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Abstract. An extremally disconnected space is called an absolute retract in the class
of all extremally disconnected spaces if it is a retract of any extremally disconnected
compact space in which it can be embedded. The Gleason spaces over dyadic spaces have
this property. The main result of this paper says that if a space X of π-weight ω1 is
an absolute retract in the class of all extremally disconnected compact spaces and X
is homogeneous with respect to π-weight (i.e. all non-empty open sets have the same
π-weight), then X is homeomorphic to the Gleason space over the Cantor cube {0, 1}ω1 .

Introduction. As usual, a subset Y of a space X is a retract of Y
whenever there exists a continuous mapping r : X → Y such that r|Y is
the identity. X is an absolute retract of Y , briefly X ∈ AR(Y ), if X can be
embedded in Y and every subset of Y which is homeomorphic to X is also
a retract of Y .

Recall that a space X is extremally disconnected if the closure of every
open subset of X is open. If Y is a retract of an extremally disconnected
space X, then Y is extremally disconnected as well. On the other hand,
the well known Balcar–Franek Theorem [1] implies that if X and Y are
compact extremally disconnected spaces and w(X) ≤ w(Y ), then X can
be embedded in Y . The above remarks motivate the following definition:
a compact space X is called an absolute retract in the class of extremally
disconnected compact spaces, briefly X ∈ AR(e.d.), whenever X ∈ AR(Y )
for any compact extremally disconnected space Y such that w(X) ≤ w(Y ).

Here we will be mainly interested in the space ω∗ (the remainder of the
Čech–Stone compactification of a countable discrete space or, equivalently,
the Stone space of the Boolean algebra P(ω)/Fin). A relevant fact is that
every extremally disconnected separable compact space can be embedded
as a retract in ω∗ (see Lemma 2.2 for κ = ω).
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On the other hand, every absolute retract X of ω∗ is separable and hence
even extremally disconnected. Indeed, X is a subset of βω, and the latter is
homeomorphic to a subset of ω∗.

The previous considerations naturally suggest the question whether every
separable extremally disconnected compact space is an absolute retract of
ω∗. Originally this question was formulated by D. Maharam [6] in connection
with her investigations of lifting.

The negative answer was first given, under (CH), by M. Talagrand [14]
and then by A. Szymański [13] under the assumption of Martin’s Axiom.
The first examples in ZFC were constructed by P. Simon [12] and next by
L. Shapiro [9].

The aim of this paper is to investigate the nature of absolute retracts of
ω∗. It turns out that the absolute retracts of ω∗ which are of π-weight not
greater than ω1 have a nice structure, being essentially the Gleason spaces
of some Cantor cube.

We would like to thank Professor Sabine Koppelberg for her careful
reading the previous version of the paper and finding a gap in the proof
of the main theorem. The authors are also indebted to the referee for very
constructive comments.

1. Irreducible and semi-open mappings. All the mappings consid-
ered here are assumed to be continuous and all spaces are compact Hausdorff
and 0-dimensional. A mapping f : X → Y is called irreducible provided that
F = X for any closed set F ⊂ X such that f(F ) = f(X). It is easy to show
that for every f : X → Y there exists a closed set F ⊂ X such that f |F is
irreducible. By Zorn’s lemma, it is enough to consider a minimal closed set
in X which is mapped onto the whole f(X).

A surjection f : X → Y is called semi-open if Int f(U) 6= ∅ for every non-
empty open set U ⊂ X. All irreducible surjections are semi-open. Indeed,
if Int f(U) = ∅ and U ⊂ X is open, then f(X − U) = Y (recall that all
mappings are closed since they are continuous and all spaces are compact).

A closed set F ⊂ X is called regular-closed whenever F = cl IntF .
Clearly, all regular-closed subsets of an extremally disconnected space are
clopen. One can easily prove the following lemmas:

Lemma 1.1. A (continuous) surjection f : X → Y is semi-open iff for
every clopen set U ⊂ X, f(U) is regular-closed in Y .

Lemma 1.2. Every semi-open surjection onto an extremally disconnected
space is open.

The next lemma follows immediately from the above one and from the
fact that irreducible open mappings are necessarily one-to-one.
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Lemma 1.3 (Mioduszewski–Rudolf [7]; Porter–Woods [8]). Every irredu-
cible surjection onto an extremally disconnected space is a homeomorphism.

Lemma 1.4. Assume f : X → Y and g : Y → Z are surjections such that
g ◦f is semi-open. Then g is semi-open as well. Moreover , if g is irreducible
then also f is semi-open.

The next lemma presents the most important property of irreducible and
semi-open mappings.

Lemma 1.5 (Mioduszewski–Rudolf [7]). If f, g : X → Y are semi-open
and h : Y → Z is irreducible and h ◦ f = h ◦ g, then f = g.

Corollary 1.6. If h : X → Y is irreducible and g : X → X is such
that h ◦ g = h, then g is the identity.

This follows immediately from Lemma 1.5 since, by Lemma 1.4, g is
semi-open.

A very important role in our considerations is played by the well known
Gleason Theorem.

Theorem 1.7 (Gleason [4]). If Z is extremally disconnected , then for
every f : Z → Y and every surjection g : X → Y there exists h : Z → X
such that f = g ◦ h.

The Gleason space over X is the Stone space G(X) of the Boolean alge-
bra of all regular-open subsets of X; a set U ⊂ X is regular-open if X − U
is regular-closed or, equivalently, U = Int clU . The space G(X) is com-
pact extremally disconnected and admits a canonical Gleason projection
GX : G(X) → X which is an irreducible surjection; see e.g. Comfort and
Negrepontis [2] or Porter and Woods [8]. It is easy to see that by Glea-
son’s Theorem and Lemma 1.3, G(X) is unique up to homeomorphism. It is
enough to observe that if a composition f ◦ g is irreducible then both f and
g are. A similar argument leads to the conclusion that for any f : X → Y
there exists Gf : G(X)→ G(Y ) such that

GY ◦Gf = f ◦GX .
Moreover, if f is a semi-open surjection, then Gf is an open surjection and
it is unique. Again, we use Gleason’s Theorem for the existence of Gf . Next
we use Lemma 1.4, Lemma 1.2 and, for the uniqueness, Lemma 1.5.

Lemma 1.8. If U ⊂ G(X) is a clopen set and V ⊂ X is open and such
that clV = GX(U), then U = clG−1

X (V ).

P r o o f. First observe that G−1
X (V ) ⊂ U . Indeed, in the other case there

exists a clopen non-empty set H ⊂ G−1
X (V ) such that H ∩ U = ∅. Then

GX(H) ⊂ V ⊂ GX(U) ⊂ GX(G(X)−H) ,
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which contradicts the irreducibility of GX . Since G−1
X (V ) ⊂ U and U is

clopen, clG−1
X (V ) ⊂ U . Clearly, clG−1

X (V ) is clopen and GX(clG−1
X (V )) =

GX(U) because clV = GX(U). Thus, using the irreducibility of GX again,
we get the required conclusion.

2. Absolute retracts of βκ. Recall that all spaces are assumed to be
compact and 0-dimensional.

It is well known that if X is homeomorphic to a retract of the Cantor
cube {0, 1}κ, then X ∈ AR({0, 1}κ); here κ stands for an infinite cardinal.
We shall show that if we replace the Cantor cube by βκ (= the Čech–Stone
compactification of a discrete space of power κ), then the situation is quite
different. To do this, we will need some lemmas.

Lemma 2.1. If a compact space X has a (continuous) mapping onto an
extremally disconnected space Y , then Y can be embedded as a retract in X.

P r o o f. Assume f : X → Y is a surjection. There exists a closed set
Z ⊂ X such that f |Z is irreducible. By Lemma 1.3, f |Z is a homeomorphism
and thus (f |Z)−1 ◦ f is the required retraction.

Recall that for a cardinal κ ≥ ω, U(κ) denotes the space of all uniform
ultrafilters over κ, i.e. U(κ) consists of all ultrafilters p ∈ βκ such that
|A| = κ for every A ∈ p. The topology on U(κ) is inherited from βκ. Clearly,
U(ω) = ω∗.

Lemma 2.2. If X is compact extremally disconnected and d(X) = κ ≥ ω,
then X can be embedded as a retract in both βκ and U(κ).

P r o o f. By the Lemma 2.1, it is enough to show that there exists f :
βκ→ X such that f(U(κ)) = X. To do this, note that there exists ϕ : κ→
X such that ϕ(κ) is dense in X and |ϕ−1(x)| = κ for every x ∈ ϕ(κ). Then
the extension of ϕ to βκ is the desired mapping.

The lemma above implies, in particular, that every separable extremally
disconnected compact space can be embedded as a retract in βω (and also
in ω∗). However, as was mentioned above, there are separable extremally
disconnected compact spaces that are not absolute retracts of βω. Also, by
Lemma 2.1, every extremally disconnected compact space X can be embed-
ded in the Gleason space over {0, 1}τ , where τ is the weight of X. In fact,
since X can be embedded in {0, 1}τ , some closed subspace of G({0, 1}τ ) has
a (continuous) mapping onto X.

Theorem 2.3. For every extremally disconnected compact space X the
following conditions are equivalent :

(a) X ∈ AR(e.d.),
(b) X ∈ AR(G({0, 1}τ )), where τ = w(X),
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(c) X ∈ AR(U(κ)), where κ = d(X),
(d) X ∈ AR(βκ), where κ = d(X).

P r o o f. (a)⇒(d) is obvious.
(d)⇒(c) follows easily from the fact that U(κ) is a subspace of βκ. Thus

for every X ⊂ U(κ), the restriction to U(κ) of a retraction from βκ onto X
is the desired retraction.

(c)⇒(d). It is enough to prove that G({0, 1}τ ) can be embedded in U(κ),
where τ = w(X) and κ = d(X). Since the Gleason space over {0, 1}2κ has a
dense subset of size κ and τ ≤ 2κ, there exists a (continuous) mapping from
U(κ) onto G({0, 1}τ ). Thus we can use Lemma 2.1.

(b)⇒(a). Assume X is an extremally disconnected compact space of
weight κ. Since every extremally disconnected compact space can be em-
bedded in the Gleason space over a Cantor cube, it is enough to show that
for every embedding of X in G({0, 1}τ ) for some cardinal τ , X is a retract of
G({0, 1}τ ). Without loss of generality we can assume that X ⊂ G({0, 1}τ ).
Since w(X) = κ, there exists a family R of clopen subsets of G({0, 1}τ )
such that {X ∩ U : U ∈ R} is a base in X. On the other hand, since the
canonical Gleason mapping G̃ : G({0, 1}τ ) → {0, 1}τ is irreducible, G̃(U)
is regular-closed for every U ∈ R (see Lemma 1.1). Since the Cantor cube
has the Suslin property, there exists a countable family of clopen subsets
of {0, 1}τ whose union is dense in G̃(U). Hence there exists a countable set
A(U) ⊂ τ and an open set V ⊂ {0, 1}A(U) such that G̃(U) = clπ−1

A(U)(V ),

where πA(U) is the canonical projection from {0, 1}τ onto {0, 1}A(U). Let
A =

⋃{A(U) : U ∈ R} and let π : {0, 1}τ → {0, 1}A be the projection.
Then there exists a family P of open subsets of {0, 1}A such that for every
U ∈ R there exists V ∈ P such that

G̃(U) = clπ−1
A (V ) ,

where cl denotes closure in {0, 1}τ . Hence, by Lemma 1.8, for every U ∈ R
there exists V ∈ P such that

(∗) U = cl G̃−1(π−1
A (V )) .

Consider the Gleason space G({0, 1}A) and the canonical projection G :
G({0, 1}A) → {0, 1}A. By Gleason’s Theorem there exists a mapping ϕ :
G({0, 1}τ )→ G({0, 1}A) such that

πA ◦ G̃ = G ◦ ϕ .
By (∗), for every U ∈ R there exists V ∈ P such that

(∗∗) U = clϕ−1(G−1(V )) .

We claim that ϕ|X is one-to-one. In fact, if x, y ∈ X and x 6= y,
then there exist U,U ′ ∈ R such that x ∈ U , y ∈ U ′ and U ∩ U ′ = ∅.
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By (∗∗), we can find some V, V ′ ∈ P such that U = clϕ−1(G−1(V ))
and U ′ = clϕ−1(G−1(V ′)). Clearly V ∩ V ′ = ∅, ϕ(x) ∈ clG−1(V ) and
ϕ(y) ∈ clG−1(V ′). Thus ϕ(x) 6= ϕ(y).

Since |A| = κ, by (b), there exists a retraction r : {0, 1}A → ϕ(X).
Hence (ϕ|X)−1 ◦ r ◦ ϕ is the required retraction from G({0, 1}τ ) onto X.

A special case of the next theorem was obtained by Shapiro [9].

Theorem 2.4. If X is a dyadic space, then G(X) ∈ AR(e.d.).

P r o o f. Assume Y is extremally disconnected compact and G(X) ⊂ Y .
Since X is dyadic, there exists a surjection f : {0, 1}τ → X, where τ =
w(X). Let G̃ : G(X)→ X be the canonical Gleason mapping. By Gleason’s
Theorem there exists a surjection g : G(X)→ {0, 1}τ such that

f ◦ g = G̃ .

Using Gleason’s Theorem again we obtain ϕ : Y → G(X) such that

G̃ ◦ ϕ = f ◦ h .
Then

G̃ ◦ (ϕ|G(X)) = f ◦ (h|G(X)) = f ◦ g = G̃ ,

and by Lemmas 1.4 and 1.5 we deduce that ϕ|G(X) is the identity; the proof
is complete.

3. Inverse limits versus absolute retracts. In the sequel we shall
use inverse limits of 0-dimensional compact spaces over well ordered sets of
indices. An inverse system is a system S = {Xα, p

α
β ; β < α < τ} such that

pβα ◦pγβ = pγα whenever α < β < γ < τ , τ is an ordinal, Xα are 0-dimensional
compact spaces and pβα are continuous surjections for all α, β ∈ τ . The limit
of the inverse system, denoted by lim←−S or lim←−{Xα, p

α
β ;β < α < τ} consists

of all points (xα)α<τ of the product of Xα’s such that xβ = pαβ(xα) for any
β < α < τ . For every α < τ , pα : lim←−S → Xα is the canonical projection, i.e.
pα((xα)α<τ ) = xα. All the projections are continuous surjections. If a set
Σ ⊂ τ is unbounded in τ (i.e. for every α < τ there exists β ∈ Σ such that
α ≤ β), then the family {p−1

α (U) : α ∈ Σ and U is open in Xα} is a base
in lim←−S. Clearly, lim←−S is a 0-dimensional compact space. The mappings pαβ
are usually called bonding mappings or connecting mappings. All the inverse
systems considered here are assumed to be continuous, i.e. on every limit
step the space in the system is the inverse limit of the preceding spaces and
bonding mappings. An outline of the theory of inverse systems can be found
in the book of Engelking [3].

Lemma 3.1. Assume S = {Xα, p
α
β ;β < α < τ} and T = {Yα, qαβ ;β <

α < τ} are inverse systems and Σ ⊂ τ is an unbounded set for which there
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is an order preserving function ϕ : Σ → τ such that ϕ(Σ) is unbounded in
τ . If for every α ∈ Σ there exists a surjection hα : Xα → Yϕ(α) such that

α < β < τ implies hα ◦ pβα = q
ϕ(β)
ϕ(α) ◦ hβ ,

then there exists a unique (continuous) surjection h : lim←−S → lim←−T such
that for every α < τ ,

(∗) hα ◦ pα = qϕ(α) ◦ h ,
where pα and qα are the canonical projections from lim←−S and lim←−T , respec-
tively. Moreover , if all the mappings hα, for α ∈ Σ, are irreducible, then so
is h.

P r o o f. The first part of the lemma is well known. The mapping h is
uniquely determined by (∗): for the βth coordinate of h((xα)α<τ ) we take
q
ϕ(α)
β (hα(xα)), where α is so large that β < ϕ(α); see e.g. [3]. For the proof

of the second part of the lemma choose a closed set F ⊂ lim←−S such that
F 6= lim←−S. Then there exists α ∈ Σ and a non-empty open set U ⊂ Xα

such that F ⊂ p−1
α (Xα − U). Suppose h(F ) = lim←−T . Then

Xϕ(α) = qϕ(α)(h(F )) = hα(pα(F )) ⊂ hα(Xα − U) ,

and we get a contradiction since hα is irreducible.

The next lemma, due to Shchepin [11], is in fact a converse of the previous
one.

Lemma 3.2 (Shchepin). Assume X = lim←−{Xα, p
α
β ; β < α < τ} and

Y = lim←−{Yα, qαβ ;β < α < τ}, where τ is an uncountable regular cardinal and
w(Yα) < τ for every α < τ . Then for every mapping f : X → Y there exists
a closed unbounded set Σ ⊂ τ such that for every α ∈ Σ there is a mapping
fα : Xα → Yα with

fα ◦ pα = qα ◦ f .

Lemma 3.3. Assume S = {Xα, p
α
β ;β < α < τ} is an inverse system such

that the cofinality of τ is greater than the Suslin number of lim←−S. If there
exists an unbounded set Σ ⊂ τ such that Xα is extremally disconnected for
all α ∈ Σ, then lim←−S is extremally disconnected.

P r o o f. Let U and V be disjoint open subsets of lim←−S. Since the family

B = {p−1
α (W ) : α ∈ Σ and W is open in Xα} is a base in lim←−S, there

exist families P,R ⊂ B consisting of disjoint sets such that
⋃
P is dense

in U and
⋃
R is dense in V . Then there exists some δ ∈ Σ such that

P,R ⊂ {p−1
δ (W ) : W is open in Xδ}, because the power of both P and
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R does not exceed the cofinality of τ . Since Xδ is extremally disconnected,
cl(
⋃
R) ∩ cl(

⋃
P ) = ∅. Hence clU ∩ clV = ∅; the proof is complete.

Now we are ready to prove the main theorem:

Theorem 3.4. Assume X ∈ AR(e.d.) and the π-weight of X is an un-
countable regular cardinal. Then X is homeomorphic to the Gleason space
over lim←−{Xα, p

α
β ;β < α < κ}, where κ = πw(X), all the connecting map-

pings are semi-open and each Xα is compact 0-dimensional of weight less
than κ.

P r o o f. First note that {0, 1}κ can be represented as the limit of the in-
verse system S = {{0, 1}α, πβα; α ≤ β < κ}, where {0, 1}α is endowed with
the product topology and the connecting mappings πβα are just the projec-
tions, i.e. πβα(x) = x|α for all x ∈ {0, 1}β and all α < β. Clearly, the system
S is continuous and all the connecting mappings are open. By induction we
will construct a continuous Gleason system over S, i.e. a continuous inverse
system G(S) = {Zα, pβα;α ≤ β < κ} together with a family {gα : α < κ} of
irreducible mappings such that:

(1) Z0 consists of a single point and g0 : Z0 → {0, 1}0 = {∅} is constant,
(2) if α < κ is a limit ordinal then Zα = lim←−{Zβ , pδγ ; γ < δ < α}, pαβ are

the projections from the inverse limit Zα onto Zβ , for all β < α, and gα
is the unique function from Zα onto {0, 1}α induced by {gβ : β < α},
i.e. gβ ◦ pαβ = παβ ◦ gα for all β < α,

(3) if α = β + 1, where β is a limit ordinal, then Zα = G({0, 1}β), gα
is the Gleason projection from G({0, 1}β) onto {0, 1}β and pαβ is the
unique mapping such that gβ ◦ pαβ = gα,

(4) if α = β+1 and β is a successor ordinal, then we set Zα = Zβ×{0, 1}
and pαβ (x, i) = x for all (x, i) ∈ Zα, and we define gα : Zα → {0, 1}β =
{0, 1}γ × {0, 1}, where γ + 1 = β, by gα(x, i) = (gβ(x), i).

Note that pαβ in (3) exists by Gleason’s Theorem and is irreducible since
gα is. Thus, if β is a limit ordinal, then Zβ+1 is in fact the Gleason space over
Zβ . However, the mapping gα in (2) is irreducible by Lemma 3.1. Concerning
(4), observe that gα+1 is irreducible since gα is irreducible and pα+1

α is a
surjection.

Now consider the space Z = lim←−G(S). By (1)–(4) and Lemma 3.1, there
exists an irreducible mapping g : Z → {0, 1}κ such that for any α < κ we
have

(5) πα ◦ g = gα+1 ◦ pα+1 ,

where pα+1 is the canonical projection from Z onto Zα+1; see the diagram
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below, where α is a limit ordinal less than κ.

G({0, 1}α)

Zα Zα+1 Zα+2 = Zα+1 × {0, 1} Z

{0, 1}α {0, 1}α+1 = {0, 1}α × {0, 1} {0, 1}κ

²²

gα

²²

OO

oo

gα+1
xxrrrrrrrrr

oo

gα+2

²²

pα+2oo

g

²²
oo πα+1oo

Since g is irreducible and {0, 1}κ is ccc, Z is also ccc. Hence, by Lemma 3.3,
Z is extremally disconnected (since cf(κ) > ω). Thus Z is homeomorphic to
G({0, 1}κ).

Assume X̃ ∈ AR(e.d.) and πw(X̃) = κ = cf(κ) > ω. Then there exists a
0-dimensional compact spaceX such that w(X) = κ and X̃ is homeomorphic
to the Gleason space of X. Indeed, one can set X to be the Stone space of
the Boolean algebra generated by a family of clopen subsets of X̃ which is
a π-base of power κ. Since w(X) ≤ κ, we can assume that X ⊂ {0, 1}κ.
For every α < κ we set Xα = πα(X) and for every α ≤ β < κ+ we define
sβα = πβα|Xβ . Then Xα ⊂ {0, 1}α for every α < κ and

X = lim←−{Xα, s
β
α;α ≤ β < κ} .

By transfinite induction we define a sequence {Yα : α < κ} such that for
any α < κ the following conditions hold:

(6) Yα is a closed subset of Zα,
(7) for every limit ordinal α < κ, gα(Yα) = Xα and hα = gα|Yα is

irreducible,
(8) for every successor ordinal α = β + 1, gα(Yα) = Xβ and hα = gα|Yα

is irreducible,
(9) for every β < α, pαβ(Yα) = Yβ .

Assume that Yβ is defined for every β < α.
If α is a limit ordinal we set Yα = lim←−{Yβ , p

γ
β |Xγ ; β < γ < α}. Since Zα

is the inverse limit of Zβ ’s for β < α, Yα ⊂ Zα and gα(Yα) = Xα, it follows
by Lemma 3.1 that hα = gα|Yα is irreducible.

If α = β + 1 and β is a limit ordinal we choose a closed set Yα ⊂
(pβ+1
β )−1(Yβ) such that pβ+1

β (Yα) = Yβ and pβ+1
β |Yα is irreducible. Hence,

by (3), gα|Yα is irreducible as a composition of irreducible mappings.
If α = β + 1 and β is a successor ordinal then, by (4), gα is a map

from Zα onto {0, 1}γ × {0, 1}, where γ + 1 = β. Since Xβ is closed in
{0, 1}γ × {0, 1}, the sets Fi = πβα(({0, 1}γ × {i}) ∩ Xβ) are closed for any
i ∈ {0, 1} and F0 ∪ F1 = Xγ . We choose closed sets K0,K1 ⊂ Yβ such
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that gβ(Ki) = Fi and gβ |Ki is irreducible for any i ∈ {0, 1}. Then we set
Yα = (K0×{0})∪(K1×{1}). By (4), gα|Yα is irreducible and gα(Yα) = Xα.
Clearly, K0∪K1 = Yβ because gβ |Yβ is irreducible. Thus pαβ (Yα) = Yβ , which
completes the construction of Yα’s.

Hence we get an inverse system {Yα, tβα;α < β < κ} such that Yα is a
closed subset of Zα and tβα = pβα|Yβ for every α < β. Consider the space

Y = lim←−{Yα, t
β
α; α < β < κ} .

Clearly, Y ⊂ Z and g|Y is an irreducible mapping of Y onto X. For every
limit ordinal α < κ, Yα+1 is a closed subspace of an extremally disconnected
space Zα+1. Since hα+1 is irreducible and Xα is ccc (because X is ccc),
Yα+1 is ccc as well. Thus Yα+1 is extremally disconnected. By Lemma 3.3,
Y is also extremally disconnected and so it is homeomorphic to X̃. Hence
there exists a retraction r : Z → Y . By Lemma 3.2 there exists a closed
unbounded set Σ ⊂ κ such that for every α ∈ Σ there exists ϕα : Zα → Xα

satisfying

(10) ϕα ◦ pα = sα ◦ (g|Y ) ◦ r ;

see the diagram below, where α ∈ Σ.

Zα Zα+1 Z

Yα Yα+1 Y

Xa Xα+1 X

#
 ϕα //

pα+1
αoo pα+1oo

∪ r

²²

hα

²²

tα+1
αoo

hα+1

||yyyyyyy
tα+1oo

g|Y
²²sα+1

αoo sα+1oo

Without loss of generality we may assume that Σ consists of limit or-
dinals. By Gleason’s Theorem and the fact that Zα+1 is extremally discon-
nected, there exists rα+1 : Zα+1 → Yα+1 such that

(11) ϕα ◦ pα+1
α = hα+1 ◦ rα+1 .

We assert that rα+1 is a retraction. To see this, choose y ∈ Yα+1. There
exists x ∈ Y such that tα+1(x) = pα+1(x) = y. By (10) and (11) we get

hα+1(rα+1(y)) = hα+1(rα+1(pα+1(x)))

= ϕ(pα+1
α (pα+1(x))) = ϕα(pα(x)) = sα(g(r(x))) .

Thus, since r is a retraction, we have

hα+1(rα+1(y)) = sα(g(x)) = hα+1(tα+1(x)) = hα+1(y) .

Therefore, hα+1 ◦ (rα+1|Yα+1) = hα+1, which implies rα+1|Yα = id, because
hα+1 is irreducible (see Corollary 1.6).
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We claim that pα+1 is an open mapping for every α ∈ Σ. Since Zα+1

is extremally disconnected, it is enough to show that pα+1 is semi-open;
see Lemma 1.2. Since πα is open and g is irreducible, it follows by (5) that
gα+1 ◦ pα+1 is semi-open. Hence, by Lemma 1.4, pα+1 is semi-open.

Now we shall prove that pα+1|T , where T = (pα+1)−1(Yα+1), is an open
mapping from T onto Yα+1. Indeed, if U ⊂ Z is open, then

pα+1(U ∩ T ) = pα+1(U ∩ (pα+1)−1(Yα+1)) = pα+1(U) ∩ Yα+1

is an open subset of Yα+1, because pα+1 is open. Hence hα+1 ◦ (pα+1|T ) is a
semi-open map from T onto Xα. On the other hand, by (10), (5), (11), (8)
and (3) we have

sα ◦ g ◦ (r|T ) = hα+1 ◦ (pα+1|T ) .

Hence, by Lemma 1.4, sα is semi-open for every α ∈ Σ. It follows that for
any α, β ∈ Σ such that α < β, sβα is semi-open. Since Σ is unbounded in κ,
X = lim←−{Xα, s

β
α;α < β and α, β ∈ Σ}, where all the connecting mappings

sβα are semi-open and for every α < κ, Xα is a 0-dimensional compact space
with w(Xα) < κ. The proof is complete.

Theorem 3.5. If X is dense in itself and the π-weight of X is not
greater than ω1, then X ∈ AR(e.d.) iff it is homeomorphic either to
G({0, 1}ω) or to G({0, 1}ω1) or to their disjoint union.

P r o o f. Assume X ∈ AR(e.d). Then, by Theorem 3.4, X is homeomor-
phic to the Gleason space over X = lim←−{Xα, p

α
β ;β < α < ω1}, where all

Xα’s are compact metrizable and 0-dimensional and pαβ are semi-open for
all β < α < ω1. Now we shall use the following lemma due to Shapiro [10]:
if f : X ′ → Y ′ is a semi-open surjection and X ′ and Y ′ are 0-dimensional
metrizable compact spaces, then there exists a 0-dimensional metrizable
compact space Z and mappings g : X ′ → Z and h : Z → Y ′ such that h
is open, g is irreducible and f = h ◦ g. Then, by induction, we construct
an inverse system S = {Yα, qαβ ;β < α < ω1} such that all the Yα are
0-dimensional metrizable compact spaces, the qαβ are open surjections and
for every α < ω1 there exists an irreducible surjection hα : Xα → Yα such
that qαβ ◦ hα = hα ◦ pαβ whenever β < α < ω1 (see the diagram).

X0 X1 . . . Xα Xα+1 . . . X

Y0 Y1 . . . Yα Yα+1 . . . Y
²²

oo

²²

oo oo

hα

²²

pα+1
αoo

hα+1

²²

oo oo

h

²²
oo oo oo qα+1

αoo oo oo

By Haydon’s Theorem [5], Y is homeomorphic to a retract of a Cantor
cube {0, 1}α, α ≤ ω1. In particular, Y is dyadic. On the other hand X is



12 A. Bella et al .

homeomorphic to G(Y ); see §1. Thus, by another theorem of Shapiro [10], X
is homeomorphic either to G({0, 1}ω) or to G({0, 1}ω1) or to their disjoint
union.

The converse implication follows directly from Theorem 2.4.

One can easily show that every extremally disconnected compact space
is the disjoint union of a dense-in-itself extremally disconnected compact
space and the Čech–Stone compactification of a discrete space. Clearly, if
X ∈ AR(e.d.), then the set of isolated points of X is countable since X
is a retract of the Gleason space over a Cantor cube. On the other hand,
βω ∈ AR(e.d.) because it is homeomorphic to the Gleason space over the
convergent sequence, and hence to the Gleason space over a dyadic space.
Thus we can restrict our consideration to the spaces that are dense in itself.

Corollary 3.6. If X ⊂ ω∗ is dense in itself and the π-weight of X
is not greater than ω1, then X ∈ AR(ω∗) iff X is homeomorphic either to
G({0, 1}ω) or to G({0, 1}ω1) or to their disjoint union.

R e m a r k 3.7. Recall that every separable extremally disconnected com-
pact space can be embedded in ω∗. On the other hand, if X ∈ AR(ω∗), then
X ∈ AR(βω) and thus X is necessarily separable. However, one can show
that not all separable compact subspaces of ω∗ are absolute retracts of ω∗. It
suffices to construct a separable compact space X of π-weight ω1 such that
G(X) is not homeomorphic to the Gleason space of a cube. The examples
constructed by Shapiro [9] and Szymański [13] are just of this kind.
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44–59.
[7] J. Mioduszewsk i and L. Rudol f, H-closed and extremally disconnected Hausdorff

spaces, Dissertationes Math. 66 (1969).
[8] J. R. Porter and R. G. Woods, Extensions and Absolutes of Hausdorff Spaces,

Springer, 1988.
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UNIVERSITÀ DI MESSINA SILESIAN UNIVERSITY

98186 SANT’AGATA, ITALY BANKOWA 14

40-007 KATOWICE, POLAND

MATHEMATICS DEPARTMENT

SLIPPERY ROCK UNIVERSITY

SLIPPERY ROCK, PENNSYLVANIA 16057-1326

U.S.A.

Received 4 November 1992;
in revised form 16 June and 27 October 1993


