
FUNDAMENTA
MATHEMATICAE

145 (1994)

Cohomology of some graded differential algebras

by

Wojciech A n d r z e j e w s k i and Aleksiej T r a l l e (Szczecin)

Abstract. We study cohomology algebras of graded differential algebras which are
models for Hochschild homology of some classes of topological spaces (e.g. homogeneous
spaces of compact Lie groups). Explicit formulae are obtained. Some applications to cyclic
homology are given.

1. Introduction. Let K-ADG(c) be the category of graded commutative
differential algebras over a field K of zero characteristic. Let (A, d) ∈ K-
ADG(c) be an algebra of the form

(1)
(A, d) = (K[X1, . . . , Xn]⊗∧(y1, . . . , yn), d),

d(Xi) = 0, i = 1, . . . , n, d(yj) = fj(X1, . . . , Xn), j = 1, . . . , n,

with polynomials f1, . . . , fn constituting a regular sequence. As usual, A
is endowed with a grading by assigning to the variables Xi even degrees
and to the variables yj odd degrees, and d is supposed to be of degree
+1. Here and in the sequel K[X1, . . . , Xn] denotes the polynomial algebra
and

∧
(y1, . . . , yn) is the exterior algebra generated by the free variables

y1, . . . , yn. We denote the degree of X by deg(X).
In the present paper we study the cohomology algebra H∗(H, δ), where

(H, δ) ∈ K-ADG(c) is defined as follows:

(2)

(H, δ) = (A⊗∧(x1, . . . , xn)⊗K[Y1, . . . , Yn], δ),

δ|A = d, δ(xi) = 0, i = 1, . . . , n,

δ(Yj) =
n∑

i=1

∂fj
∂Xi

⊗ xi, j = 1, . . . , n,

deg(xi) = deg(Xi) + 1, deg(Yi) = deg(yi) + 1, i = 1, . . . , n.

R e m a r k. The definitions of (A, d) and (H, δ) could be rewritten in the
form of Burghelea–Vigué-Poirrier [4], [19]. Let V =

⊕
i≥2 Vi be a graded
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vector space over K. Let us write
∧

(V ) =
⊗

i

∧
(Vi) where

∧
(Vi) denotes

either the symmetric algebra K[Vi] when i is even or the exterior algebra
when i is odd. For the graded vector space V =

⊕
i≥2 Vi define V i = Vi+1

and V =
⊕

i≥1 V i. Consider
∧

(V )⊗∧(V ). Define the derivation

β :
∧

(V )⊗∧(V )→ ∧
(V )⊗∧(V )

of degree −1 by the equalities

β(v) = v, β(v) = 0, v ∈ V, v ∈ V .
Introduce the derivation δ by the equalities

δ(v) = d(v), δ(v) = −β(d(v)), v ∈ V, v ∈ V .
Then (A, d) is a particular case of (

∧
(V ), d), and (H, δ) is a particular

case of (
∧

(V ) ⊗ ∧(V ), δ). We shall use both notations, choosing the most
convenient in each separate case.

By means of some spectral sequence associated with (1), we obtain a
complete description of H∗(H, δ) in the case (1) (Theorem 1). This descrip-
tion is applied to the theory of Hochschild and cyclic homology of topological
spaces (in the sense of Burghelea and Goodwillie [2], [7], Theorem 2). As
an application we give an alternative proof of the Burghelea–Vigué-Poirrier
conjecture [19] about quasifree cyclic homology of topological spaces with
cohomology algebra being a truncated polynomial algebra (Theorem 3; the
original proof was obtained recently by M. Vigué-Poirrier [18]).

Then we obtain some sufficient conditions for non-quasifreeness of cyclic
homology in terms of the conormal module of some associated polynomial
ideal and show by examples that such spaces do exist (Theorems 4 and 5).
Some explicit calculations of Hochschild homology for compact homogeneous
spaces are given.

Let us, first, formulate the results.

Theorem 1. Let (A, d) satisfy the conditions (1). Then

(3) H∗(H, δ) = H∗(A)⊗∧(x1, . . . , xn)
/( n∑

i=1

∂f1

∂Xi
⊗xi, . . . ,

n∑

i=1

∂fn
∂Xi
⊗xi

)

⊕
n∑
s=1

∑

i1<...<is

(
AnnH∗(A)⊗∧(x1,...xn)

( n∑

i=1

∂fi1
∂Xi

⊗ xi, . . . ,
n∑

i=1

∂fis
∂Xi

⊗ xi
)/

( n∑

i=1

∂f1

∂Xi
⊗ xi, . . . ,

n∑

i=1

∂fn
∂Xi

⊗ xi
))
⊗K+[Yi1 , . . . , Yis ],

where
∧

(x1, . . . , xn) is the exterior algebra generated by the free variables xi
of odd degrees, deg(xi) = deg(Xi) + 1 and K[Y1, . . . , Yn] is the polynomial
algebra in the free variables Y1, . . . Yn such that deg(Yi) = deg(fi) for all i.
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R e m a r k. In (3) we use the following notation: for any ring A the symbol
(a1, . . . , an) denotes the ideal generated by a1, . . . , an. If I ⊂ A is an ideal,
the factor ring I/I ∩ (a1, . . . , an) is denoted simply by I/(a1, . . . , an). If
K[Y1, . . . , Yn] is a polynomial algebra, then K+[Y1, . . . , Yn] is the subalgebra
generated by the monomials Y k1

1 . . . Y knn with ki > 0 for all i.

Theorem 2. Let X be any simply connected topological space with coho-
mology algebra of the form
(4) H∗(X,K) = K[X1, . . . , Xn]/(f1, . . . , fn)

satisfying the following assumptions:

(i) f1, . . . , fn is a regular sequence in K[X1, . . . , Xn];
(ii) each fi is decomposable, that is, fi is a polynomial only in the vari-

ables Xj satisfying deg(Xj) < deg(fi)− 1.

Then the following isomorphism of graded algebras is valid :

(5) HH∗(X) ' H∗(X)⊗∧(x1, . . . , xn)
/( n∑

i=1

∂f1

∂Xi
⊗xi, . . . ,

n∑

i=1

∂fn
∂Xi
⊗xi

)

⊕
n∑
s=1

∑

i1<...<is

(
AnnH∗(X)⊗∧(x1,...,xn)

( n∑

i=1

∂fi1
∂Xi

⊗ xi, . . . ,
n∑

i=1

∂fis
∂Xi

⊗ xi
)/

( n∑

i=1

∂f1

∂Xi
⊗ xi, . . . ,

n∑

i=1

∂fn
∂Xi

⊗ xi
))
⊗K+[Yi1 , . . . , Yis ].

R e m a r k. In fact, the assumption (ii) in the formulation of the theorem
is not restrictive, because if H∗(X) can be represented in the form (4) with
the regularity condition, then it can also be represented in the form satisfying
both assumptions.

Theorem 3 (M. Vigué-Poirrier [18]). Any simply connected topological
space with cohomology algebra (4) has quasifree cyclic homology.

Theorem 3 was proved recently in [18]; we give an alternative proof in
order to illustrate the usefulness of Theorems 1 and 2.

Let R be a ring, and M a finitely generated R-module. By µ(M) we
denote the least number of elements in a system of generators of M . In
particular, µ(I) is defined for any ideal I ⊂ R.

Theorem 4. Let X be any simply connected topological space with min-
imal model

(MX , d) = (K[X1, . . . , Xn]⊗∧(y1, . . . , ym), d),

d(Xi) = 0, d(yj) = fj(X1, . . . , Xn), i = 1, . . . , n, j = 1, . . . ,m,

and with finite-dimensional cohomology algebra H∗(X). Let I = (f1, . . . , fm)
be the ideal in K[X1, . . . , Xn] generated by fj and I/I2 be its conormal
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module. If
µ(I) > µ(I/I2),

then the cyclic cohomology HC∗(X) is not quasifree.

Theorem 5. The following homogeneous spaces are topological spaces
with non-quasifree cyclic homology :

(i) M = Sp(20)/SU(6),
(ii) M = SU(6)/SU(3)× SU(3).

Now, we give some motivation for our results. Theorem 1 is the main
algebraic tool for proving Theorems 2–5. Theorems 2–5 describe Hochschild
and cyclic homology of a wide class of topological spaces.

The cyclic and Hochschild homology HC∗(X) and HH∗(X) of a topo-
logical space X have been the subject of wide interest since the papers of
D. Burghelea [2], D. Burghelea and Z. Fiedorowicz [3] and T. Goodwillie [7].
Since then many papers and books on this theme have been written, e.g. [4],
[5], [9], [12], [14], [17], [19]. Since HH∗(X) can be identified with H∗(XS1

)
(the homology of the free loop space XS1

), and HC∗(X) with the homology
of the associated bundle ES1 ×S1 XS1

([7]), cyclic and Hochschild homol-
ogy provide a powerful technique for studying free loop spaces (see e.g. [10]).
The investigation of various topological invariants of XS1

is very important
in view of their role in mathematical physics [21].

The first explicit calculation of HH∗(X) in the case (4) was done by
D. Burghelea and M. Vigué-Poirrier [19], namely a formula for the Poincaré
series PHH∗(X)(t) was obtained for any simply connected topological space
X with cohomology algebra either in the form K[X1]/(Xn+1

1 ), or
∧

(V ).
Theorem 2 gives an interesting formula for an arbitrary space whose

cohomology algebra is of the form (4). We show by examples how to apply
it. Our result can be applied to a wide class of topological spaces (e.g.
homogeneous spaces of compact semisimple Lie groups G/H with rank(G) =
rank(H)). When the multiplicative structure of H∗(X) can be described
explicitly by generators and relations, our formula is of particular interest
(see examples below). Of course, the formula for PHH∗(X)(t) in [19] can
be derived from ours in the case n = 1, f1 = Xn+1

1 . The usefulness of the
result is also illustrated by another proof of the Burghelea–M. Vigué-Poirrier
conjecture about quasifree cyclic homology (its validity was proved recently
by M. Vigué-Poirrier [18]).

It would be interesting to find a criterion for a topological space to have
quasifree cyclic homology. Therefore, to begin the investigation, one needs
at least some examples of spaces with non-quasifree cyclic homology. The-
orems 4 and 5 give such examples. Note that the condition µ(I) > µ(I/I2)
involving the conormal module can be verified in many cases by methods of
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commutative algebra and algebraic geometry, e.g. by the homological char-
acterization of local complete intersections etc. (see [11]).

In the context of our approach we also mention the recent work of the
“Buenos Aires cyclic homology group” [8]. Hochschild homology of complete
intersections was also studied in [12].

2. Algebraic part (proof of Theorem 1). In what follows, whenever
(C, d) is a graded differential algebra equipped with a derivation d of degree
+1, its cohomology algebra is denoted by H∗(C, d), while if d has degree
−1, the notation is H∗(C, d). Recall that a sequence a1, . . . , ai, . . . in a ring
R is called regular if ai is not a zero divisor in R/(a1, . . . , ai−1).

Lemma 1. Let (C, d) be a graded differential algebra over a field K
(char(K) = 0) of the form

(C, d) = (A⊗K[Y1, . . . , Yn], d),

d|A = 0, d(Yi) = ai ∈ A, deg(Yi) = 2li, i = 1, . . . , n,

and with d being a derivation of degree −1. Let

Cn−1 = A⊗K[Y1, . . . , Yn−1].

Then there exists a homological type spectral sequence of modules (Erp,q, d
r)

converging to H∗(C, d) and such that

(6) E2 = H∗(Cn−1)/([an])⊕ (AnnH∗(Cn−1)([an]))⊗K+[Yn].

P r o o f. Define an increasing filtration on C by

F−1C = {0} ⊂ F 0C = A⊗K[Y1, . . . , Yn−1] ⊂ . . .(7)

⊂ F pC = A⊗K[Y1, . . . , Yn−1]⊗K[Yn]≤p ⊂ . . . ,
where K[Yn]≤p denotes all polynomials of degree ≤ p. Clearly, d respects
the filtration (7). Consider the associated spectral sequence of modules
(Erp,q, d

r
p,q) (recall that it is not a spectral sequence of algebras). We use

the explicit construction of spectral sequences, coming from exact pairs (see
[15], with appropriate changes for homological type). We take a long exact
sequence

. . .
∂→Hp+q(F p−1C) i→Hp+q(F pC)

j→Hp+q(F pC/F p−1C)
∂→Hp+q−1(F p−1C)→ . . .

and construct the following exact pair:

D1
p,q = Hp+q(F pC), E1

p,q = Hp+q(F pC/F p−1C),

ip,q : Hp+q(F pC)→ Hp+q(F p+1C),

jp,q : Hp+q(F pC)→ Hp+q(F pC/F p−1C),

∂ = kp,q : Hp+q(F pC/F p−1C)→ Hp+q−1(F p−1C).
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The maps ip,q and jp,q are induced by i and j, ∂ is a connecting homomor-
phism and

(8) d1
p,q = jp−1,q ◦ kp,q.

By direct calculation,

E1
p,q = Hp+q(Cn−1 ⊗ L(Y pn ), d) = Hp+q(Cn−1)⊗ L(Y pn )

(here d denotes the derivation induced by d, and L(v1, . . . , vs) is the vector
space spanned by v1, . . . , vs). By (8), d1

p,q is induced by d. Therefore

(9)
E2 =

⊕
p,q

E2
p,q = H∗(H∗(Cn−1)⊗K[Yn], d̃ ),

d̃ |H∗(Cn−1) = 0, d̃(Yn) = [an]H∗(Cn−1)

and [an]H∗(Cn−1) denotes the cohomology class of an in Cn−1. Obviously (9)
can be represented in a general form

E2 = H∗(B ⊗K[Yn], d̃ ), d̃ |B = 0, d̃(Yn) = b ∈ B.
An easy calculation shows that for every differential algebra (B⊗K[Yn], d̃ )
satisfying the conditions above,

H∗(B ⊗K[Yn], d̃) = B/(b)⊕ (AnnB(b)/(b))⊗K+[Yn].

Applying the above formula to (9) one obtains (6). It remains to show that
(Erp,q, d

r
p,q) converges to H∗(C, d). It is well known that the following condi-

tions guarantee the convergence:

(i) F pC = 0 if p < 0,
(ii) E1

p,q = Hp+q(F pC/F p−1C) = 0 if q < 0,
(iii) C =

⋃
p F

pC.

The conditions (i)–(iii) are verified by direct calculation. Lemma 1 is
proved.

Lemma 2. Let (C, d) be a graded differential algebra satisfying the as-
sumptions of Lemma 1. Then the following isomorphism of graded differen-
tial algebras is valid :

(10) H∗(C, d) ' A/(a1, . . . , an)

⊕
n∑
s=1

∑

i1<...<is

(AnnA(ai1 , . . . , ais)/(a1, . . . , an))⊗K+[Yi1 , . . . , Yis ].

P r o o f. We use induction on n. We strengthen (10) by the additional
statement that the isomorphism (10) is canonical in the following sense: if
ϕ denotes the isomorphism (10), then

(C) [a] ∈ H∗(C, d), a ∈ A⇒ ϕ([a]) = π(a),
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where π : A → A/(a1, . . . , an) is the natural projection. For n = 1 the
condition (C) and (10) are evident. Suppose that (10) and (C) are valid for
all numbers ≤ n− 1. In particular,

H∗(Cn−1) ' A/(a1, . . . , an−1)

⊕
n−1∑
s=1

∑

i1<...<is

(AnnA(ai1 , . . . , ais)/(a1, . . . , an−1))⊗K+[Yi1 , . . . , Yis ].

By Lemma 1 there is a spectral sequence (Erp,q, d
r
p,q) converging to H∗(C, d)

and with E2-term of the form (6). Obviously

H∗(Cn−1)/([an]) = A/(a1, . . . , an)

⊕
n−1∑
s=1

∑

i1<...<is

(AnnA(ai1 , . . . , ais)/(a1, . . . , an))⊗K+[Yi1 , . . . , Yis ].

Using (C) one immediately obtains

(11) AnnH∗(Cn−1)([an])⊗K+[Yn] = AnnRn−1(π(an))⊗K+[Yn]

⊕
n−1∑
s=1

∑

i1<...<is

AnnLi1...is (π(an))⊗K+[Yi1 , . . . , Yis ]⊗K+[Yn],

where Rn−1 = A/(a1, . . . , an−1), Li1...is = AnnA(ai1 , . . . , ais)/(a1, . . .
. . . , an−1) and π is the natural projection. Since (Erp,q, d

r
p,q) converges to

H∗(C, d), cohomology classes of H∗(C) are those surviving in the spectral
sequence. Thus without loss of generality one can consider only elements of
(11) surviving in the spectral sequence. Obviously it is enough to consider
elements from AnnRn−1(π(an))⊗K+[Yn] and from each of the annihilators
AnnLi1...is (π(an))⊗K+[Yi1 , . . . , Yis ]⊗K+[Yn] separately.

In the first case the corresponding representative u of the cohomology
class in H∗(C) can be written in the form

∑
bi ⊗ Y in, and since it must be

a cocycle, one easily obtains bi ∈ AnnA(an) and [u] ∈ (AnnA(an)/(an)) ⊗
K+[Yn]. On the other hand, the latter algebra can be embedded in H∗(C)
in an obvious way.

The same argument can be applied to the second case. By (11) the
corresponding representative v of the cohomology class in H∗(C) can be
taken in the form

v =
∑

ai,i1,...,is ⊗ Y k1
i1
. . . Y ksis Y

i
n with ai,i1,...,is ∈ AnnA(ai1 , . . . , ais).

Therefore d(v) = 0 implies ai,i1,...,is ∈ AnnA(ai1 , . . . , ais , an) (direct compu-
tation). Finally, [v] ∈ AnnA(ai1 , . . . , ais , an)/(a1, . . . , an)⊗K+[Yi1 , . . . , Yis ]
⊗K+[Yn] in cohomology. Since the latter subalgebra can obviously be em-
bedded in H∗(C), the isomorphism (10) (of both modules and algebras)
holds. This completes the proof.
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Corollary. Lemma 2 is also valid for the algebra (A⊗K[Y1, . . . , Yn], d)
with d being a derivation of degree +1.

It is enough to replace the given grading by a new one deg(Yi) + 2, then
obtain the appropriate isomorphism and return to the previous grading.

In what follows we need a fact proved by M. Vigué-Poirrier:

Lemma 3 ([20]). Let (
∧
, d) be a graded differential algebra. Let ϑ be the

ideal of
∧

generated by the exterior generators, and let A =
∧
/ϑ. If y is an

exterior generator of
∧

such that the image of dy in A is nonzero, we have
H∗(

∧
, d) = H∗(

∧
, d), where

∧
=
∧
/(y, dy) and d is the induced differential

on
∧

.

P r o o f o f T h e o r e m 1. Recall that

(12) (H, δ)
= (K[X1, . . . , Xn]⊗∧(x1, . . . , xn)⊗∧(y1, . . . , yn)⊗K[Y1, . . . , Yn], δ),

δ(Xi) = δ(xi) = 0, i = 1, . . . , n,

δ(yj) = fj , δ(Yj) =
n∑

i=1

∂fj
∂Xi

⊗ xi, j = 1, . . . , n,

deg(Yi) = deg(yi) + 1, deg(xi) = deg(Xi) + 1, i = 1, . . . , n.

Now, it is enough to apply Lemma 3 to each yi (the regularity of f1, . . . , fn
guarantees the possibility of successive elimination). Finally,

H∗(H, δ) = H∗((K[X1, . . . , Xn]⊗∧(x1, . . . , xn)/(f1, . . . , fn))

⊗K[Y1, . . . , Yn], δ)

where δ is induced by δ. Denote by A the algebra

A = (K[X1, . . . , Xn]/(f1, . . . , fn))⊗∧(x1, . . . , xn)

= H∗(A, d)⊗∧(x1, . . . , xn).

(The latter equality is obtained by applying Lemma 3 again.) To finish the
proof apply the Corollary of Lemma 2 to A⊗K[Y1, . . . , Yn].

3. Hochschild and cyclic homology (proof of Theorem 2). To
start with, we outline briefly the basic notions of Hochschild and cyclic
homology. A more complete exposition can be found in [4].

As defined in [4], an algebraic S1-chain complex C̃∗ = (Cn, dn, βn)n≥0

of K-vector spaces is a chain complex (C∗, d) = (Cn, dn)n≥0 of K-vector
spaces equipped with the linear maps β = {βn : Cn → Cn+1, n ≥ 0} (called
an S1-action) such that βn+1βn = 0 and βn−1dn + dn+1βn = 0, With C̃∗,
one associates the chain complex (βC∗, βd∗) defined by

(βC)n = Cn + Cn−2 + . . .
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and

( βd)n(xn, xn−2, . . .) = (d(xn) + β(xn−2), d(xn−2) + β(xn−4), . . .).

Definition 1. The cyclic homology of C̃∗ = (C∗, d, β) is the homology
of the chain complex (βC∗, βd∗):

HC∗(C̃∗) = H∗(βC∗, βd∗).

One can extend the notion of S1-chain complex to bigraded complexes.
A bigraded S1-chain complex C = (Cn,p, dI , dE , β) is a collection of K-vector
spaces Cn,p, n ≥ 0, p ≥ 0, and K-linear maps

dI : Cn,p → Cn,p−1, dE : Cn,p → Cn−1,p, βn,p : Cn,p → Cn+1,p

such that (dI)2 = 0, (dE)2 = 0, β2 = 0, βdE + dEβ = 0 and βdI + dIβ = 0.
For any such C one writes

(TotC)∗ =
( ⊕
p+q=n

Cp,q, d
I + dE , β

)
.

Definition 2. The cyclic homology of the bigraded S1-complex C is the
cyclic homology of the associated total S1-complex (TotC)∗ (in the sense
of Definition 1).

Now, let (A, d) ∈ K-ADG(c). We define

T (A)p,q =
⊕

i0+i1+...+ip=q

Ai0 ⊗Ai1 ⊗ . . .⊗Aip for p ≥ 0, q ≥ 0,

dI(ai0 ⊗ . . .⊗ aip) = dai0 ⊗ ai1 ⊗ . . .⊗ aip

+
p∑

l=1

(−1)i0+...+il−1ai0 ⊗ . . .⊗ dail ⊗ . . .⊗ aip ,

dE(ai0 ⊗ . . .⊗ aip) =
p−1∑

l=0

(−1)lai0 ⊗ . . .⊗ ailail+1 ⊗ . . .⊗ aip

+ (−1)p+ip(i0+...+ip−1)aipai0 ⊗ . . .⊗ aip−1 ,

βp,q = (−1)p(1− Tp+1) ◦ Sp ◦ (1 + Tp + . . .+ T pp ),

where

Sp(ai0 ⊗ . . .⊗ aip) = ai0 ⊗ . . .⊗ aip ⊗ 1,

Tp(ai0 ⊗ . . .⊗ aip) = (−1)p+ip(i0+...+ip−1)aip ⊗ ai0 ⊗ . . .⊗ aip−1 , aij ∈ Aij .
It can be verified that (T (A)p,q, dI , dE , βp,q) is a bigraded S1-chain complex.

Definition 3. By definition, the homology of Tot(A),

H∗(Tot(A), dI + dE) = HH∗(A, d),
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is called the Hochschild homology of (A, d) ∈ K-ADG(c). In the same way,
the formula

HC∗(T (A), dI , dE , β) = HC∗(A, d)
defines the cyclic homology of (A, d).

These algebraic definitions are transformed into topological ones by the
following procedure: denote by MX the Moore loop space on X, and by
C∗(MX) its algebra of singular K-chains.

Definition 4 ([2], [7]). Put by definition

HH∗(X) = HH∗(C∗(MX)), HC∗(X) = HC∗(C∗(MX)),

and call HH∗(X) and HC∗(X) respectively the Hochschild and cyclic ho-
mology of the topological space X.

We have already mentioned in the introduction Goodwillie’s isomor-
phisms [7]:

H∗(XS1
) ' HH∗(X), H∗(ES1 ×S1 XS1

) ' HC∗(X),

which permit us to use duality and consider below cohomology rather than
homology. Our considerations use some notions of rational homotopy theory.
We refer to [13] for details.

A graded differential algebra (M, d) is called minimal if M is a free
graded commutative algebra

M = K[W even]⊗∧(W odd),

satisfying the following conditions:

(a) W =
⊕

α∈IWα (I is an ordered set);
(b) each Wα consists of homogeneous elements;
(c) for any α ∈ I, d(Wα) ⊂ S(

⊕
β<αWβ) (S(K) denotes the subalgebra

generated by K).

Definition 5 ([13]). (i) Let (A, d) ∈ K-ADG(c). A minimal algebra
(MA, D) is said to be a minimal model of (A, d) if there exists a homo-
morphism of graded differential algebras % : (MA, D) → (A, d) inducing
isomorphism in cohomology,

%∗ : H∗(MA, D)→ H∗(A, d).

(ii) Let X be a topological space, and AQ : = → Q-ADG(c) be a functor
from the category = of simplicial sets to the category Q-ADG(c) constructed
in [13] (that is, satisfying the simplicial de Rham theorem). A minimal model
of the algebra AQ(S∗(X)) ∈ Q-ADG(c) is called a minimal model of the
topological space X and is denoted by

MX =MAQ(S∗(X)).

Here S∗(X) is the simplicial set of singular simplexes of X.
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The proof of Theorem 2 is based on the following result of Burghelea
and Vigué-Poirrier [4]:

Theorem (B–V). Let X be any simply connected topological space with
minimal model (MX , d) = (

∧
(V ), d). Then

HH∗(X) ' H∗(H, δ)
where (H, δ) is given by (2) (or by the remark below (2)).

P r o o f o f T h e o r e m 2

Lemma 4. Let X be any topological space satisfying the assumptions of
Theorem 2. Then MX is as in (1).

P r o o f. Clearly, the K-ADG(c)-morphism

% : K[X1, . . . , Xn]⊗∧(y1, . . . , yn)→ K[X1, . . . , Xn]/(f1, . . . , fn),

%(Xi) = Xi, %(yj) = 0, i, j = 1, . . . , n,

induces isomorphism in cohomology by Lemma 3. This proves Lemma 4.

Now, by the (B–V) theorem, HH∗(X) ' H∗(H, δ), where (H, δ) is
obtained from (MX , d) of the form (1). Applying Theorem 1 to (H, δ)
yields (3).

4. Applications of Theorem 2: Hochschild homology of some
homogeneous spaces. Recall some facts relating to cohomology of homo-
geneous spaces. Let G be a compact connected Lie group, and H be its
closed subgroup. In the sequel, the Lie algebras of Lie groups G, H, . . .
are denoted by the corresponding small letters g, h, . . . Let W ≤ GL(V )
be a discrete subgroup of GL(V ) generated by reflections. Let K[V ] denote
the symmetric algebra over the vector space V . Consider the extension of
the W -action to K[V ] and denote the ring of W -invariants by K[V ]W . In
particular, consider a maximal torus T of a Lie group G, its Weyl group
W (G,T ) and the algebra

Q[tQ]W (G,T )

(here tQ denotes the Q-structure on t, that is, tQ = {v ∈ tC : α(v) ∈ Q for
any α in the root system R(gC, tC)}). The well-known Chevalley theorem
implies

(13) Q[tQ]W (G,T ) ' Q[f1, . . . , fn],

where the fi are algebraically independent generators. Consider the homo-
geneous space G/H and choose maximal tori T and T ′ in G and H in such
a way that T ′ ⊂ T . Consider also the algebra of invariants

Q[t′Q]W (H,T ′) ' Q[u1, . . . , us].
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Denote by
∧

(V ) the exterior algebra over V . If a base x1, . . . , xk of V is
chosen, we also use the notation

∧
(x1, . . . , xk). If V is a graded vector space,

the vectors xi have odd degrees, deg(xi) = 2li− 1. As usual,
∧
k(V ) denotes

the subspace of all elements of degree k.
It is well known that

H∗(G) ' ∧(x1, . . . , xn), n = rank(G),

where the xi are primitive elements in H∗(G).

Definition 6. The algebra (C ′, d′) ∈ Q-ADG(c) of the form

(C ′, d′) = (Q[t′Q]W (H,T ′) ⊗∧(x1, . . . , xn), d),(14)

d(u) = 0 for any u ∈ Q[t′Q]W (H,T ′),
(15)

d(xi) = fi|′t = f̃i(u1, . . . , us),

where fi (i = 1, . . . , n = rank(G)) are defined by (13), is called a Cartan
algebra of the homogeneous space G/H.

R e m a r k 1. To obtain the above definition in the form (14)–(15) it
is enough to combine the isomorphism in [8, p. 565] and the definition of
Koszul’s complex in [8, p. 420].

R e m a r k 2. It was proven in [1], [8] that

H∗(M,Q) ' H∗(C ′, d′)
if M = G/H with G a reductive Lie group.

Example 1 (Poincaré polynomial PHH∗(X)(t) for X = SU(3)/T ). Let
X = SU(3)/T be the flag manifold of the group SU(3) (T is its maximal
torus). Use the general theory described above. Introduce the coordinates
X1, X2, X3 in t satisfying the condition X1 + X2 + X3 = 0. Then the
polynomials

f1 = X2
1 +X2

2 +X2
3 , f2 = X3

1 +X3
2 +X3

3 ,

are W (SU(3))-invariant and by direct calculation one obtains (after calcu-
lating the minimal model)

H∗(X) = span(u1, u2 : u3
1 = u3

2 = 0, u1u2 = −(u1 + u2)2, u2
1u2 = −u1u

2
2).

Then the equivalence classes of
∑n
i=1(∂fj/∂Xi)xi in H∗(X)⊗∧(x1, x2) have

representatives

a1 = 2u1x1 + u1x2 + u2x1 + 2u2x1, a2 = 2u2
1x1 + u2

1x2 + u2
2x1 + 2u2

2x2.

By the Hirsch formula,

PSU(3)/T (t) =
(1− t4)(1− t6)

(1− t2)2 = 1 + 2t2 + 2t4 + t6
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and therefore
PH∗(X)⊗∧(x1,x2)(t) = PH∗(X)(t) · (1 + t3)2

= 1 + 2t2 + 2t3 + 2t4 + 4t5 + 2t6

+ 4t7 + 2t8 + 2t9 + 2t10 + t12.

Applying (5) to H∗(X) ⊗ ∧(x1, x2) and a1, a2, one can calculate directly
all dimensions of the factor algebra in (5) in this particular case.

Dimensions
Degree Additive generators

case 1 case 2 case 3 case 4

2 u1, u2 2 0 2 2
3 x1, x2 2 0 0 0
4 u2

1, u
2
2 2 0 2 2

5 u1x1, u2x2, u1x2, u2x1 3 1 1 1
6 u2

1u2, x1x2 2 2 2 2
7 u2

1x1, u
2
1x2, u

2
2x1, u

2
2x2 2 1 1 1

8 u1x1x2, u2x1x2 1 1 1 1
9 u2

1x1u2, u
2
1u2x2 1 0 0 0

10 u2
1x1x2, u

2
2x1x2 1 0 0 0

12 u2
1u2x1x2 0 0 0 0

The table gives the explicit expression for the Poincaré series

PHH∗(X)(t) = 1 + 2t2 + 2t3 + 3t5 + 2t6 + 2t7 + t8 + t9 + t10

+
(

1
1− t4 − 1

)
(4t2 + 4t4 + 2t5 + 4t6 + 2t7 + 2t8)

+
(

1
(1− t4)2 − 1

)
(t5 + 2t6 + t7 + t8).

R e m a r k. In the case H∗(X) = K[X]/(Xn+1) our procedure gives the
same result as in [19] because annihilators are calculated automatically and
one obtains the algebra

(K[X]⊗∧(x)/(Xn+1, Xnx))⊗K[Y ]

(as in Addendum to [20]).

Example 2. Let X = G2/T . Introduce the coordinates X1, X2, X3 in t
satisfying X1 +X2 +X3 = 0. Then the polynomials

f1 = X2
1 +X2

2 +X2
3 , f2 = X6

1 +X6
2 +X6

3

are G2-invariant and by direct calculation one obtains

H∗(X) = span(u1, u2 : u2
1 + u2

2 = −u1u2, u
3
1 = u3

2 = −u2
1u2 − u1u

2
2,

u5
1u2 = −u1u

5
2, u

3
1u

3
2 = 0, u4

1 + u4
2 = −u2

1u
2
2, u

5
1 + u5

2 = −u1u
4
2).
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The equivalence classes of
∑n
i=1(∂fj/∂Xi)xi in H∗(X) ⊗ ∧(x1, x2) have

representatives

a1 = 2u1x1+u2x1+u1x2+2u2x1, a2 = 6u5
1x1+6u5

2x2+6(u1+u2)5(x1+x2).

By the Hirsch formula,

PX(t) =
(1− t4)(1− t12)

(1− t2)2 = (1 + t2)(1 + t2 + t4 + t6 + t8 + t10)

and

PH∗(X)⊗∧(x1,x2)(t) = PX(t) · (1 + t3)2

= 1 + 2t2 + 2t3 + 2t4 + 4t5 + 3t6

+ 4t7 + 4t8 + 4t9 + 4t10 + 4t11 + 3t12

+ 4t13 + 2t14 + 2t15 + 2t16 + t18.

Applying (5) to H∗(X) ⊗ ∧(x1, x2) and a1, a2, one can calculate directly
all dimensions of the factor algebra (see Example 1).

Dimensions
Degree Additive generators

case 1 case 2 case 3 case 4

2 u1, u2 2 0 2 2
3 x1, x2 2 0 0 0
4 u2

1, u
2
2 2 0 2 2

5 u1x1, u2x2, u2x1, u2x2 4 1 1 1
6 x1x2, u

2
1u2, u

2
2u1 3 3 2 2

7 u2
1x1, u

2
1x2, u

2
2x1, u

2
2x2 2 1 1 1

8 u1x1x2, u2x1x2, u
4
1, u

4
2 3 2 2 2

9 u2
1u2x1, u

2
1u2x2, u

2
2u1x1, u

2
2u1x2 3 2 1 1

10 u2
1x1x2, u

2
2x1x2, u

5
1, u

5
2 3 2 2 2

11 u4
1x1, u

4
2x2, u

4
1x2, u

4
2x1 2 1 1 1

12 u2
1u2x1x2, u

2
2u1x1x2, u

3
1x1x2 1 1 0 0

13 u5
1x1, u

5
2x2, u

5
1x2, u

5
2x1 2 1 0 0

14 u4
1x1x2, u

4
2x1x2 1 0 0 0

15 u5
1u2x1, u

5
1u2x2 1 0 0 0

16 u4
1u2x1x2, u

4
2u1x1x2 1 0 0 0

18 u4
1u

2
2x1x2 0 0 0 0

The table gives the explicit expression for the Poincaré series

PHH∗(X)(t) = 1 + 2t2 + 2t3 + 4t4 + 3t5 + 3t6 + 2t7 + 3t8 + 3t9 + 3t10 + 2t11
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+ t12 + 2t13 + t14 + t15 + t16

+
(

1
1− t4 − 1

)
(4t2 + 4t4 + 2t5 + 4t6 + 2t7 + 4t8 + 2t9 + 4t10 + 2t11)

+
(

1
(1− t4)2 − 1

)
(t5 + 3t6 + t7 + 2t8 + 2t9 + 2t10 + t11 + t12 + t13).

5. Quasifree and non-quasifree cyclic homology: proof of Theo-
rems 3–5. Let K[α] be the graded free commutative algebra generated by
α with degα = 2 over a field K. Suppose that a K-graded vector space P ∗ is
endowed with the structure of a K[α]-module by a map∇ : K[α]⊗P ∗ → P ∗.
Clearly, the existence of ∇ is equivalent to the existence of a K-linear map
S : P ∗ → P ∗+2 defined by the condition ∇(αP ⊗ x) = SP (x).

Definition 7 ([19]). The K[α]-module (P ∗, S) is called: (a) free if S is
injective; (b) trivial if S is zero; (c) quasifree if it is the direct sum of a free
and a trivial module.

Consider the Connes long exact sequence for the cyclic and Hochschild
cohomology of a topological space X:

. . .→ HHn(X)→ HCn(X) S→HCn+2(X)→ HHn+1(X)→ . . .

Since HC∗{pt} = K[α], the operator S defines a structure of a K[α]-graded
module on HC∗(X).

Definition 8 ([17]). The cyclic cohomology HC∗(X,K) is said to be
quasifree if HC∗(X,K) is quasifree as a K[α]-module in the sense of Defi-
nition 7.

It was conjectured by D. Burghelea and M. Vigué-Poirrier that any topo-
logical space whose cohomology is a polynomial algebra truncated by a reg-
ular sequence, is a space with quasifree cyclic homology. This conjecture
is valid even under more general assumption of formality, as was proved
recently by M. Vigué-Poirrier [18] (in this sense our proof is weaker, but ex-
plains the phenomenon in the case of truncated polynomial algebras). Our
version (Theorem 3) is presented as an example of the use of (5).

P r o o f o f T h e o r e m 3. As usual, for the cohomology algebraH∗(A, d)
of any (A, d) ∈ K-ADG(c), the symbol H+(A, d) denotes the subspace⊕

p>0H
p(A, d). As in Theorem 2, consider the minimal model of X,MX =

(
∧

(V ), d) and introduce the graded differential algebra (R,D) by the for-
mulae

R = K[α]⊗∧(V )⊗∧(V ),

Dα = 0, D(u) = δ(u) + αβ(u), u ∈ ∧(V )⊗∧(V ).
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Consider the short exact sequence

0→R lα→R p→H→ 0,

where lα(r) = α⊗r for r ∈ R, and p : R→ H is the projection p(αk⊗c) = 0
(k ≥ 1), p(1⊗ c) = c. As usual, one obtains the long exact sequence

(16) . . .→ H∗(H, δ) B→H∗(R,D) J→H∗+2(R,D) I→H∗+1(H, δ)→ . . .

where B is the connecting homomorphism, J is induced by lα, and I is
induced by p. By direct calculation one obtains

B([y]) = [1⊗ β(y)] ∈ H∗(R,D), [y] ∈ H∗(H, δ).
Let B′ = I ◦B. Clearly, (B′)2 = 0 and degB′ = −1, therefore it is possible
to introduce the complex (H∗(H, δ), B′).

Proposition 1 ([19]). (i) The following isomorphisms are valid :

HH∗(X) ' H∗(H, δ), HC∗(X) ' H∗(R,D).

(ii) The operator S in the Connes exact sequence can be identified with
the operator J in (16).

Proposition 1 allows us to use H∗(R,D) instead of HC∗(X). In what
follows we shall use the Hodge decompositions for Hochschild and cyclic
homology [4].

Proposition 2 ([4]). (i) Both Hochschild and cyclic homology of a com-
mutative graded differential K-algebra (A, d) have natural decompositions

HHn(A, d) =
⊕

p≥0

HHn(A, d)(p),

HCn(A, d) = HCn(K)⊕HC(p)
n (A, d), HC(p)

n (A, d) = 0, p > n+ 1.

(ii) For the Connes exact sequence the following equality holds:

Sp(x) = 0 for any x ∈ HC∗(A)(p).

Denote by H̃C∗(X,K) the reduced cyclic cohomology [4]. Since for any
augmented graded commutative differential algebra (A, d),

HC∗(A, d) = HC∗(K)⊕ H̃C∗,
applying the above proposition to the chain algebra C∗(MX) of the Moore
loop space, one obtains the equality

H̃Cn(X) =
n+2⊕
p=0

(HCn)(p).

Proposition 2 and the last formula imply

Proposition 3. (i) J |
H̃C∗(X)

is nilpotent ; (ii) (H̃C∗)0 = 0.
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The following lemma can be proved by direct calculation.

Lemma 5. There is a short exact sequence

0→ im J ∩ H̃C∗/ imJ2 ∩ H̃C∗ a→H∗(H̃H∗, B′)
b→ (kerJ ∩ im J)∩ H̃C∗ → 0

where the maps a, b are defined by

a([J(x)]) = [I(x)], b([y]) = B(y).

P r o o f. See [14], [15].

R e m a r k. The above lemma is due to R. Krasauskas.

Lemma 6. HC∗(X,K) is quasifree if and only if J |
H̃C∗

= 0.

P r o o f. Follows directly from Proposition 3.

Lemma 7. HC∗(X,K) is quasifree if and only if

(17) H+(H+(H, δ), β∗) = 0.

P r o o f. By Lemma 6, HC∗(X,K) is quasifree if and only if J |
H̃C∗

= 0.

By Lemma 5, the last equality is equivalent to H∗(H̃H∗, B′) = 0.
Now, to prove the lemma it is sufficient to notice that

B′|
H̃H∗

= β∗|H+(H,δ), H̃H∗ = H+(H, δ).
To finish the proof of Theorem 3 it is necessary to calculate (17) directly

for (H, δ) defined by (12). Obviously, (17) can be rewritten in the form

(18) H+(H̃+, β∗) = 0,

where H̃ is defined by (3), H̃+ denotes the subalgebra in H̃ generated by
the positive degrees and β∗ is induced by β (apply Lemma 3). Consider the
quotient algebra

H̃1 = K[X1, . . . , Xn]⊗∧(x1, . . . , xn)/(f1, . . . , fn, β(f1), . . . , β(fn)).

Suppose first that β(f) ∈ (β(f1), . . . , β(fn)) for some f ∈ K[X1, . . . , Xn]⊗∧
(x1, . . . , xn), that is,

β(f) = a1β(f1) + . . .+ anβ(fn),

with ai being “polynomials” in the variables Xj , xk. Set

f̃ = f − (−1)deg(a1)a1f1 − . . .− (−1)deg(an)anfn.

Then, by direct computation, one obtains β(f̃) ∈ (f1, . . . , fn). Thus, calcu-
lating cohomology of (12) one can always choose f in such a way that

(19) β(f) ∈ (f1, . . . , fn).

Now we prove (18). Observe that H̃1 can be represented in the form

(H̃1, β∗) = (span(u1, . . . , un)⊗∧(x1, . . . , xn)/(v1, . . . , vn), β∗),
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where β∗(ui) = xi, the ui are generators of span(u1, . . . , un) satisfying the
relations determined by the ideal (f1, . . . , fn), and vi =

∑n
j=1(∂fi/∂Xj) ·

xj |(u1,...un) (we substitute (u1, . . . , un) for Xj and take into consideration
their relations). Then (19) can be expressed as

β∗(f) = 0, f ∈ span(u1, . . . , un)⊗∧(x1, . . . , xn).

Let us prove by induction the implication

(20) β∗(f) = 0⇒ f = β∗(g) + q1v1 + . . .+ qnvn

for some g, qi ∈ span(u1, . . . , un)⊗∧(x1, . . . , xn). Use induction on the num-
ber of variables i generating span(u1, . . . , un)⊗∧(x1, . . . , xn), containing f .
Let i = 1. Then any cocycle with respect to β∗ is of the form uk1x1. If
uk+1

1 x1 6= 0, then

f = β∗

(
1

k + 1
uk+1

1 x1

)
.

If uk+1
1 x1 = 0, then

Xk+1
1 ∈ (f1, . . . , fn)⇒ Xk+1

1 = a1f1 + . . .+ anfn

⇒ β(Xk+1
1 ) = (k + 1)Xk

1 x1

= β(a1)f1 + . . .+ β(an)fn

+ (−1)deg(a1)a1β(f1)

+ . . .+ (−1)deg(an)anβ(fn)

⇒ (k + 1)uk1x1 = a1v1 + . . .+ anvn

(the ai are the images of ai with appropriate coefficients). Thus in both
cases (20) is valid for i = 1. Suppose that (20) is satisfied for i ≤ n − 1.
Then for arbitrary u ∈ span(u1, . . . , un)⊗∧(x1, . . . , xn) we consider

u = g1 + g2u
l
n + gt3xn + g4xn, gi = gi(u1, . . . , un−1, . . . , xn−1),

and rewrite the equality β∗(u) = 0 directly. We have to consider the following
possibilities for l and t:

1) l > 1, l − 1 6= t, 2) l > 1, l − 1 = t, 3) l = 1, t ≥ 0.

Each case should be considered separately, but calculations do not differ
essentially, therefore we reproduce them in detail only in the first case. Then

β∗(g1) = 0, β∗(g2)uln = 0, g2u
l−1
n = 0, β∗(g3)utn = 0, β∗(g4) = 0.

By the induction hypothesis one can eliminate g1 and g4. Moreover, g2u
l−1
n =

0 eliminates the term g2u
l
n. The equality β∗(g3)utn = 0 gives two possibilities:

either g3u
t+1
n is zero, or not. In the first case

β∗(g3u
t+1
n ) = β∗(g3)ut+1

n + (−1)deg(g3)(t+ 1)g3u
t
nxn,
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which implies

g3u
t
nxn = β∗

(
(−1)deg(g3)

t+ 1
g3u

t+1
n

)
.

In the second case g3X
t+1
n ∈ (f1, . . . , fn) and applying exactly the same

argument as in the case i = 1, one obtains

g3u
t
nxn = a1v1 + . . .+ anvn,

which implies (20).
In case 2), by the same technique one obtains the equality

u = g1 + β∗

(
(−1)deg(g2)

l
g3u

l
n

)
+ g4xn,

from which the assertion follows. Case 3) does not differ from the previous
one.

Now, to finish the proof it is enough to notice that β∗(Yik) = 0 and
that β∗ preserves all annihilators in (5) because of the evident equality
β(aβ(g)) = β(a)β(g). Our argument was inductive and one can observe
that all equalities in the reasoning above remain unchanged under the as-
sumption that they belong to any annihilator (note that g3u

t
n 6∈ Ann(vi)

implies xnβ(fi) ∈ (f1, . . . , fn), from which the contradiction with the reg-
ularity condition can be derived very easily). The proof of the theorem is
complete.

P r o o f o f T h e o r e m 4. Consider (MX , d) as defined in Theorem 4.
Consider the ideal I = (f1, . . . , fm). Choose a maximal regular subsequence,
say f1, . . . , fs.

First we show that because H∗(X) is finite-dimensional, s ≥ n. De-
note by V (I) the affine algebraic variety of I and by Rad(I) its radical.
If dimV (I) = 0, then Rad(I) is a complete intersection and using [11,
pp. 134–135] it is easy to derive that I = (f1, . . . , fn, fn+1, . . . , fm), where
f1, . . . , fn is a regular sequence, thus s ≥ n. If dimV (I) > 0, then there
exists an infinite sequence of polynomials q1, q2, . . . , which are linearly in-
dependent on V (I) and therefore, mod I. They are cocycles. Suppose that∑
αiqi = d(b). Then, clearly, b =

∑
piyi and thus d(b) ∈ I, contrary to the

above remark. Thus [qi] are independent cohomology classes and H∗(X) is
not finite-dimensional. On the other hand, it is impossible to obtain s > n,
because by the Macaulay theorem [11] the maximal length d(I) of a regular
sequence of any ideal I is equal to its height h(I). But for the polynomial
ring K[X1, . . . , Xn], h(I) ≤ n, and thus s ≤ d(I) = h(I) ≤ n. Thus s = n
and so I = (f1, . . . , fn, fn+1, . . . , fm), where f1, . . . , fn is a regular sequence.
If m = n, then I is a complete intersection [11] and µ(I) = µ(I/I2) ([11]).
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Regularity implies that HC∗(X) is quasifree by Theorem 3. Then the fol-
lowing possibilities remain:

(i) fn+1, . . . , fm are all in (f1, . . . , fn),
(ii) at least one of them is not, say fn+1 6∈ (f1, . . . , fn).

In case (i) the well known derivation change

d′(yj) =
{
fj , j = 1, . . . , n,
fj +

∑n
k=1 pkfk, j = n+ 1, . . . ,m,

allows us to replace (MX , d) by

(M′X , d′) = (K[X1, . . . , Xn]⊗∧(y1, . . . , yn)⊗∧(yn+1, . . . , ym), d′),

d′(Xi) = d(Xi), d′(yi) = d(yi) (i = 1, . . . , n),

d′(yn+1) = . . . = d′(ym) = 0,

and one easily notices that the “trivial part” (
∧

(yn+1, . . . , ym), d = 0) does
not affect the considerations of Theorem 3, and again µ(I) = µ(I/I2) and
HC∗(X) is quasifree.

In case (ii), fn+1 6∈ (f1, . . . , fn), but the sequence is not regular. Observe
that the sequence f1, . . . , fi, . . . contains a minimal system of generators
of I (see [11, p. 109]). Therefore finally I = (f1, . . . , fn, fn+1, . . . , fn+k),
µ(I) = n + k. Now, suppose that µ(I) > µ(I/I2). Then a generator, say
f2
n+2, can be expressed as a combination of the others. Now, use the following

inequality, which is valid for any Noetherian ring R (see [11]):

Proposition 4. (i) h(I) ≤ µ(I/I2) ≤ µ(I) ≤ µ(I/I2) + 1.
(ii) If µ(I/I2) > dimR, then µ(I) = µ(I/I2).

This proposition gives µ(I/I2) ≤ n and µ(I) ≤ n + 1. Thus, the as-
sumptions of Theorem 4 imply k = 1, I = (f1, . . . , fn, fn+1) and f2

n+1 ∈
(f1, . . . , fn). By Theorem 3,HC∗(X) is quasifree if and only ifH+(H+(H, δ),
β∗) = 0.

Consider now (H, δ) obtained as in (12), and take, as in the previous
cases,

(H̃, δ̃) = ((K[X1, . . . , Xn]/(f1, . . . , fn)⊗K[Y1, . . . , Yn])

⊗∧(yn+1)⊗K[Yn+1], δ̃).

Consider the element u = fn+1yn+1 and its equivalence class in H̃,

ũ = f̃n+1yn+1.

Since f2
n+1 ∈ (f1, . . . , fn), [ũ] is a cohomology class in H∗(H̃, δ̃) ([ũ] 6= 0,

which can be verified directly).
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It can be proved by direct calculation that β∗[u] = 0, but [u] 6= β∗[v].
Indeed,

β(ũ) = β(fn+1)yn+1 + fn+1Y = δ(yn+1Y )
and thus β∗[u] = 0. On the other hand,

u 6= δ(v) + β(w), where δw = 0,

because the left hand side does not contain free variables xi and the right
hand side does contain them if β(w) 6= 0. If β(w) = 0, then u is a coboundary,
contrary to the remark above. Thus H+(H+(H, δ), β∗) 6= 0 and HC∗(X) is
not quasifree by Theorem 3. The proof of Theorem 4 is complete.

P r o o f o f T h e o r e m 5. Consider the case

M = SU(6)/SU(3)× SU(3)

and calculate its Cartan algebra (C, d) by the methods described in Sec-
tion 3. In our case

(C, d) = (R[t′]W (A1×A2) ⊗∧(y1, . . . , y5), d),

d(yj) = f̃j = fj |t′ , j = 1, . . . , 5,

where d = 0 on the first factor of the tensor product, and fj and f̃j are
determined by the Chevalley isomorphism:

R[t]W (A5) ' R[f1, . . . , f5], R[τ ′]W (A1×A2) ' R[X1, X2, Y1, Y2].

Using the explicit expressions for fj , Xi, Yi (see [6]), one obtains

fj(Z1, . . . , Z6) = Zj+1
1 + . . .+ Zj+1

6 , Z1 + . . .+ Z6 = 0, j = 1, . . . , 6,

Zi = Xi+1
1 +Xi+1

2 +Xi+1
3 , X1 +X2 +X3 = 0, i = 1, 2,

Yi = Xi+1
4 +Xi+1

5 +Xi+1
6 , X4 +X5 +X6 = 0, i = 1, 2.

Then, up to scalar multiples which are not important in our considerations,

f̃1 = X1 + Y1, f̃2 = X2 + Y2, f̃3 = X2
1 + Y 2

2 ,

f̃4 = X1X2 + Y1Y2, f̃5 = X3
1 + Y 3

1 +X2
2 +X2

3 ,

and finally

(C, d) = (R[X1, X2, Y1, Y2]⊗∧(y1, . . . , y5), d),

d(Xi) = d(Yi) = 0, i = 1, 2,

d(y1) = X1 + Y1, d(y2) = X2 + Y2, d(y3) = X2
1 + Y 2

1 ,

d(y4) = X1X2 + Y1Y2, d(y5) = X3
1 + Y 3

1 +X2
2 +X2

3 ,

where the degrees of the variables are

deg(X1) = 4, deg(Y1) = 4, deg(X2) = deg(Y2) = 6,

deg(y1) = 3, . . . , deg(y5) = 11.
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Observe that (C, d) is not a minimal algebra. Nevertheless, (C, d) is a free
graded commutative algebra and we can apply Sullivan’s method for con-
structing the minimal model of (C, d). In what follows we apply the calcula-
tions of [13]. Denote by V the linear span of {X1, X2, Y1, Y2, y1, . . . , y5} and
introduce a new derivation d′ on V by the formula

d′ : V n → V n+1, d′ = π ◦ d,
π : V n+1 ⊕ L++(V )n+1 → V n+1

(L++(V ) is the ideal of decomposable elements in
∧

(V ), and π is the pro-
jection onto the first summand). Then

d′(Xi) = d′(Yi) = 0 (i = 1, 2),

d′(y1) = X1 + Y1, d′(y2) = X2 + Y2, d′(yj) = 0 (j > 2).

Consider the direct sums

V = im d′ ⊕ V ′ ⊕W, im d′ ⊕ V ′ = ker d′.

Then, obviously,

ker d′ = L(X1, X2, Y1, Y2, y3, y4, y5),

im d′ = L(X1 + Y1, X2 + Y2)

(L denotes linear span). Thus

L(X1, X2, Y1, Y2, y3, y4, y5) = L(X1 +Y1, X2 +Y2)+L(Y1, Y2)+L(y3, y4, y5),

which implies

V ′ = L(Y1, Y2)⊕ L(y3, y4, y5), W = L(y1, y2),

W ′ = d(W ) = L(d(y1), d(y2)) = L(X1 + Y1, X2 + Y2).

Consider the algebra

C = R[X1 + Y1, X2 + Y2]⊗∧(y1, y2) =
∧

(W ′ ⊕W )

and the ideal 〈C+〉 in
∧

(V ) generated by C+ (the elements of positive
degrees). It is easy to calculate that

(
∧

(V ′), d) ' (
∧

(V )/〈C+〉, d) ' (R[X1, X2]⊗∧(y3, y4, y5), D) = (M, D),

D(Xi) = 0 (i = 1, 2), D(y3) = X2
1 , D(y4) = X1X2, D(y5) = X2

2

(up to scalars). By Sullivan’s theorem [13], (M, D) is a minimal model for
M . Now, clearly, for the ideal I = (X2

1 , X1X2, X
2
2 ) we have

µ(I) = 3, µ(I/I2) = 2,

and therefore Theorem 4 completes the proof.
In the case M = Sp(20)/SU(6) one applies the same calculation to

obtain the minimal model

(MM , d) = (R[X1, X2]⊗∧(y1, y2, y3, y4, y5, y6, y7), d),
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d(Xi) = 0, d(y1) = X1X2, d(y2) = X2
1 , d(y3) = X4

2 .

Obviously (X1X2)2 ∈ (X2
1 , X

4
2 ), and therefore again

µ(I) > µ(I/I2).

This completes the proof of Theorem 5.
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