ≤ ν, and by (b) for every pair A, B of disjoint closed
subsets of X there exist β < δ ≤ ν and ψ ∈ σβ such that ψ is a partition
in X between A and B. Consider the collections σ1

γ = {C ∩ ψ : C ∈ σγ},
γ ≤ β, of subsets of ψ. It is clear that they satisfy conditions (a) and (b).
By the inductive assumption we have DIMψ ≤ β < ν. Hence, DIMX ≤ ν.
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A collection B of closed subsets of X is called monotone if every closed
subset of any element of B also belongs to B. A collection B of closed subsets
of X is called additive if for any A,B ∈ B we have A ∪B ∈ B.

Statement 2. DMX ≤ α iff there exist collections σ−1, . . . , σδ, δ ≤ α,
of closed subsets of X satisfying conditions (a), (b) of Definition 3 and the
condition

(c)1 σγ is monotone and additive for every γ ≤ δ.

P r o o f. The “if” part is clear. Let us prove the “only if” part. Let
DMX ≤ α. Then there exist collections σ−1, . . . , σδ, δ ≤ α, of closed subsets
of X satisfying conditions (a), (b) and (c) of Definition 3. Put

σ1
γ = {A ⊆ B : A is closed in X and B ∈ σγ}, γ ≤ δ .

It is clear that these collections satisfy (a), (b) and (c)1.

Note that in Statement 2 one can always put δ = α. From Statements 1
and 2 we get

Statement 3. If DMX exists, then DIMX exists. Moreover , DIMX ≤
DMX.

Statement 4. (i) For every compactum X we have idpX = idX =
IdX = cIdX.

(ii) For every normal space X we have cIdX = idpX.

P r o o f. (i) Let idpX ≤ α. There exist collections σ−1, σ0, . . . , σα of
closed subsets of X, satisfying (a), (b) and (c)1 (with A and B being points).
By additivity and monotonicity (Statement 2 ), the same systems σγ , γ ≤ α,
satisfy (a), (b) and (c)1 for A and B arbitrary closed disjoint sets. Thus (i)
is proved. The proof of (ii) is analogous.

Statement 5. (i) If F is closed in X, then DMF ≤ DMX.
(ii) Suppose DIMX exists and the finite sum theorem for DIM holds in

X, for example, X is a metric compactum with IndX ≤ ω. Then DMX
exists and DMX = DIMX.

(iii) Let Xα be a compactum with DMXα = βα, α ∈ A, |A| ≥ ω, and
supα∈A βα = β. Let X = {∗} ∪ (+)α∈AXα be the one-point Aleksandrov
compactification of the free sum of the spaces Xα, α ∈ A. Then DMX
exists and DMX = β.

P r o o f. (i) is clear.
(ii) Let DIMX = α. Then for γ = −1, 0, . . . , α we put

σγ = {Y ⊆ X : Y is closed in X and DIMY ≤ γ} .
By the monotonicity of DIM on closed sets and the finite sum theorem one
can easily check that the collections σγ , γ ≤ α, satisfy conditions (a), (b)
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and (c)1. So DMX ≤ DIMX. From Statement 3 one finally has DMX =
DIMX.

(iii) Let σ(α)
γ , γ ≤ β, be collections of closed subsets of X satisfying (a),

(b) and (c)1, for α ∈ A. Put

σγ = {A1 ∪ . . . ∪Ak : Ai ∈ σ(αi)
γ , αi ∈ A, k ∈ N}, γ < β ,

and σβ = {A ⊆ X : A is compact}. It is clear that for σ−1, . . . , σβ conditions
(a), (b) and (c)1 are satisfied.

Hence, DMX ≤ β. Since DMXα ≤ DMX for every α ∈ A, one finally
obtains DMX = β.

Questions. 2. Does DMX exist if DIMX exists?
3. It is known that for Smirnov compacta with Ind > ω the finite sum

theorem for Ind does not hold [Le]. Does there exist a compactum X with
IndX > ω in which the finite sum theorem for Ind holds?

4. By Filippov’s [F] and Pasynkov’s [Pa1] results there exists a com-
pactum X with IndX = 2 and IdX ≥ 3. How large may be the difference
between Ind and Id for infinite-dimensional spaces (for DIM and DM)?

Lemma 2 (B. A. Pasynkov). Let X = F1 ∪ . . . ∪ Fn be a normal space,
where Fi, i = 1, . . . , n, are closed in X. Let A and B be two disjoint closed
subsets of X, and Ci be a partition in Fi between A ∩ Fi and B ∩ Fi, i =
1, . . . , n. Then there exists a partition C in X between A and B such that

C ⊆
( n⋃

i=1

Ci

)
∪
⋃

i<j

(Fi ∩ Fj) .

The notation id(p) will mean either idp or id. The main statement of this
section is

Theorem 3. Let X1 ×X2 be a normal space and suppose id(p)Xi exists
for i = 1, 2. Then

id(p)X1 ×X2 ≤ id(p)X1(+) id(p)X2 .

P r o o f. Let us show the inequality

(#) idpX1 ×X2 ≤ idpX1(+) idpX2 .

For id the proof of the corresponding inequality is analogous.
Let idpX1 = ξ, idpX2 = ζ and let σ−1,1 ⊆ . . . ⊆ σξ,1 be collections of

closed subsets of X1, and σ−1,2 ⊆ . . . ⊆ σζ,2 collections of closed subsets of
X2 satisfying (a), (b) and (c)1 for A and B being points. Put

Σ = ξ(+)ζ, σ−1 = {∅} ,
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σ1
γ = {A×B : A ∈ σα,1, B ∈ σβ,2 and α(+)β ≤ γ} ,
σ2
γ = {C1 ∪ . . . ∪ Ck : Ci ∈ σ1

γ , i = 1, . . . , k, k ∈ N} ,
σγ = {P ⊆ C : P is closed in X1 ×X2 and C ∈ σ2

γ}, γ ≤ Σ .

Obviously, the collections σγ , γ ≤ Σ, satisfy (a) and (c)1. Let us show that
(b) holds. Let P ∈ σγ and A, B be a pair of different points in P . We have
to show that there exist ν < γ and a set C ∈ σν with C ⊆ P which is a
partition in P between A and B.

T h e m a i n c a s e. Let P ⊆ D1 ×D2, where D1 ∈ σα,1, D2 ∈ σβ,2 and
α(+)β ≤ γ. From the monotonicity of the collections σγ , γ ≤ Σ, one can
easily check that it is only necessary to consider the case P = D1 ×D2.

Let π : X1 × X2 → X1 be the projection. Since A = B, without loss
of generality one can assume that πA = πB. There exists a partition C1 in
D1 between the points πA, πB such that C1 ∈ σλ,1, λ < α. Then clearly
π−1

1 C1 is a partition in P between A and B, and π−1
1 C1 ∈ σλ(+)β . Note that

λ(+)β < α(+)β (see appendix).

T h e g e n e r a l c a s e. Without loss of generality, by monotonicity and
additivity of σγ , γ ≤ Σ, and by Lemma 2 one can assume that P = (D(1)

1 ×
D

(1)
2 ) ∪ (D(2)

1 × D(2)
2 ), where D(i)

1 ∈ σαi,1, D(i)
2 ∈ σβi,2 and α1(+)β1 ≤ γ,

α2(+)β2 ≤ γ. Two cases are possible:

(I) α1(+)β1 < α2(+)β2 ≤ γ. By the main case there exists a partition
C1 in D

(2)
1 ×D(2)

2 between A and B such that C1 ∈ σµ for some µ < γ. By
Lemma 2 one can choose a partition C in P between A and B such that
C ⊆ C1 ∪ (D(1)

1 ×D(1)
2 ). Let ν = max(α1(+)β1, µ) < γ. Then C ∈ σν .

(II) α1(+)β1 = α2(+)β2. The following subcases are possible.
(II)1 Let α1 = α2 = α. Then (see appendix) β1 = β2 = β. By additivity,

D1 = D
(1)
1 ∪D(2)

1 ∈ σα,1, D2 = D
(1)
2 ∪D(2)

2 ∈ σβ,1 and P ⊆ D1×D2. So the
conditions of the main case are satisfied.

(II)2 Let α1 < α2. Then (see appendix) β1 > β2. In this case by mono-
tonicity one has D(1)

1 ∩D(2)
1 ∈ σα1,1, D(1)

2 ∩D(2)
2 ∈ σβ2,2 and

L = (D(1)
1 ×D(1)

2 ) ∩ (D(2)
1 ×D(2)

2 ) = (D(1)
1 ∩D(2)

1 )× (D(1)
2 ∩D(2)

2 ) .

Moreover, α1(+)β2 < α1(+)β1 = α2(+)β2 ≤ γ and L ∈ σα1(+)β2 . By

the main case there exists a partition Ci in D
(i)
1 × D

(i)
2 between A and

B such that Ci ∈ σµi for some µi < γ, i = 1, 2. By Lemma 1 there ex-
ists a partition C in P between A and B such that C ⊆ L ∪ C1 ∪ C2. Let
ν = max(α1(+)β2, µ1, µ2) < γ. By the additivity and monotonicity of σγ ,
γ ≤ Σ, we get C ∈ σν . The theorem is proved.
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In the sequel, dim stands for Borst’s [B1] transfinite extension dimw of
the Lebesgue covering dimension dim. Recall that dimX ≤ IndX for every
normal space X [B1].

Corollary 5. (i) Let X1, X2 be compacta for which Id exists. Then

dimX1 ×X2 ≤ IndX1 ×X2 ≤ IdX1 ×X2 ≤ IdX1(+) IdX2 .

In particular , if IdX2 = n < ω, for example, X2 = In, then

dimX1 ×X2 ≤ IndX1 ×X2 ≤ IdX1 ×X2 ≤ IdX1 + n .

(ii) IdSα = α for α < ω1.
(iii) IdHα = α for α < ω1.

P r o o f. (i) is evident.
(ii) One can easily check by induction using (i) and Statement 5(iii) that

IdSα = α for α < ω1 (recall that IndSα = α for α < ω1, see [S]).
(iii) Recall Henderson’s description of Hα. For α < ω1, we define Hα

and pα as follows: H0 = {0}, H1 = [0, 1] = I and p1 = 0; Hα+1 = Hα × I
and pα+1 = pα×{0}; if α is a limit ordinal, for β < α let Aβα be a half-open
arc with Hβ ∩ Aβα = {pβ}; then Hα = {∗} ∪ (+)β<α(Hβ ∪ Aβα) is the one
point-compactification of the free sum where pα = ∗ is the compactification
point. Since Sα ↪→ Hα and IdSα = α for α < ω1 (see (ii)), we need to prove
that IdHα ≤ α for α < ω1. If α is a non-limit ordinal we can use (i).

Let now α be a limit ordinal and suppose that IdHβ ≤ β for all β < α.
By Statement 4, Id can be replaced by idp in the above inequality. Let σ(β)

γ ,
γ ≤ α, be collections of closed subsets of Hβ satisfying (a), (b) and (c)1 (see
Statement 2 for idp) for β < α. Put

M = {∅} ∪
{

finite subsets of
⋃
{Aβα : β < α}

}
, σ−1 = {∅} ,

σγ = {A1 ∪ . . . ∪Ak ∪ P : Ai ∈ σ(βi)
γ , βi < α, k ∈ N, P ∈M}, γ < α ,

and σα = {A ⊆ X : A is compact}. Obviously, σ−1, . . . , σα satisfy (a), (b)
and (c)1.

Corollary 6. Let X1 and X2 be compacta for which Ind exists and in
which the finite sum theorem for Ind holds. Then

dimX1 ×X2 ≤ IndX1 ×X2 ≤ IndX1(+) IndX2 .

In particular , if IndX2 = n < ω, for example, X2 = In, then dimX1×X2 ≤
IndX1 ×X2 ≤ IndX1 + n.

Question 5. Are there two metric compacta X1 and X2 such that
IndX1 × X2 > IndX1(+) IndX2? The same question may be asked for
dimw, dimc and ind.
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Now let us recall the definition of metrizable spaces Mα, α an ordinal,
constructed by Hattori [Ha]. M0 = {∗} is a one-point space. Suppose that
the metrizable spaces Mβ are defined for all β < α. If α = β + 1, define
Mα = Mβ×I. If α is a limit ordinal, let Mα be the tolopogical sum of copies
of all Mβ , β < α, together with a new point xα, with the following topology:
for each β < α, let hβα be the natural embedding of Mβ in Mα. Then
Mα = {xα} ∪ (+){hβα(Mβ) : β < α}. A subset U of (+){hβα(Mβ) : β < α}
is open in Mα if U∩hβα(Mβ) is open in hβα(Mβ) (hβα(Mβ) is homeomorphic
to Mβ) for all β < α. For every n,m ∈ N let

Vm(α) = (+){hγ+m,α(Mγ+m) : γ < α is a limit ordinal} ,
Un(xα) = {xα} ∪

⋃
{Vm(α) : m ≥ n} .

Let {Un(xα) : n ∈ N} be a base of neighborhoods at xα. This completes the
inductive construction. In [Ha] Hattori showed the inequalities cIndX ≤
ω indX for every metric space X and cIndMα ≥ α for any α, from which
he got an affirmative answer to question 3.11 of [E3]: for every ordinal α
there exists a metrizable space Xα with indXα = α. Note that Pasynkov
[Pa2] had earlier stated the same result.

We have the following

Corollary 7. (i) cIdMα = idpMα = α;
(ii) cIdMα ×Mβ = idpMα ×Mβ ≤ α(+)β.

P r o o f. Let us only note (see Statements 3 and 4) that α ≤ cIndMα ≤
cIdMα = idpMα and idp I

n = n.

4. Dimension of ordinal products. Let B = {Xγ , γ < β} be a β-
sequence of topological spaces. In this section,

∏ord
γ<β Xγ stands for either∏ord

γ<β Xγ or
∏ω,ord
γ<β Xγ .

Theorem 4. Suppose
∏ord
γ<β Xγ is a normal space (for example, all Xγ ,

γ < β, are metric and β < ω1). Then

id(p)

∏ord

γ<β

Xγ ≤ (+)
γ<β

id(p)Xγ .

P r o o f. The statement directly follows from Theorem 3, Statement 5 and
the definition of the natural sum of a β-sequence of ordinals (see appendix).

Corollary 8. Let Xγ , γ < β, be compact spaces. Then

Id
∏ord

γ<β

Xγ ≤ (+)
γ<β

IdXγ .

P r o o f. Use Statement 4.
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Corollary 9. (i) Suppose Sβ(X) is a normal space and id(p)X = α.
Then id(p) Sβ(X) ≤ α× β.

(ii) indSα(Rk) ≤ idSα(Rk) ≤ p(α) + k · n(α), where R is the real line
(note that indSω+3(R) = ω + 2 < ω + 3, see [L]).

(iii) If Xγ , γ < β, are finite-dimensional metric compacta, then

dim
∏ord

γ<β

Xγ ≤ Ind
∏ord

γ<β

Xγ ≤ Id
∏ord

γ<β

Xγ ≤ (+)
γ<β

dimXγ .

(iv) If all Xγ , γ < β, are finite-dimensional in the sense of ind(p), the
finite sum theorem is satisfied for this dimension and

∏ord
γ<β Xγ is a normal

space, then

ind(p)

∏ord

γ<β

Xγ ≤ id(p)

∏ord

γ<β

Xγ ≤ (+)
γ<β

ind(p)Xγ .

P r o o f. Just note that α× β = (+)γ<βαγ where αγ = α for all γ.

For L an arbitrary set, FinL is the family of all finite non-empty subsets
of L. The notation L(X) stands for the family of all pairs of disjoint closed
subsets of the topological space X. A finite set {(Ai, Bi)}ni=1 ∈ FinL(X)
is called essential if every collection of partitions {Ci}ni=1, where Ci is a
partition between Ai and Bi, has non-empty intersection. Put ML = {σ ∈
FinL : σ is essential} for L ⊆ L(X).

Lemma 3 (A. N. Dranishnikov [D]). Let {(Ai, Bi)}ni=1 be an essential
set in a metric compactum X, Z a metric continuum and z+, z− different
points in Z. Then the set {(Ai×Z,Bi×Z)}ni=1∪(X×z+, X×z−) is essential
in X × Z.

Let Xγ , γ < β, be metric one-dimensional continua and z+
γ , z−γ be dif-

ferent points in Xγ . For every δ ≤ β we define a subset Pδ of L(
∏ord
γ<δXγ)

by

P1 = {(z−0 , z+
0 )} ,

Pδ+1 = {(F ×Xδ, G×Xδ) : (F,G) ∈ Pδ}
∪
(∏ord

γ<δ

Xγ × z−δ ,
∏ord

γ<δ

Xγ × z+
δ

)
,

and if δ is a limit number, then

Pδ = {(iµδ (F ), iµδ (G)) : (F,G) ∈ Pµ, µ < δ} ,
where iµδ is the natural embedding of

∏ord
γ<µXγ into

∏ord
γ<δXγ .

Using Lemma 3 one can show (see [B2]) that for α ≤ β,

(∗∗) OrdMPα ≥ α ,
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where Ord is Borst’s transfinite function. Note that for every L ⊆ L(X) and
every normal space X the following inequalities are satisfied [B2]:

(∗∗∗) OrdML ≤ OrdML(X) = dimX ≤ IndX .

Theorem 5. Let DIM be dim, Ind or Id, and let Xγ , γ < β, be one-
dimensional metric compacta. Then DIM

∏ord
γ<β Xγ = β.

P r o o f. The estimate Id
∏ord
γ<β Xγ ≤ β follows from Corollary 8. The

rest follows from (∗∗) and (∗∗∗).
Corollary 10. Let DIM be dim, Ind or Id, let X be a one-dimensional

metric compactum and let αγ , β < ω1. Then

DIM
∏ord

γ<β

Sαγ (X) = (+)
γ<β

αγ .

In particular , if , for each α < ω1, Xα is the Smirnov compactum Sα or the
Henderson compactum Hα, then

DIM
∏ord

γ<β

Xαγ = (+)
γ<β

αγ .

P r o o f. By Corollary 4 we have

DIM
( ∏ord

γ<β

Sαγ (X)
)

= DIM(S(+)γ<βαγ (X)) .

So by Theorem 5, DIM(S(+)γ<βαγ (X)) = (+)γ<βαγ . Recall that Sγ(I) = Sγ ,
γ < ω1.

In the case of Henderson compacta we have

Id
∏ord

γ<β

Hαγ ≤ (+)
γ<β

IdHαγ

(see Corollary 8),
(+)
γ<β

IdHαγ = (+)
γ<β

αγ

(recall that IdHαγ = αγ , see Corollary 5),
∏ord
γ<β S

αγ ⊆∏ord
γ<β H

αγ , and the
inequalities dimX ≤ IndX ≤ IdX hold for every compactum X.

The author thanks the referee for his valuable remarks.

Appendix. Let us recall (see [K-M]) some notions and statements from
set theory. For every ordinal α the power with base ω and exponent α is
defined by ω0 = 0, ωξ+1 = ωξ ·ω, and ωλ = supγ<λ ω

γ if λ is a limit ordinal.
Some properties of the power:

• if α < β, then ωα < ωβ ;
• ωξ+η = ωξ · ωη;
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• (ωξ)η = ωξ·η;
• if η > ξ1 > . . . > ξp and ni ∈ N, i = 1, . . . , p, then

ωη > ωξ1 · n1 + . . .+ ωξp · np ;

• every ordinal α can be uniquely represented as

α = ωη1 · n1 + . . .+ ωηk · nk, ni ∈ N ,
where η1 > . . . > ηk ≥ 0 are ordinals.

Let α and β be ordinals and

α = ωη1 · n1 + . . .+ ωηk · nk, β = ωζ1 ·m1 + . . .+ ωζl ·ml .

Adding powers with zero coefficients we get expansions with the same powers
of ω:

(∗) α = ωξ1 · p1 + . . .+ ωξh · ph, β = ωξ1 · q1 + . . .+ ωξh · qh .
The ordinal

α(+)β = ωξ1 · (p1 + q1) + . . .+ ωξh · (ph + qh)

is called the natural sum of α and β. Their natural product α(·)β is obtained
by multiplying the expansions (∗) as polynomials in ω, i.e. multiplying two
powers of ω we take the natural sum of the exponents and arrange the
monomials in the decreasing order of exponents.

Let Φ(α, β) denote either α(+)β or α(·)β. Then

• Φ(α, β) = Φ(β, α);
• if α1 < α2, then Φ(α1, β) < Φ(α2, β);
• if Φ(α1, β1) = Φ(α2, β2), then α1 = α2 implies β1 = β2, and α1 < α2

implies β1 > β2;
• α(+) . . . (+)α (n times) = α(·)n for n < ω;
• α(+)n = α+ n for n < ω.

A function ϕ defined on a completely ordered set W (α) = {γ : γ < α}
of type α is called a transfinite sequence of type α or an α-sequence. If the
values of this sequence are ordinals and if γ < β < α implies ϕ(γ) < ϕ(β)
then this sequence is called increasing.

Let λ be a limit ordinal and ϕ be an increasing λ-sequence. Then

sup
ξ<λ

(α+ ϕ(ξ)) = α+ sup
ξ<λ

ϕ(ξ), sup
ξ<λ

(α · ϕ(ξ)) = α · sup
ξ<λ

ϕ(ξ) ,

sup
ξ<λ

ωα·ϕ(ξ) = ωα·supξ<λ ϕ(ξ) .

Lemma A1 [H]. Let α, β < ω1. Then for every γ < α(+)β there exist
finitely many pairs α1, β1 such that γ = α1(+)β1 and α1 ≤ α, β1 ≤ β.
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Example A1. Let α = β = ω2. Then

α(+)β = ω2 · 2 6= sup
n,m

(ω · n(+)ω ·m) = ω2 .

Let B = {αγ , γ < β} be a β-sequence of ordinals. The sum of all numbers
of B is defined by

∑

γ<β

αγ =




α0 if β = 1;
(
∑
γ<δ αγ) + αδ if β = δ + 1;

supδ<β(
∑
γ<δ αγ) if β is a limit ordinal

(see, for example, [H]).
The natural sum of all numbers of B is the number

(+)
γ<β

αγ =




α0 if β = 1;
((+)γ<δαγ)(+)αδ if β = δ + 1;
supδ<β(+)γ<δαγ if β is a limit ordinal.

Clearly, if γ < δ < β, then
∑
µ<γ αµ ≤

∑
µ<δ αµ and (+)µ<γαµ ≤

(+)µ<δαµ, moreover,
∑
γ<β αγ ≤ (+)γ<βαγ .

It is well known that every ordinal α may be represented in the form
α = p(α) + n(α), where p(α) is a limit ordinal (0 is considered to be a limit
ordinal) and n(α) < ω.

One can easily check the following properties:

• If all αγ , γ < β, are equal to 1, then
∑
γ<β αγ = (+)γ<βαγ = β.

• If 1 ≤ αγ < ω for γ < β, then

∑

γ<β

αγ =(+)
γ<β

αγ =
{
p(β) + αp(β) + . . .+ αβ−1 if β is a non-limit ordinal,
β if β is a limit ordinal.

•
∑

γ<β

min
γ<β

αγ ≤
∑

γ<β

αγ ≤
∑

γ<β

sup
γ<β

αγ ,

(+)
γ<β

min
γ<β

αγ ≤ (+)
γ<β

αγ ≤ (+)
γ<β

sup
γ<β

αγ .

•
∑

γ<β

αγ = α · β if all αγ = α, γ < β .

In view of the last equality, it is natural to give another definition of the
product of two ordinals α and β:

α× β = (+)
γ<β

αγ ,

where αγ = α for γ < β. It is clear that α · β ≤ α× β and there exist pairs
α, β such that α · β < α× β, for example,

(ω + 1) · 2 = ω · 2 + 1 < (ω + 1)× 2 = ω · 2 + 2 .
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It is not difficult to establish a relation between the new product and
the usual operations on ordinals. We indicate it without proof:

Let α = ωη1 · n1 + . . .+ ωηk · nk, ni ∈ N, and η1 > . . . > ηk. Then

α× β = ωη1 · p(β) + α(·)n(β) .

Note that α×β ≤ α(·)β and there exist pairs α, β such that α×β < α(·)β,
for example 2× ω = ω < 2(·)ω = ω · 2. Note also that

• if β1 < β2, then α× β1 < α× β2, α > 0;
• α× (β1(+)β2) = (α× β1)(+)(α× β2);
• if λ is a limit ordinal and ϕ is an increasing λ-sequence, then

supξ<λ(α× ϕ(ξ)) = α× supξ<λ ϕ(ξ).

For the new product one may also introduce the notion of power.
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