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Universal spaces in the theory of transfinite dimension, I
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Wojciech O l s z e w s k i (Warszawa)

Abstract. R. Pol has shown that for every countable ordinal α, there exists a universal
space for separable metrizable spaces X with indX = α.

We prove that for every countable limit ordinal λ, there is no universal space for
separable metrizable spaces X with IndX = λ. This implies that there is no universal
space for compact metrizable spaces X with IndX = λ. We also prove that there is no
universal space for compact metrizable spaces X with indX = λ.

1. Introduction. Our terminology and notation follow the books [3]
and [1], with the exception of the boundary, closure and interior of a subset
A of a space X, which are denoted by bdA, clA and intA, respectively, and
the diameter of a subset A of a metric space (X, %), which is denoted by
diamA or diam%A. If Y is a subspace of X, and A is contained in Y , then
the boundary, closure and interior of A in Y are denoted by bdYA, clYA
and intYA, respectively.

The transfinite dimensions ind and Ind are transfinite extensions of the
classical Menger–Urysohn small inductive dimension ind and Brouwer–Čech
large inductive dimension Ind, respectively.

1.1. Definition (see [4]). Let X denote a regular space, and let α be
the integer −1, an ordinal, or the symbol∞. The following conditions define
the small transfinite dimension of X:

(1.1) indX = −1 if and only if X = ∅,
(1.2) indX ≤ α ≥ 0 if for every x ∈ X and every neighbourhood V ⊆ X

of x, there exists an open set U ⊆ X such that x ∈ U ⊆ V and
ind bdU < α (i.e., ind bdU ≤ β for a β < α),

(1.3) indX = α if indX ≤ α and the inequality indX < α does not hold,

(1.4) indX = ∞ if indX > α (i.e., the inequality indX ≤ α does not
hold) for every ordinal α.
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We say that the small transfinite dimension of a regular space X at a
point x does not exceed an ordinal α, and we write indxX ≤ α, if for every
neighbourhood V ⊆ X of x, there exists an open set U ⊆ X such that
x ∈ U ⊆ V and ind bdU < α. If indxX ≤ α and indxX > β for every
β < α, then we say that the small transfinite dimension of X at x is α, and
we write indxX = α. We say that the small transfinite dimension of X at
x is ∞ if indxX > α for every ordinal α.

It is easy to check that indX ≤ α if and only if indxX ≤ α for every
x ∈ X.

1.2. Definition (see [16]). Let X denote a normal space, and let α be
the integer −1, an ordinal, or the symbol∞. The following conditions define
the large transfinite dimension of X:

(1.5) IndX = −1 if and only if X = ∅,
(1.6) IndX ≤ α ≥ 0 if for every closed set A ⊆ X and every open set

V ⊆ X which contains A, there exists an open set U ⊆ X such that
A ⊆ U ⊆ V and Ind bdU < α,

(1.7) IndX = α if IndX ≤ α and the inequality IndX < α does not
hold,

(1.8) IndX =∞ if IndX > α for every ordinal α.

Observe that if we replace the ordinal α by a natural number n in
Definitions 1.1 and 1.2, then we obtain the definitions of the small induc-
tive dimension of Menger–Urysohn and of the large inductive dimension of
Brouwer–Čech.

Let X be a topological space and A,B a pair of disjoint subsets of X;
we say that a set L ⊆ X is a partition (in X) between A and B if there exist
open sets U, V ⊆ X satisfying:

A ⊆ U, B ⊆ V, U ∩ V = ∅ and X − L = U ∪ V .
One can check that a regular space X (a normal space X) satisfies

indX ≤ α (IndX ≤ α) if and only if for every x ∈ X and each closed
set B ⊆ X such that x 6∈ B (resp. for every pair A,B of disjoint closed
subsets of X) there exists a partition L between x and A (a partition L
between A and B) such that indL < α (IndL < α).

For simplicity of notation we assume that α <∞, α+∞ =∞+α =∞,
and α · ∞ =∞ · α =∞ for every ordinal α.

If X is a separable metrizable space and −1 < indX <∞ (−1 < IndX
<∞), then indX (IndX) is a countable ordinal, i.e., indX < ω1 (IndX <
ω1) (see [4] and [16], or [2], Theorems 3.5 and 3.8). Obviously, indX ≤ IndX
for every normal space X, but the inverse inequality does not hold; there
exists a compact metrizable space X such that indX < IndX (see [9]). For
every ordinal α, there exist compact metrizable spaces X and Y such that
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indX = α and IndY = α (see Section 2). For a deeper discussion we refer
the reader to R. Engelking’s survey [2].

We shall only be concerned with the question of universal spaces. Let us
recall that a space X is universal in a class C of spaces if X belongs to C and
every space of C is embeddable in X. The following questions are natural in
this context (α is a countable ordinal).

1. Does there exist a universal space for compact metrizable spaces X
with indX ≤ α?

2. Does there exist a universal space for compact metrizable spaces X
with IndX ≤ α?

3. Does there exist a universal space for separable metrizable spaces X
with indX ≤ α?

4. Does there exist a universal space for separable metrizable spaces X
with IndX ≤ α?

For finite α, the answers to the four questions are affirmative and belong
to the classical results of dimension theory (see for instance [1], §1.11). For
infinite α, questions 3 and 4 were asked e.g. by R. Engelking ([2], Problem
5.11), and the same set of questions were raised by L. Luxemburg ([11],
Problem 8.4); question 1 was recently recalled in R. Pol’s article [15] (Ques-
tion 14.1 (425)).

Observe first that questions 2 and 4 are equivalent. This follows from the
compactification theorem of L. Luxemburg (see [8], and [10] for the proof).

1.A. Theorem ([8]). Every separable metrizable space X has a metrizable
compactification Z such that IndZ = IndX.

Now, let us state the results relating to our questions that can be found
in the literature. Question 3 was answered in the affirmative by R. Pol:

1.B. Theorem ([14]). For every countable ordinal α, there exists a uni-
versal space in the class of separable metrizable spaces X with indX ≤ α.

A partial positive result related to questions 1 and 2 can be found in
R. Pol’s paper [13]: for each countable ordinal α, there exist a compact
metrizable space Xα with indXα <∞ and a compact metrizable space Yα
with IndYα < ∞ such that Xα contains topologically all compact metriz-
able spaces X with indX ≤ α and Yα contains topologically all compact
metrizable spaces Y with IndY ≤ α.

On the other hand, some negative results concerning questions 1–4 were
announced by L. Luxemburg (see [7]); to wit, for any infinite α, there is
no universal space in the class of all completely metrizable separable spaces
X such that indX ≤ α and X is the union of a countable family of finite-
dimensional closed sets, nor in the class of all compact metrizable spaces X
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such that indX ≤ α (IndX ≤ α) and X is the union of a countable family
of finite-dimensional closed sets.

The present paper is devoted to the particular case of our questions,
namely to the case when α = λ is a limit ordinal. We shall prove that in
this case, the answers to questions 1 and 4, and thus also to question 2, are
negative.

Questions 1, 2 and 4 remain open for non-limit ordinals α ≥ ω. We
know neither the least possible transfinite dimension indXλ of a compact
metrizable space Xλ containing topologically all compact metrizable spaces
X with indX = λ, nor the least possible transfinite dimension IndYλ of a
compact metrizable space Yλ containing topologically all compact metrizable
spaces Y with IndY = λ (see [13], §4, 1). The answers to these questions,
even in the case λ = ω0, seem to have interesting applications in the theory
of transfinite dimension.

Acknowledgements. The paper contains some of the results of my
Ph.D. thesis supervised by Professor R. Engelking, whom I would like to
thank for his comments and improvements. I am also grateful to Professor
R. Pol who suggested the use of the spaces Cσλ and Dσ

λ (see Section 4)
instead of the more complicated spaces originally used to the same end.

2. Smirnov’s spaces. Yu. M. Smirnov [16] defined a sequence {Sα :
α < ω1} of compact metrizable spaces. The definition is by transfinite in-
duction on α: S0 is a one-point space; if α = β + 1 for a β < α, then
Sα = Sβ × I; if α = λ is a limit ordinal, then Sα is the one-point compacti-
fication of the sum of topological spaces

⊕{Sβ : β < α} (denote by pλ the
unique point of the remainder). The space Sω0+1 is exhibited in Fig. 2.1.

Yu. M. Smirnov evaluated the large transfinite dimension of Sα.

2.A. Theorem ([16]). For every α < ω1, we have IndSα = α.

Smirnov’s spaces are also a source of examples of compact metrizable
spaces with given small transfinite dimension. In order to get these examples,
let us quote the following theorems.

2.B. Theorem ([6]). For every hereditarily normal compact space X,
IndX ≤ ω0 · indX.

2.C. Theorem ([17]). For every metrizable space X, Ind(X × I) ≤
IndX + 1.

Combining Theorems 2.A–2.C and the obvious equality

(2.1) indSλ = sup{indSα : α < λ} ,
for every limit ordinal λ < ω1, we obtain the following corollary.
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Fig. 2.1

Corollary. For every countable ordinal α, there exists a countable or-
dinal β ≥ α such that indSβ = α.

We denote by β(α) the smallest ordinal β such that indSβ = α. Note
that, as shown in [9], β(α) is greater than α for some ordinals α, and indSα
is unknown for some α (see [2], Problems 2.3 and 2.4). From (2.1) it follows
immediately that

(2.2) if α is a non-limit ordinal, then so is β(α).

The rest of this section is devoted to a property of Smirnov’s spaces (see
Theorem 2.1) which will be of importance in the proofs of Theorems 5.1 and
5.2. In order to formulate and prove Theorem 2.1, we quote two results and
introduce a notion.

The following lemma is a consequence of Lemma 7 of [16] and Lemma
1.2.9 of [1]; recall that if α = λ + n, where λ is a limit ordinal and n is a
natural number, then Sα = Sλ × In.

2.D. Lemma ([16]). Let α = λ+ n, where λ is a limit ordinal and n is a
natural number. For every partition L in Sα between Sλ × A and Sλ × B,
where A,B is a pair of opposite (n − 1)-dimensional faces of In, we have
IndL ≥ λ+ (n− 1).

Every non-limit ordinal α ≥ ω0 can be uniquely represented as the sum
λ+n of a limit ordinal λ and a natural number n. From the construction of
Sα it follows that Sα = Sλ×In. Denote by Bα the set {pλ}×In; we call Bα
the base of Sα. Sometimes, we will identify Bα and the n-dimensional cube
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In; in particular, we will write Sα = Sλ×Bα. Let Bα = Sα for α < ω0, i.e.,
if α = n, then Bα = Sα = In. Thus for every non-limit ordinal α < ω1, the
base of Sα is a finite-dimensional cube.

2.E. Theorem ([17]). If a hereditarily normal space X can be represented
as the union A1 ∪ A2 of closed subspaces, and there is a homeomorphism
h : A1 → A2 such that h(x) = x for every x ∈ A1 ∩ A2, then indX =
indA1 = indA2.

The above theorem appears in the section of [17] which considers only
hereditarily normal spaces; one can verify, however, that the proof still goes
when we only assume that X is regular. In the present paper, we only need
Theorem 2.E in the form given above.

In the proof of the following theorem and in the sequel, we will use the
monotonicity of ind and of Ind with respect to closed subspaces (see [2],
Proposition 3.3).

2.1. Theorem. Let α = λ+n, where λ is a countable limit ordinal , and n
is a natural number. For each partition K in Sα between any distinct points
a, b ∈ Bα we have indK ≥ indSα−1 and IndK ≥ IndSα−1 = λ+ (n−1).

P r o o f. We prove the first inequality, and then indicate the modifications
needed to show the second.

First, we show that

(2.3) indx Sα ≤ indK + 1 for each x ∈ Bα ,
i.e., for every x ∈ Bα and each closed set F ⊆ Sα such that x 6∈ F there
exists a partition L between x and F such that indL ≤ indK. The reasoning
is divided into a few steps.

First, we show that

(2.4) if x belongs to the geometrical boundary of Bα, and F is the union
of (n−1)-dimensional faces of Bα not containing a, then there exists
a partition with the required property.

Let U and V be disjoint open subsets of Sα such that a ∈ U , b ∈ V
and K = Sα − (U ∪ V ). Consider a subspace Q ⊆ Bα homeomorphic to the
n-dimensional cube, and such that a belongs to the geometrical boundary
of Q and the union E of (n− 1)-dimensional faces of Q not containing a is
contained in V ; then K ∩ (Sλ ×Q) is a partition in Sλ ×Q between a and
E, and indK ∩ (Sλ × Q) ≤ indK. The existence of the required partition
in Sα between x and F follows from the existence of a homeomorphism of
Sλ ×Q onto Sα = Sλ ×Bα sending a to x and E onto F .

In the second step, we show that the assumption that x belongs to the
geometrical boundary of Bα can be omitted in (2.4), i.e.,
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(2.5) if F is the union of the (n−1)-dimensional faces of Bα not containing
x, then there exists a partition L between x and F with indL ≤
indK.

Assume that x = (pλ, (x1, , . . . , xn)) belongs to the geometrical interior
of Bα = {pλ} × In.

Let
A1 = {(z, (y1, y2, . . . , yn)) ∈ Sλ × In : y1 ≤ x1} ,
A2 = {(z, (y1, y2, . . . , yn)) ∈ Sλ × In : y1 ≥ x1} ;

further, let h : Sα → Sα be given by

h((z, (y1, y2, . . . , yn))) = (z, (f(y1), y2, . . . , yn)) ,

where

f(y1) =
{

(x1 − 1)y1/x1 + 1 if y1 ≤ x1,
x1(y1 − 1)/(x1 − 1) if y1 ≥ x1,

for (z, (y1, y2, . . . , yn)) ∈ Sλ × In = Sα.
Observe that h is a homeomorphism of Sα mapping A1 onto A2 and such

that h(x) = x for every x ∈ A1 ∩ A2. By (2.4), there exists a partition L1

in A1 between x and F ∩ A1 such that indL1 ≤ indK; let L2 = h(L1). It
is easily seen that L = L1 ∪ L2 is a partition in Sα between x and F ; by
Theorem 2.E, indL = indL1.

In the third step, we show that

(2.6) for every closed set F ⊆ Bα, there exists a partition L between x
and F such that indL ≤ indK.

Let E be the union of (n−1)-dimensional faces of Bα not containing x. By
(2.5), there exists a partition M in Sα between x and E with indM ≤ indK;
let U and V be disjoint open subsets of Sα such that x ∈ U , E ⊆ V and
M = Sα − (U ∪ V ).

Consider a homeomorphism h : Bα → Bα with h(x) = x and h(F ) ⊆
V ∩ Bα; it can be defined by taking a neighbourhood of x disjoint from F
and expanding it, without moving x, until it covers the set Bα − V . Let
g : Sα → Sα be given by g(y, z) = (y, h(z)) for (y, z) ∈ Sλ × Bα = Sα. It
is easy to observe that L = g−1(M) is a partition in Sα between x and F ,
and indL = indM ≤ indK.

Having disposed of these preliminary steps, we can now prove (2.3).
Let x ∈ Bα be an arbitrary point and F ⊆ Sα an arbitrary closed set

not containing x. Since Sα = Bα for α < ω0, we can assume that α ≥ ω0.
Let E = F ∩ Bα (see Fig. 2.2, where α = ω0 + 1). By (2.6), there exists a
partition M between x and E such that indM ≤ indK; let U, V ⊆ Sα be
disjoint open sets such that x ∈ U , E ⊆ V and M = Sα − (U ∪ V ).
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Fig. 2.2

By construction of Sα, we have

Sα = Bα ∪
⋃
{Sβ × In : β < λ} ;

also, each compact subset of Sα disjoint from Bα meets only finitely many
sets Sβ × In. Thus

[F ∩ (U ∪M)] ∩ [Sβ × In] 6= ∅
only for finitely many β; assume that the above intersection is empty for
β 6= β1, . . . , βk (see Fig. 2.2, where k = 2).

It is easily seen that L = M −⋃ki=1(Sβi × In) is a partition between x
and F (see Fig. 2.2), and indL ≤ indM ≤ indK.

This proves (2.3). We now prove indSα ≤ indK + 1 by induction on
α. For α < ω0 the inequality is equivalent to (2.3); assume that α ≥ ω0

and the inequality holds for β < α. By (2.3), we only have to show that
indx Sα ≤ indK + 1 for every x ∈ Sα −Bα.

Observe that K contains a partition in Sβ× In = Sβ+n between distinct
points of the base Bβ+n for all but a finite number of ordinals β < λ.
Thus, by the inductive assumption, indSβ+n ≤ indK + 1 for those β. Since
indSν ≤ indSµ whenever ν ≤ µ, we have indSβ+n ≤ indK + 1 for all
β < λ; therefore every x ∈ Sα − Bα has a neighbourhood U in Sα with
indU ≤ indK + 1, which completes the proof of indSα ≤ indK + 1.

We now sketch the proof of IndK ≥ λ+ (n− 1).



Universal spaces, I 251

Of course, the inequality holds for α < ω0; thus assume that α ≥ ω0. Let
A,B be a pair of opposite (n−1)-dimensional faces of Bα = In. A reasoning
similar to that in the proof of (2.4) shows that

(2.7) there exists a partition L in Sα between A and B such that IndL ≤
IndK.

Consider disjoint open sets U, V ⊆ Sα such that A ⊆ U , B ⊆ V , and
L = Sα − (U ∪ V ). It follows immediately from the definition of Sα that
there exist β1, . . . , βk < λ with the property that(⋃

{Sβ × In : β < λ and β 6= β1, . . . , βk}
)
×A ⊆ U ,

(⋃
{Sβ × In : β < λ and β 6= β1, . . . , βk}

)
×B ⊆ V .

Let f be a 1-1 mapping of the set of all ordinals β < λ to the set of all
ordinals β < λ such that β 6= β1, . . . , βk with the property that β ≤ f(β)
for every β < λ. Since Sν is embeddable in Sµ whenever ν ≤ µ, it follows
that Sβ is embeddable in Sf(β). Hence there exists an embedding of Sλ in
its subspace

⋃{Sβ : β < λ and β 6= β1, . . . , βk}, and so there also exists an
embedding h : Sα → Sα such that

h(Sλ ×A) ⊆
(⋃
{Sβ × In : β < λ and β 6= β1, . . . , βk}

)
×A ⊆ U ,

h(Sλ ×B) ⊆
(⋃
{Sβ × In : β < λ and β 6= β1, . . . , βk}

)
×B ⊆ V .

The set h−1(L) is a partition in Sα between Sλ×A and Sλ×B, and so,
by Lemma 2.D,

λ+ (n− 1) ≤ Indh−1(L) ≤ IndL ≤ IndK .

3. Two lemmas. In this section we state two fairly straightforward, but
important lemmas. They indicate a property of compact metrizable spaces
X with indX ≤ λ and a property of separable metrizable spaces X with
IndX ≤ λ, respectively, which preclude the existence of universal spaces in
these classes.

3.1. Lemma. Let (X, %) be a compact metric space with indX ≤ λ, where
λ is a limit ordinal , and let ε be a positive real number. Then there exists
an ordinal α < λ such that

(3.1) for every subspace A ⊆ X and for any x, y ∈ A such that %(x, y) ≥ ε,
there exists a partition in A between x and y with small transfinite
dimension not greater than α.

P r o o f. Let V1, . . . , Vk be a finite open covering of X such that diamVi <
ε and ind bdVi < λ for i = 1, . . . , k; the existence of such a covering follows
from the definition of ind and the compactness of X.
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Let α = max{ind bdVi : i = 1, . . . , k}.
Consider a subspace A ⊆ X and points x, y ∈ A such that %(x, y) ≥ ε.

Then x ∈ Vi for some i, and since diamVi < ε and %(x, y) ≥ ε, we have
y 6∈ clVi. Thus A ∩ bdVi is a partition in A between x and y; obviously,

ind(A ∩ bdVi) ≤ ind bdVi ≤ α .
3.2. Lemma. Let (X, %) be a totally bounded metric space with IndX ≤ λ,

where λ is a limit ordinal , and let ε be a positive real number. Then there
exists an ordinal α < λ such that

(3.2) for every subspace A ⊆ X and for any x, y ∈ A such that %(x, y) ≥ ε,
there exists a partition in A between x and y with large transfinite
dimension not greater than α.

P r o o f. Let W1, . . . ,Wk be a finite open covering of X such that
diamWi < ε for i = 1, . . . , k, and F1, . . . , Fk its closed shrinking. Since
IndX ≤ λ, it follows that for i = 1, . . . , k, there exists an open set Vi such
that Fi ⊆ Vi ⊆ clVi ⊆ Wi and Ind bdVi < λ; obviously, V1, . . . , Vk is also a
finite open covering of X and diam clVi < ε for i = 1, . . . , k.

A similar argument to that in the proof of Lemma 3.1 shows that α =
max{Ind bdVi : i = 1, . . . , k} has the required property.

4. The compacta Cσλ and Dσ
λ. Let λ < ω1 be a limit ordinal; denote

by Λ the set of all non-limit ordinals α such that 0 < α < λ. In this section
we associate with each sequence σ : N → Λ compact metrizable spaces Cσλ
and Dσ

λ such that indCσλ ≤ λ and IndDσ
λ ≤ λ.

First, we define a certain subspace Z of the square I2.
Denote by Sn the set of all pairs (i, n), where i = 1, 2, . . . , 2n and n =

1, 2, . . . , and put S = {0} ∪ ⋃∞n=1 Sn. Note that the sets Sn are pairwise
disjoint and 0 6∈ Sn for all n.

Let Z0 stand for the lower edge of I2, i.e., the set of all (x, y) ∈ I2 such
that y = 0; for s = (i, n) ∈ Sn, let as denote the point ((2i−1)/2n+1, 0) ∈ I2,
i.e., the centre of the interval {(x, 0) ∈ I2 : (i−1)/2n ≤ x ≤ i/2n} contained
in the lower edge of I2, and let Zs stand for the semicircle with centre as
and radius 1/2n+1 contained in our square, i.e., Zs = {z ∈ I2 : %(z, as) =
1/2n+1}, where % denotes the standard metric on I2.

Set Z =
⋃{Zs : s ∈ S}. It is a simple matter to check that Z is a closed

subspace of I2. The space Z is exhibited in Fig. 4.1.
Let us introduce the following notation: z0 = (0, 0), z1 = (1, 0) and

zni = (i/2n, 0) for n ∈ N and i = 0, 1, . . . , 2n. Since zni = zmj whenever
i/2n = j/2m, and z0 = zn0 and z1 = zn2n for every n ∈ N, some symbols stand
for the same point, but that will cause no confusion. Note that zni−1, z

n
i are

the endpoints of the arc Zs for s = (i, n) ∈ Sn.
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Fig. 4.1

We now pass to the construction of the spaces Cσλ and Dσ
λ .

Let S and Sn, for n ∈ N, be the sets described in the definition of Z.
Recall that β(α) denotes the smallest ordinal β such that indSβ = α; since
σ(n) ∈ Λ, it is a non-limit ordinal, and so is β(σ(n)) (see Section 2). Denote
by γ(n) the predecessor of β(σ(n)); by the definition of Smirnov’s spaces,
Sβ(σ(n)) = Sγ(n) × I. Set Xs = Sγ(n) and bs = pγ(n) for s ∈ Sn, where pγ(n)
is the distinguished point of Sγ(n) (see Section 2). It will cause no confusion
to identify Z with the subspace of Z × P{Xs : s ∈ S −{0}} consisting of all
points (x0, {xs : s ∈ S − {0}}) such that xs = bs for all s ∈ S − {0}. For
t ∈ S − {0}, let Ct be the subspace of the Cartesian product consisting of
all (x0, {xs : s ∈ S − {0}}) such that x0 ∈ Zt and xs = bs for s 6= t.

Note that since Zt is an arc, Ct is homeomorphic to Sγ(n)×I = Sβ(σ(n));
moreover, there exists a homeomorphism of Cs onto Sβ(σ(n)) mapping Zs
onto an edge of the base Bβ(σ(n)).

Let Cσλ = Z∪⋃{Ct : t ∈ S−{0}}. It is easily seen that Cσλ is a closed sub-
space of Z×P{Xs : s ∈ S−{0}}, and therefore it is compact and metrizable.

Loosely speaking, in order to obtain Cσλ we stick, for every n ∈ N, a copy
of Sβ(σ(n)) to each arc Zs, where s ∈ Sn, along an edge of the base Bβ(σ(n))
in such a way that the space Cσλ so obtained is compact, i.e., the diameters
of the stuck copies of Smirnov’s spaces converge to 0 as n tends to ∞.
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The space Dσ
λ is defined similarly, except that Sβ(σ(n)) is replaced by

Sσ(n); recall that IndSσ(n) = σ(n).
The space Cσλ , where λ = ω0 and σ given by σ(n) = n + 1 for every

n ∈ N, is exhibited in Fig. 4.2. Note that if λ = ω0, then Cσλ = Dσ
λ for

every σ.

Fig. 4.2

We now evaluate indCσλ and IndDσ
λ . To this end, we need the follow-

ing theorem which is a consequence of a theorem obtained independently
by M. Landau and A. R. Pears (see [5] and [12], and also [2], Theorem
5.17); it also follows from a theorem of B. T. Levshenko (see [6], and [2],
Theorem 5.15).

4.A. Theorem ([5], [12] and [6]). If a hereditarily normal space X can
be represented as the union A1 ∪A2 of its closed subspaces with IndA1 < λ
and IndA2 < λ, where λ is a limit ordinal , then IndX < λ.

4.1. Lemma. For every limit ordinal λ < ω1 and every sequence σ :
N→ Λ, we have indCσλ ≤ λ and IndDσ

λ ≤ λ.

P r o o f. We show that indz Cσλ ≤ λ for every z ∈ Cσλ .
Note that Cσλ = Z0∪

⋃{Cs−Z0 : s ∈ S−{0}}. Since Cs−Z0 is an open
subset of Cσλ and ind(Cs−Z0) ≤ indCs < λ, it follows that indz Cσλ < λ for
every z ∈ Cσλ − Z0.

Thus consider a z ∈ Z0. Assume first that z 6= zni for any n ∈ N and
i = 1, 2, . . . , 2n. Let A ⊆ Cσλ be a closed set such that z 6∈ A. Take n ∈ N
and i ≤ 2n with the property that x belongs to the segment with endpoints
zni−1 and zni contained in Z0, and A meets neither this segment nor any Cs,
where s ∈ ⋃{Sm : m ≥ n}, such that the endpoints of Zs belong to this
segment. One can readily check that L = {zni−1, z

n
i } is a partition between

z and A (see Fig. 4.3).
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Fig. 4.3

Suppose now that z = zni for some n ∈ N and i ≤ 2n; obviously, one
can assume that n is the smallest number for which there exists an i ≤ 2n

such that z = zni . Let A ⊆ Cσλ be a closed set such that z 6∈ A. Then
there exist m > n and j ≤ 2m with zni = zmj , and A meets neither the
segment with endpoints zmj−1 and zmj+1 contained in Z0 nor any Cs, where
s ∈ ⋃{Sk : k > m}, such that the endpoints of Zs belong to this seg-
ment. For every k ∈ {n, n+ 1, . . . ,m}, z = zni is an endpoint of Zs for
two s ∈ Sk; denote by zs the other endpoint of Zs. Let L1

k be a partition
in Cs between zni and (A ∩ Cs) ∪ {zs} such that indL1

k < λ for one of
these two indices s, and L2

k a partition with the same properties for the
other one. It followsimmediately that L = {zmj−1, z

m
j+1} ∪

⋃m
k=n(L1

k ∪ L2
k)

Fig. 4.4
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is a partition in Cσλ between z = zni and A (see Fig. 4.4). Since the sets
{zmj−1, z

m
j+1}, L1

n, L
2
n, L

1
n+1, L

2
n+1, . . . , L

1
m, L

2
m are pairwise disjoint, compact

and have small transfinite dimension less than λ, we have indL < λ.
Thus indCσλ ≤ λ. In order to prove IndDσ

λ ≤ λ, observe that a similar
reasoning shows that for every z ∈ Dσ

λ and every closed set B ⊆ Dσ
λ such

that z 6∈ B, there exists a partition L between z and B with IndL < λ.
Let A be a closed subset of Dσ

λ and V an open set containing A. For
every z ∈ A, consider a partition Lz between z and Dσ

λ−V with IndLz < λ;
obviously, one can assume that Lz = bdWz for some neighbourhood Wz ⊆
V of z. By compactness of A, there exists a finite family W ⊆ {Wz : z ∈
A} such that A ⊆ ⋃W; let U =

⋃W. Then A ⊆ U ⊆ V and bdU ⊆⋃{bdW : W ∈ W}; in particular, Ind bdU ≤ Ind(
⋃{bdW : W ∈ W}).

Now Theorem 4.A shows that Ind bdU < λ.

5. There is no universal space for spaces with limit transfinite
dimension. In this section we prove the theorems announced in Section 1.

5.1. Theorem. Let λ < ω1 be an arbitrary limit ordinal. There is no
universal space for compact metrizable spaces X with indX ≤ λ.

P r o o f. It suffices to show that

(5.1) for every compact metrizable space X with indX ≤ λ, there exists
a sequence σ : N → Λ such that Cσλ is not homeomorphic to any
subspace of X.

Let % be an arbitrary metric on X. It follows from Lemma 3.1 that for
every n ∈ N, there exists an ordinal αn < λ satisfying (3.1) for ε = 2−2n.
Set σ(n) = αn + 2 for n ∈ N. Since λ is a limit ordinal, σ(n) < λ for each
n ∈ N, and therefore σ(n) ∈ Λ for every n ∈ N. Suppose that there exists
an embedding h : Cσλ → X.

Since there exists a homeomorphism of Cs, s ∈ Sn, onto Sβ(σ(n)) mapping
Zs onto an edge of the cube Bβ(σ(n)) ⊆ Sβ(σ(n)), there is no partition in Cs
between any two distinct points of Zs with small transfinite dimension less
than the predecessor of σ(n) (see the first inequality of Theorem 2.1). Thus
there is no partition in h(Cs) between any two distinct points of h(Zs)
with small transfinite dimension not greater than αn. From (3.1), we have
diamh(Zs) < 2−2n.

Hence, by the triangle inequality,

%(h(z0), h(z1)) ≤
2n∑

i=1

%(h(zni−1), h(zni ))

≤
∑

s∈Sn
diamh(Zs) < 2n · 2−2n = 2−n ;
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recall that z0 and z1 are the endpoints of the interval Z0 ⊆ Z, and {zni : i =
1, 2, . . . , 2n} stands for the sequence of points of Z with the property that
zni−1, z

n
i are the endpoints of the arc Zs for s = (i, n) ∈ Sn.

Since n is an arbitrary natural number, we conclude that h(z0) = h(z1),
which contradicts the assumption that h is a homeomorphism.

5.2. Theorem. Let λ < ω1 be an arbitrary limit ordinal. There is no
universal space for separable metrizable spaces X with IndX ≤ λ.

P r o o f. It suffices to show that

(5.2) for every separable metrizable space X with IndX ≤ λ, there exists
a sequence σ : N → Λ such that Dσ

λ is not homeomorphic to any
subspace of X.

To this end, take a totally bounded metric % on X and apply a reasoning
similar to that in the proof of Theorem 5.1 using Lemma 3.2 instead of
Lemma 3.1 and the second inequality of Theorem 2.1 instead of the first
one.
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