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Chaotic continua of (continuum-wise) expansive
homeomorphisms and chaos in the sense of Li and Yorke

by

Hisao K a t o (Hiroshima)

Abstract. A homeomorphism f : X → X of a compactum X is expansive (resp.
continuum-wise expansive) if there is c > 0 such that if x, y ∈ X and x 6= y (resp. if A
is a nondegenerate subcontinuum of X), then there is n ∈ Z such that d(fn(x), fn(y))
> c (resp. diam fn(A) > c). We prove the following theorem: If f is a continuum-wise
expansive homeomorphism of a compactum X and the covering dimension of X is positive
(dimX > 0), then there exists a σ-chaotic continuum Z = Z(σ) of f (σ = s or σ = u),
i.e. Z is a nondegenerate subcontinuum of X satisfying: (i) for each x ∈ Z, V σ(x;Z) is
dense in Z, and (ii) there exists τ > 0 such that for each x ∈ Z and each neighborhood
U of x in X, there is y ∈ U ∩ Z such that lim infn→∞ d(fn(x), fn(y)) ≥ τ if σ = s, and
lim infn→∞ d(f−n(x), f−n(y)) ≥ τ if σ = u; in particular, Wσ(x) 6= Wσ(y). Here

V s(x;Z) = {z ∈ Z | there is a subcontinuum A of Z such that

x, z ∈ A and lim
n→∞

diam fn(A) = 0},

V u(x;Z) = {z ∈ Z | there is a subcontinuum A of Z such that

x, z ∈ A and lim
n→∞

diam f−n(A) = 0},

W s(x) = {x′ ∈ X | lim
n→∞

d(fn(x), fn(x′)) = 0}, and

Wu(x) = {x′ ∈ X | lim
n→∞

d(f−n(x), f−n(x′)) = 0}.

As a corollary, if f is a continuum-wise expansive homeomorphism of a compactum
X with dimX > 0 and Z is a σ-chaotic continuum of f , then for almost all Cantor sets
C ⊂ Z, f or f−1 is chaotic on C in the sense of Li and Yorke according as σ = s or u).
Also, we prove that if f is a continuum-wise expansive homeomorphism of a compactum
X with dimX > 0 and there is a finite family F of graphs such that X is F-like, then each
chaotic continuum of f is indecomposable. Note that every expansive homeomorphism is
continuum-wise expansive.
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1. Introduction. All spaces under consideration are assumed to be
metric. By a compactum, we mean a compact metric space. A connected
nondegenerate compactum is called a continuum. Let X be a compactum.
Then X has dimension ≤ n, denoted by dimX ≤ n, if for every γ > 0 there
is a covering U of X by open sets with diameter ≤ γ such that ordU ≤ n+1,
i.e., every point of X belongs to at most n+ 1 sets of U . If dimX ≤ n and
dimX ≤ n− 1 is not true, then dimX = n. It is known that a compactum
X is 0-dimensional (i.e., dimX = 0) if and only if each component of X is
a single point. We refer the reader to [8] for the properties of dimension of
separable metric spaces.

Let Z be the set of all integers. Let X be a compactum with metric d. A
homeomorphism f : X → X is expansive ([27] or [6]) if there is c > 0 such
that if x, y ∈ X and x 6= y, then there is an integer n = n(x, y) ∈ Z such
that

d(fn(x), fn(y)) > c.

Expansiveness does not depend on the choice of the metric d of X. This
property has frequent applications in topological dynamics, ergodic theory
and continuum theory (see [1], [2], [5]–[7], [9]–[15], [18], [19], [23], [25]–[29])
for the properties of expansive homeomorphisms). For example, in [23] Mañé
proved that if f is an expansive homeomorphism of a compactum X, then
dimX < ∞ and every minimal set of f is 0-dimensional. In [25] Plykin
showed that there exist plane continua admitting expansive homeomor-
phisms. Such continua are called “lakes of Wada”; their topological prop-
erties were studied in continuum theory. In [7], Hiraide proved that if f is
an expansive homeomorphism of a compact closed surface M , then f is a
pseudo-Anosov map, and that the 2-sphere admits no expansive homeomor-
phism.

A homeomorphism f of a compactum X is continuum-wise expansive [16]
if there is c > 0 such that if A is a nondegenerate subcontinuum of X, then
there is an integer n = n(A) ∈ Z such that

diam fn(A) > c,

where diamB = sup{d(x, y) | x, y ∈ B} for any B ⊆ X. Similarly, f is posi-
tively continuum-wise expansive if there is c > 0 such that if A is a nonde-
generate subcontinuum of X, then there is n ≥ 0 such that diam fn(A) > c.
Such a c > 0 is called an expansive constant for f . By the definitions, we
can easily see that every expansive homeomorphism is continuum-wise ex-
pansive. However, the converse is not true (see [16]–[18] for the properties
of continuum-wise expansive homeomorphisms).

By many examples, we know that expansive homeomorphisms and
continuum-wise expansive homeomorphisms are “chaotic”, and compacta
admitting such homeomorphisms may have considerably complicated dy-
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namical structure. The following notion of “chaos” due to Li and Yorke [22]
is well known. Let f : X → X be a map of a compactum X. A subset S
of X is called a scrambled set of f if for any x, y ∈ S with x 6= y,

(1) lim supn→∞ d(fn(x), fn(y)) > 0,
(2) lim infn→∞ d(fn(x), fn(y)) = 0, and
(3) lim supn→∞ d(fn(x), fn(p)) > 0 for any periodic point p of f .

If there is a scrambled set S of f that is uncountable, then we say that f is
chaotic (on S) in the sense of Li and Yorke [22]. Also, the following notion
of chaos is well known (see [4]). A map f : X → X of a compactum X with
metric d has sensitive dependence on initial conditions on a closed subset A
of X if there is τ > 0 such that if x ∈ A and U is any neighborhood of x
in X, then there is y ∈ U ∩ A and n ≥ 0 such that d(fn(x), fn(y)) > τ . If
A = X, we simply say that f has sensitive dependence on initial conditions.

In this paper, we define the notion of a “chaotic continuum” of a home-
omorphism f , which plays an important role in determining the behavior
of the dynamical system of f , and we prove that if f is a continuum-wise
expansive homeomorphism of a compactum X with dimX > 0, then there
exists a chaotic continuum Z of f ; as a consequence, we show that either f
or f−1 is then chaotic in the sense of Li and Yorke on almost all Cantor sets
C ⊂ Z. Actually, we show that continuum-wise expansive homeomorphisms
yield slightly stronger chaos than the chaos in the sense of Li and Yorke.
Also, we prove that if f is a continuum-wise expansive homeomorphism of a
compactum X and there is a finite family F of graphs such that X is F-like,
then each chaotic continuum of f is indecomposable.

2. Chaotic continua of homeomorphisms. Let X be a metric space
with metric d. The hyperspaces of X are the sets

2X = {A | A is a nonempty compact subset of X} and

C(X) = {A ∈ 2X | A is connected}
with the Hausdorff metric dH, i.e., dH(A,B) = inf{ε > 0 | Uε(A) ⊃ B and
A ⊂ Uε(B)}, where Uε(A) denotes the ε-neighborhood of A in X. Note that
if X is a compactum, then 2X and C(X) are compact metric spaces, and
moreover if X is a continuum, then 2X and C(X) are path connected (e.g.,
see [24]). Also, for A,B ⊂ X, put d(A,B) = inf{d(a, b) | a ∈ A and b ∈ B}.

Let f : X → X be a homeomorphism of a compactum X. For x ∈ X,
the stable set W s(x) and the unstable set W u(x) of f are defined as follows:

W s(x) = {y ∈ X | lim
n→∞

d(fn(x), fn(y)) = 0} and

W u(x) = {y ∈ X | lim
n→∞

d(f−n(x), f−n(y)) = 0}.
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For each x ∈ X and each closed subset Z of X, put

W s(x;Z) = Z ∩W s(x) and W u(x;Z) = Z ∩W u(x).

Note that we do not assume x ∈ Z. Also, the continuum-wise stable and
unstable sets V s(x) and V u(x) of f are defined as follows:

V s(x) = {y ∈ X | there is A ∈ C(X) such that

x, y ∈ A and lim
n→∞

diam fn(A) = 0} and

V u(x) = {y ∈ X | there is A ∈ C(X) such that

x, y ∈ A and lim
n→∞

diam f−n(A) = 0}.
Similarly, for each closed subset Z of X and x ∈ Z, put

V s(x;Z) = {y ∈ Z | there is A ∈ C(Z) such that

x, y ∈ A and lim
n→∞

diam fn(A) = 0} and

V u(x;Z) = {y ∈ Z | there is A ∈ C(Z) such that

x, y ∈ A and lim
n→∞

diam f−n(A) = 0}.
Clearly, V σ(x;X) = V σ(x), and if x ∈ Z, then Wσ(x,Z) ⊃ V σ(x;Z), for
both σ = s and σ = u. Note that V σ(x;Z) is connected, and Wσ(x;Z) and
V σ(x;Z) are not always closed in X.

For each 0 < δ < ε, consider the following subsets of C(X):

Vs(δ; ε) = {A ∈ C(X) | diamA = δ and diam fn(A) ≤ ε for each n ≥ 0},
Vu(δ; ε) = {A ∈ C(X) | diamA = δ and diam f−n(A) ≤ ε for each n ≥0},

Vs = {A ∈ C(X) | lim
n→∞

diam fn(A) = 0} and

Vu = {A ∈ C(X) | lim
n→∞

diam f−n(A) = 0}.
Let f be a homeomorphism of a compactum X with dimX > 0. Then a

subcontinuum Z of X is a σ-chaotic continuum of f (where σ = s or u) if

(i) for each x ∈ Z, V σ(x;Z) is dense in Z, and
(ii) there is τ > 0 such that for each x ∈ Z and each neighborhood U of

x in X, there is y ∈ U ∩Z such that lim infn→∞ d(fn(x), fn(y)) ≥ τ in case
σ = s, and lim infn→∞ d(f−n(x), f−n(y)) ≥ τ in case σ = u.

Note that (ii) implies that Wσ(x) 6= Wσ(y), in particular, V σ(x) 6=
V σ(y). Similarly, Z is a weakly σ-chaotic continuum of f if

(i) for each x ∈ Z, V σ(x;Z) is dense in Z, and
(ii)′ for each x ∈ Z and each neighborhood U of x in X, there is y ∈ U∩Z

such that V σ(x;Z) 6= V σ(y;Z).

Clearly, chaotic subcontinua are weakly chaotic. Note that (i) implies
that Wσ(x;Z) is dense in Z. In the definition of a weakly chaotic continuum,
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(ii)′ can be replaced with

(ii)′′ there are x, y ∈ Z such that V σ(x;Z) 6= V σ(y;Z)

because (i) and (ii)′′ together imply (i) and (ii)′.
If Z is a (weakly) σ-chaotic continuum of f for σ = s or u, we simply

say that Z is a (weakly) chaotic continuum of f .
By the very definition, (weakly) chaotic continua of f , if they exist,

play a very important role in the dynamics of f . Here we are interested
in the following question: Does every expansive (or continuum-wise expan-
sive) homeomorphism admit a chaotic continuum? In Section 3, we give an
affirmative answer to this question. Also, it turns out that for such homeo-
morphisms, weakly chaotic continua are chaotic continua.

From continuum theory, we know that the inverse limit construction
yields complicated spaces and maps from simple ones. Let f : X → X be a
map of a compactum X. Consider the inverse limit space

(X, f) = {(xn)∞n=0 | xn ∈ X and f(xn+1) = xn for each n}.
Then (X, f) is a compact metric space with metric

d̃(x̃, ỹ) =
∞∑
n=0

d(xn, yn)/2n, where x̃ = (xn)∞n=0, ỹ = (yn)∞n=0 ∈ (X, f).

Define f̃ : (X, f)→ (X, f) by

f̃((x0, x1, x2, . . .)) = (f(x0), f(x1), f(x2), . . .) (= (f(x0), x0, x1, . . .)),

for (x0, x1, x2, . . .) ∈ (X, f). Then f̃ is a homeomorphism, called the shift
map of f . Note that for an onto map f : G → G of a graph G (= compact
connected 1-dimensional polyhedron G), f has sensitive dependence on ini-
tial conditions if and only if f̃ : (G, f) → (G, f) is (positively) continuum-
wise expansive (see [16, (3.9)]).

(2.1) Example. (1) Let S1 be the unit circle and let f : S1 → S1 be
the natural covering map with degree 2. Then X = (S1, f) is the 2-adic
solenoid and the shift map f̃ : (S1, f)→ (S1, f) is expansive (see [29]) and
positively continuum-wise expansive. By [18, (3.9)], for each x̃ ∈ X, V s(x̃) =
{x̃}, dimW s(x̃) = 0 and W u(x̃) = V u(x̃) is the path component of X
containing x̃. In the 2-adic solenoid X, each path component is a composant
of X, and hence V u(x̃) is a composant of the indecomposable continuum X
(see Section 5 for the definitions of an indecomposable continuum and a
composant). Since each composant of a continuum is dense (see [20, p. 209]),
we see that X is itself a weakly u-chaotic continuum, and hence a chaotic
continuum, of f . On the other hand, f has no (weakly) s-chaotic continuum,
because dimW s(x̃) = 0 and V s(x̃) = {x̃} for each x̃ ∈ X.
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(2) In general, (weakly) chaotic continua are not equal to the total space.
Consider the one-point union G = (S1, ∗) ∨ (I, 1) where I = [0, 1]. Define
g : G→ G by g|S1 = f , g(0) = 0 and g(∗) = ∗ and g(I) = G. We can choose
g : G→ G so that g̃ : (G, g)→ (G, g) is expansive [11, Theorem 4.3]. Then
the chaotic continuum Z = (S1, g|S1) of g̃ is a proper subset of (G, g).

(3) Let I = [0, 1]. For each n = 2, 3, . . . , let fn : I → I be defined by

fn(t) =
{
nt− s if s is even,
−nt+ s+ 1 if s is odd,

for s = 0, 1, . . . , n − 1 and t ∈ [s/n, (s + 1)/n]. Then K(n) = (I, fn) is the
Knaster chainable continuum of order n. Then the shift map f̃n : (I, fn)→
(I, fn) is a (positively) continuum-wise expansive homeomorphism, but it
is not expansive. Moreover, X = (I, fn) is a u-chaotic continuum of f̃n,
because V u(x̃) is the composant of X containing x̃ (see (3.15)). On the
other hand, f̃n has no (weakly) s-chaotic continuum, because V s(x̃) = {x̃}
for each x̃ ∈ X.

(4) Let f : T 2 → T 2 be an Anosov diffeomorphism, say
(2 1

1 1

)
, on the

2-dimensional torus T 2. Note that f is expansive ([26]). Then T 2 itself is a
(weakly) σ-chaotic continuum of f for both σ = s and σ = u (e.g., see [4]
and (3.15) below).

(5) Let Gi = S1
i ∨ Ii (i = 1, 2) be two copies of G as in (2). Consider

the one-point union H = (G1, 01) ∨ (G2, 02), where 0i ∈ Ii. Let ~a and ~b be
orientations of the circles S1

1 and S1
2 , respectively. Also, let ~c = −−→0111 and

~d = −−→0212 be the orientations of the intervals I1 and I2, respectively. Define
h : H → H by

~a→ ~a + ~a,

~b→ ~b + ~b,

~c→ ~c + ~a− ~c + ~d + ~b− ~d + ~c,

~d→ ~d + ~b− ~d + ~c + ~a−~c + ~d.

Then the shift map h̃ : (H,h) → (H,h) is expansive and positively
continuum-wise expansive. Let W = (H,h)−((G1, h|G1)∪(G2, h|G2)). Then
W is open and dense in (H,h). Since for each x̃ ∈ (H,h), W u(x̃) = V u(x̃)
is the path component of (H,h) containing x̃, we see that if x̃ ∈ W , then
V u(x̃) = W u(x̃) is dense in X = (H,h) (compare this condition with the
condition (i) of the definition of a weakly chaotic continuum), and for each
x̃ ∈ (H,h) and each neighborhood U of x̃ in X there is ỹ ∈ U such that
W u(x̃) 6= W u(ỹ) (see the condition (ii)′ of the definition of a weakly chaotic
continuum). However, (H,h) is not a weakly chaotic continuum of h̃, because
if x̃ ∈ (Gi, h|Gi), then V u(x̃) is dense in (Gi, h|Gi), but not in (H,h), because
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(Gi, h|Gi)  (H,h). Note that X is indecomposable, and if x̃ ∈ (Gi, h|Gi),
then V u(x̃) = W u(x̃) is not equal to the composant of X containing x̃.

3. Existence of chaotic continua of continuum-wise expansive
homeomorphisms. In this section, we prove the main theorem (3.6) of this
paper which implies the existence of a chaotic continuum of a continuum-
wise expansive homeomorphism. We need the following lemmas.

(3.1) Lemma ([16, (2.1)]). Let f be a continuum-wise expansive homeo-
morphism of a compactum X with an expansive constant c > 0. Let c ≥ ε
> 0. If A ∈ C(X) and diam fn(A) ≤ ε for each n ≥ 0 (resp. diam f−n(A) ≤
ε for each n ≥ 0). then A ∈ Vs, i.e., limn→∞ diam fn(A) = 0 (resp. A ∈ Vu,
i.e., limn→∞ diam f−n(A) = 0).

(3.2) Lemma (see the proof of [16, (2.3)]). Let f be a continuum-wise
expansive homeomorphism of a compactum X with an expansive constant
c > 0 and let 0 < ε ≤ c/2. Then there is δ > 0 such that if A is any
nondegenerate subcontinuum of X such that diamA ≤ δ and diam fm(A)
≥ ε for some integer m ∈ Z, then one of the following conditions holds:

(a) If m ≥ 0, then diam fn(A) ≥ δ for each n ≥ m. More precisely ,
for each x ∈ fn(A) there is a subcontinuum B of A such that x ∈ fn(B),
diam f j(B) ≤ ε for 0 ≤ j ≤ n and diam fn(B) = δ.

(b) If m < 0, then diam f−n(A) ≥ δ or each n ≥ −m. More precisely ,
for each x ∈ f−n(A) there is a subcontinuum B of A such that x ∈ f−n(B),
diam f−j(B) ≤ ε for 0 ≤ j ≤ n and diam f−n(B) = δ.

(3.3) Lemma ([16, (2.5)]). If f is a continuum-wise expansive homeo-
morphism of a compactum X with dimX > 0, then there is a nondegenerate
subcontinuum A of X such that either A ∈ Vs or A ∈ Vu.

(3.4) Lemma ([16, (2.4)]). Let f , c, ε, δ be as in (3.2). Then for each
γ > 0 there is N = N(γ) ≥ 0 such that if A ∈ C(X) and diamA ≥ γ, then
either diam fn(A) ≥ δ for each n ≥ N or diam f−n(A) ≥ δ for each n ≥ N .

By a simple modification of the proof of Brouwer’s Reduction Theo-
rem [8, p. 161], we obtain the following.

(3.5) Proposition (a modification of Brouwer’s Reduction Theorem).
In a space with countable basis, let {Kλ} be a family of closed sets with this
property : if K1,K2,K3, . . . is a sequence of members of {Kλ} such that

K1 ⊃ K2 ⊃ K3 ⊃ . . . ,
then there is a member K∞ of {Kλ} such that

⋂∞
n=1Kn ⊃ K∞. Then there

exists an irreducible set (= a minimal set) in {Kλ}.
Now, we prove the main theorem of this paper.
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(3.6) Theorem. If f is a continuum-wise expansive homeomorphism of
a compactum X with dimX > 0, then there exists a chaotic continuum of f .

P r o o f. Let c > 0 be an expansive constant for f and let 0 < ε ≤ c/2.
Choose δ > 0 as in (3.2). By (3.2) and (3.3), Vσ(δ; ε) 6= ∅ for σ = s or u. We
may assume that σ = s.

For each pair (y;Y ) with y ∈ Y ∈ C(X), consider the following condition:

P(y;Y ) Cl(V s(y;Y )) = Y , and for each n ≥ 0, there is An ∈ Vs(δ; ε) such
that fn(y) ∈ An and f−n(An) ⊂ V s(y;Y ), i.e., y ∈ f−n(An)
⊂ Y .

We now show that if a pair (y;Y ) satisfies P(y;Y ) and y′ ∈ Y , then for
each n ≥ 0 there is A′n ∈ V(δ; ε) such that fn(y′) ∈ A′n and f−n(A′n) ⊂
V s(y′;Y ). Choose a sequence {yi}∞i=1 in V s(y;Y ) such that limi→∞ yi = y′,
and, for each i ≥ 1, choose Bi ∈ Vs(y, yi;Y ) = {A ∈ C(X) | y, yi ∈ A and
limi→∞ diam f i(A) = 0}. Fix n. For each i ≥ 1, choose a subcontinuum Di

of X such that diamDi = δ, fn(yi) ∈ Di and Di ⊂ An ∪ fn(Bi), where
An is as in the condition P(y;Y ). Since Di ∈ Vs, by (3.2) we see that
Di ∈ V s(δ; ε). We may assume that limi→∞Di = A′n. Then A′n ∈ Vs(δ; ε),
fn(y′) ∈ A′n and f−n(A′n) ⊂ Y . Note that, in general, we cannot conclude
that V s(y′;Y ) is dense in Y = Cl(V s(y;Y )).

Now, define

Γ = {Y ∈ C(X) | there is y ∈ Y such that P(y;Y ) holds}.
First, we prove that Γ 6= ∅. Since Vs(δ; ε) 6= ∅, we choose x ∈ A ∈

Vs(δ; ε). Let α(x, f) be the α-limit set of x, i.e., α(x, f) is the set of all sub-
sequential limits of {f−n(x)}∞n=0. Note that f(α(x, f)) = α(x, f) is a closed
subset of X. Choose y ∈ α(x, f) and put Y = Cl(V s(y;X)). Since Vs(δ; ε) is
closed in C(X) and hence compact, by (3.2) the pair (y;Y ) satisfies P(y;Y ).
This implies that Γ 6= ∅.

Next, we prove that if Y1 ⊃ Y2 ⊃ . . . is a sequence in Γ , then there
is Y∞ ∈ Γ such that

⋂∞
i=1 Yi ⊃ Y∞. For each n ≥ 1, choose yi ∈ Yi such

that (yi;Yi) satisfies P(yi;Yi). We may assume that limi→∞ yi = y′. Fix n.
ChooseBi,n ∈ Vs(δ; ε) such that fn(yi) ∈ Bi,n and f−n(Bi,n) ⊂ V s(yi;Yi) ⊂
Yi. We may assume that limi→∞Bi,n = Bn ∈ Vs(δ; ε). Note that f−n(Bn) ⊂
V s(y′;

⋂∞
i=1 Yi). Put Y∞ = Cl(V s(y′;

⋂∞
i=1 Yi)). Then (y′;Y∞) satisfies

P(y′;Y∞), which implies that
⋂∞
i=1 Yi ⊃ Y∞ ∈ Γ .

By (3.5), we can choose a minimal element Z of Γ . If z ∈ Z, then by
minimality, (z;Z) satisfies P(z;Z), for if not, we can choose an element
Z ′ = Cl(V s(z;Z)) of Γ such that Z ′  Z.

Now, we prove the following claim.



Chaotic continua of expansive homeomorphisms 269

Claim (∗): Suppose that f : X → X is a continuum-wise expansive
homeomorphism of a compactum X with dimX > 0 and Z is a subcontin-
uum of X satisfying the following conditions:

(a) if x ∈ Z, then V s(x;Z) is dense in Z, and
(b) if x ∈ Z and n ≥ 0 is any natural number , then there exists An ∈

Vs(δ; ε) such that fn(x) ∈ An and f−n(An) ⊂ Z.

Then Z is an s-chaotic continuum of f .

First, we show that there is % > 0 such that if z ∈ Z, then there is
z′ ∈ Z such that d(fn(z), fn(z′)) > % for each n ≥ 0. By (3.4), we can
choose N ≥ 0 such that if A ∈ Vs(δ/4; ε), then diam f−N (A) ≥ δ. Without
los of generality, we may assume that N = 1 (if necessary, consider f ′ = fN

instead of f). By (b), for each n ≥ 0 there is An ∈ V s(δ; ε) such that
fn(z) ∈ An and f−n(An) ⊂ Z. Fix n. Since diamAn = δ, we can choose a
subcontinuum Bn of An such that d(fn(z), Bn) ≥ δ/4 and diamBn ≥ δ/4.
Since diam f−1(Bn) ≥ δ, we can choose a subcontinuum Bn−1 of f−1(Bn)
such that d(fn−1(z), Bn−1) ≥ δ/4 and diamBn−1 ≥ δ/4. If we continue this
procedure, we obtain a sequence Bn, Bn−1, . . . , B1, B0 of subcontinua of X
such that

Bj−1 ⊂ f−1(Bj), d(f j(z), Bj) ≥ δ/4 and diamBj ≥ δ/4
for j = n, n− 1, . . . , 1, 0.

Choose zn ∈ B0. Thus we get a sequence {zn} of points of V s(z;Z). Since
Z is compact, there is a subsequence such that limi→∞ zni = z′ ∈ Z. Since
d(f i(z), f i(zn)) ≥ δ/4 for each 0 ≤ i ≤ n, we see that d(fn(z), fn(z′)) ≥
δ/4 = % > 0 for each n ≥ 0.

Let x ∈ Z and U be any neighborhood of x in X. Let τ > 0 with
τ < % = δ/4. By the above argument, there exists x′ in Z such that
d(fn(x), fn(x′)) ≥ δ/4 > τ > 0 for each n ≥ 0. Since V s(x′;Z) is dense
in Z, there is x′′ ∈ U ∩ V s(x′;Z). Since limn→∞ d(fn(x′), fn(x′′)) = 0,
we see that lim infn→∞ d(fn(x), fn(x′′)) > τ . Hence Z = Cl(V s(z;Z)) is
an s-chaotic continuum of f . The proof of the corresponding statement for
σ = u is similar.

(3.7) Proposition. Let f be a continuum-wise expansive homeomor-
phism of a compactum X with dimX > 0, let c, ε be positive numbers as
in (3.2), and let Z be a subcontinuum of X. Then the following are equiva-
lent.

(1) Z is a σ-chaotic continuum of f .
(2) Z is a weakly σ-chaotic continuum of f .
(3) Z satisfies the following conditions (a) and (b) (see Claim (∗) in the

proof of (3.6)).
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(a) if x ∈ Z, then V σ(x;Z) is dense in Z, and
(b) there is ε > τ > 0 such that if σ = s (resp. σ = u), x ∈ Z and

n ≥ 0 is any natural number , then there is An ∈ V s(τ ; ε) (resp.
A−n ∈ V u(τ ; ε)) such that fn(x) ∈ An and f−n(An) ⊂ Z (resp.
f−n(x) ∈ A−n and fn(A−n) ⊂ Z).

P r o o f. By the proof of (3.6), (3) implies (1). Clearly, (1) implies (2).
We must show that (2) implies (3). Suppose that σ = s. Let δ be as in (3.2).
Since there are x, y ∈ Z such that V s(x;Z) 6= V s(y;Z), Z is not an element
of Vs. By (3.1), lim supn→∞ diam f i(Z) > ε. If there is n ≥ 0 such that
diam fn(Z) ≤ δ, we can choose m > n such that diam fm(Z) > ε. By (3.2),
diam f i(Z) ≥ δ for each i ≥ m. Consequently, we can choose τ > 0 such that
diam f i(Z) > τ for each i ≥ 0. Let x ∈ Z and let n be any natural number.
Since V s(x;Z) is dense in Z, we can choose a subcontinuum Bn of Z such
that x ∈ Bn ⊂ V s(x;Z) and diam fn(Bn) > τ . Choose a subcontinuum
An of fn(Bn) such that fn(x) ∈ An and diamAn = τ . Then An (n ≥ 0)
satisfies the desired conditions.

(3.8) R e m a r k. (1) We see that if Z is an s-chaotic continuum of a
homeomorphism f , then E = {(x, y) ∈ Z × Z | lim infn→∞ d(fn(x), fn(y))
≤ τ} is not an Fσ-set in Z × Z.

(2) In (3.6), we can conclude that if Vσ contains a nondegenerate sub-
continuum, then f has a σ-chaotic continuum.

Also, by the proof of (3.6), we obtain the following.

(3.9) Proposition. Let f be a continuum-wise expansive homeomor-
phism of a compactum X and let ε be as in (3.2). Suppose that for some
x ∈ X and σ = s (resp. σ = u), there is τ > 0 and , for each n ≥ 0, there is
An ∈ Vs(τ ; ε) with fn(x) ∈ An (resp. A−n ∈ Vu(τ ; ε) with f−n(x) ∈ A−n).
Then f has a σ-chaotic continuum contained in Cl(V σ(x)). In particular ,
if x ∈ X is a periodic point of f , then there exists a σ-chaotic continuum
of f , contained in Cl(V σ(x)) (for σ = s or u).

P r o o f. We may assume that x is a fixed point of f , i.e., f(x) = x. Choose
a nondegenerate subcontinuum A of X such that x ∈ A and diamA = γ < δ,
where c, ε and δ are as in (3.2). By (3.4), we can choose N ≥ 0 such that
either (1) diam fn(A) ≥ δ for n ≥ N or (2) diam f−n(A) ≥ δ for n ≥ N .

We assume that (1) holds. Choose a subcontinuum A1 of fN (A) such
that x ∈ A1 and diamA1 = γ. By (3.4), diam fN (A1) ≥ δ. We can choose a
nondegenerate subcontinuum A2 of fN (A1) such that x ∈ A2 and diamA2 =
γ. If we continue this procedure, we obtain a sequence {An} of subcontinua
of X. By (3.2), max{diam f−i(An) | 0 ≤ i ≤ nN} ≤ ε. We may assume that
limn→∞An = B. Then x ∈ B ∈ V u(γ; ε). By (3.1), B ∈ Vu, which implies
that there exists a u-chaotic continuum Z of f , contained in Cl(V u(x)).
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(3.10) Lemma ([16, the proof of (3.2)]). Let f : G → G be a map of a
graph G such that f has sensitive dependence on initial conditions and let
X = (G, f). Then there is τ > 0 such that if A ∈ C(X) and diamA ≤ τ ,
then A ∈ Vu.

(3.11) Lemma ([17, (1.6)]). Let f be a continuum-wise expansive homeo-
morphism of a Peano continuum X. Then there is δ > 0 such that for each
x ∈ X, there exist A,B ∈ C(X) such that x ∈ A∩B, diamA = δ = diamB,
A ∈ Vs and B ∈ Vu.

By (3.10), (3.11) and Claim (∗) in the proof of (3.6), we obtain the
following.

(3.12) Corollary. Let f : G → G be a map of a graph G such that
f has sensitive dependence on initial conditions. Then for each x̃ ∈ (G, f),
Cl(V u(x̃)) contains a u-chaotic continuum of f̃ , and there is no s-chaotic
continuum of f̃ .

(3.13) Corollary. Let f be a continuum-wise expansive homeomor-
phism of a Peano continuum X. Then for both σ = s and u and for each
x ∈ X, Cl(V σ(x)) contains a σ-chaotic continuum of f .

(3.14) R e m a r k. In [18, (2.3)], we showed that there is an expansive
homeomorphism f of a one-dimensional continuum X such that there is an
open dense set U of X so that if x ∈ U , then Wσ(x) = V σ(x) = {x} (σ = s
and u). Hence Cl(V σ(x)) does not contain a chaotic continuum of f .

A homeomorphism f of a continuum X is continuum-wise fully expansive
(resp. positively continuum-wise fully expansive) [17] if for any ε1, ε2 > 0,
there is N = N(ε1, ε2) > 0 such that if A ∈ C(X) and diamA ≥ ε2, then
either dH(fn(A), X) < ε1 for each n ≥ N or dH(f−n(A), X) < ε1 for each
n ≥ N (resp. dH(fn(A), X) < ε1 for each n ≥ N).

(3.15) Proposition. If f is a continuum-wise fully expansive homeo-
morphism of a continuum X, then X is a chaotic continuum of f .

P r o o f. By [17, (3.2)], either σ = s or σ = u has the property that for
each x ∈ X there is A(x) ∈ Vσ(δ; ε) with x ∈ A(x), where ε, δ are as in (3.2).
Suppose that σ = s. For each n ≥ 0, choose A(fn(x)) ∈ Vs(δ; ε) as above.
Then f−n(A(fn(x))) ⊂ V s(x). Since f is continuum-wise fully expansive,
we know that limn→∞ f−n(A(fn(x))) = X. Hence Cl(V s(x)) = X for each
x ∈ X. This implies that X is an s-chaotic continuum of f .

(3.16) Example. In (3.6), we cannot replace the assumption that f is a
continuum-wise expansive homeomorphism with the assumption that f is a
homeomorphism which has sensitive dependence on initial conditions.



272 H. Kato

(1) Let S1 be the unit circle and I the unit interval. Let rα denote the
rotation through 2πα on S1. Define a homeomorphism f : S1×I → S1×I by
f(x, t) = (rtα(x), t) for x ∈ S1 and t ∈ I. Then f has sensitive dependence
on initial conditions. Note that Wσ(x) = V σ(x) = {x}. Hence there is no
weakly chaotic continuum of f .

(2) Let D = {0, 1} and C =
∏
−∞<n<∞Dn, where Dn = D. Let σ :

C → C be the shift of C, i.e., σ((an)n) = (an−1)n. Consider the cone X
of C, i.e., X = (C × I)/(C × {0}). X is called a Cantor fan. Define a
homeomorphism f : X → X by f([x, t]) = [σ(x),

√
t] for x ∈ C and t ∈ I.

Then f has sensitive dependence on initial conditions, but there is no weakly
chaotic continuum of f . Note that X is one-dimensional.

(3.17) Proposition. If Z is a chaotic continuum of a continuum-wise
expansive homeomorphism f of a compactum X, then both f and f−1 have
sensitive dependence on initial conditions on Z.

4. Continuum-wise expansive homeomorphisms are chaotic in
the sense of Li and Yorke on almost all Cantor sets of chaotic
continua. In this section, we prove the following theorem.

(4.1) Theorem. Let f be a homeomorphism of a compactum X with
dimX > 0. If there exists a σ-chaotic continuum Z of f , then f or f−1

is chaotic in the sense of Li and Yorke on almost all Cantor sets C ⊂ Z
according as σ = s or u.

To prove (4.1), we need the following.
A subset E of a space X is called an Fσ-set in X if E is a countable

union of closed subsets of X, and E is of the first category if E =
⋃∞
n=1En

where En is nowhere dense, i.e., IntX Cl(En) = ∅ (see [20]).
We will use a theorem of K. Kuratowski on independent sets [21]. A

subset F of a space X is said to be independent in R ⊂ Xn if for every
system x1, . . . , xn of different points of F the point (x1, . . . , xn) ∈ Fn never
belongs to R. In [21], Kuratowski proved the following useful theorem.

(4.2) Theorem ([21, Main theorem and Corollary 3]). If X is a complete
space and R ⊂ Xn is an Fσ-set of the first category , then the set J(R) of
all compact subsets F of X independent in R is a dense Gδ-set in the space
2X of all compact subsets of X. Moreover , if X has no isolated points, then
almost all Cantor sets in X are independent in R.

P r o o f o f (4.1). Suppose that σ = s. Since Z is an s-chaotic continuum
of f , there is τ > 0 such that

(∗) for any x ∈ Z and any neighborhood U of x in X there is y ∈ U ∩ Z
such that lim infn→∞ d(fn(x), fn(y)) ≥ τ .
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Choose % > 0 such that 0 < % < τ/5. Set

Rs
1(τ/2) = {(x, y) ∈ Z × Z | lim sup

n→∞
d(fn(x), fn(y)) ≤ τ/2}.

Then Rs
1(τ/2) is an Fσ-set in Z × Z, because Rs

1(τ/2) =
⋃∞
n=0 Tn, where

Tn = {(x, y) ∈ Z × Z | d(f i(x), f i(x)) ≤ τ/2 for i ≥ n},
and Tn is closed for each n. Since Cl(V s(z;Z)) = Z for each z ∈ Z, by (∗),
Rs

1(τ/2) is an Fσ-set of the first category in Z × Z. Next, put

Rs
2 = {(x, y) ∈ Z × Z | lim inf

n→∞
d(fn(x), fn(y)) > 0}.

Let Q+ be the set of all positive rational numbers. For each natural number
n ≥ 1 and η ∈ Q+, set

Wn,η = {(x, y) ∈ Z × Z | d(f i(x), f i(y)) ≥ η for each i ≥ n}.
Then we can easily see that

Rs
2 =

⋃

η∈Q+

∞⋃
n=1

Wn,η.

Note that Wn,η is closed in Z × Z. Since Z is an s-chaotic continuum of f ,
Wn,η is nowhere dense in Z ×Z. Hence Rs

2 is an Fσ-set of the first category
in Z × Z.

Let Per(f) be the set of periodic points of f and let Perm(f) be the set
of periodic points of f with period ≤ m. Put

P s(τ/5) = {x ∈ Z | there is p ∈ Per(f) such that

lim sup
n→∞

d(fn(x), fn(p)) ≤ τ/5}.

Then P s(τ/5) =
⋃∞
m=1 Pm, where

Pm = {x ∈ Z | there is p ∈ Perm(f) such that

lim sup
n→∞

d(fn(x), fn(p)) ≤ τ/5}.

Each Pm is an Fσ-set in Z. In fact, Pm =
⋃∞
n=1 Pm,n, where

Pm,n = {x ∈ Z | there is p ∈ Perm(f) such that

d(f i(x), f i(p)) ≤ τ/5 for each i ≥ n},
and Pm,n is closed in Z.

Now, we show that each Pm,n is nowhere dense. Choose η > 0 such that
if A ⊂ X with diamA ≤ η, then max{diam f i(A) | 0 ≤ i ≤ m} ≤ τ/5.
Choose a finite closed cover {A1, . . . , Ar} of Perm(f) such that diamAj ≤ η
for each j = 1, . . . , r. Let W 6= ∅ be open in Z. Since Z is chaotic, there are
x1, x2 ∈ Z ∩W such that lim infi→∞ d(f i(x1), f i(x2)) ≥ τ . Since for each
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i ≥ 0, diam f i(Aj) ≤ τ/5 (j = 1, . . . , r), for each j there is xk (k = 1 or 2)
such that lim supi→∞ d(f i(xk), f i(p)) ≥ 2τ/5 for all p ∈ Aj . Hence

Pm,n(Aj) = {x ∈ Z | there is p ∈ Aj such that

d(f i(x), f i(p)) ≤ τ/5 for each i ≥ n}
is nowhere dense in Z. Since Pm,n =

⋃r
j=1 Pm,n(Aj) is nowhere dense in Z,

this implies that P s(τ/5) is an Fσ-set of the first category in Z.
Put

R = Rs
1(τ/2) ∪Rs

2 ∪ (P s(τ/5)× Z) ∪ (Z × P s(τ/5)).

Then R is an Fσ-set of the first category in Z×Z. By Kuratowski’s theorem
(4.2) on independent sets, for almost all Cantor sets C ⊂ Z, the following
condition is satisfied: if x, y ∈ C and x 6= y, then

(i) lim supn→∞ d(fn(x), fn(y)) ≥ τ/2 > %,
(ii) lim infn→∞ d(fn(x), fn(y)) = 0, and

(iii) lim supn→∞ d(fn(x), fn(p)) ≥ τ/5 > % for all p ∈ Per(f).

These conditions are stronger than those for chaos in the sense of Li and
Yorke. Therefore f is chaotic on C in the sense of Li and Yorke. The case
of σ = u is similar. This completes the proof.

By (3.6) and (4.1), we obtain the following

(4.3) Corollary. If f is a continuum-wise expansive homeomorphism
of a compactum X with dimX > 0, then there exists a subcontinuum Z of X
such that either f or f−1 is chaotic in the sense of Li and Yorke on almost
all Cantor sets C ⊂ Z.

In [18], we proved that if f is an expansive homeomorphism of a com-
pactum X with dimX > 0, then the decomposition {Wσ(x) | x ∈ X} (σ = s
and u) is uncountable, and moreover there is σ (= s or u) and % > 0 such
that there exists a perfect closed set Z ⊂ X such that for almost all Cantor
sets C ⊂ Z, the following conditions are satisfied: (I) if x ∈ Z, then Wσ(x)
contains some Ax ∈ Vσ with x ∈ Ax and diamAx ≥ %, and (II) if x, y ∈ C
and x 6= y, then Wσ(x) 6= Wσ(y). We say that such a closed set Z has
σ-striped structure (see [18]).

Hence we have the following.

(4.4) Corollary (cf. [18, (3.1)]). Let f be a homeomorphism of a com-
pactum X with dimX > 0. If there exists a σ-chaotic continuum of f , then
it has σ-striped structure.

(4.5) Corollary (cf. [18, (3.1)]). If f is a continuum-wise expansive
homeomorphism of a compactum X with dimX > 0, then for either σ = s
or u, there is a subcontinuum of X which has σ-striped structure.
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In the case of a general homeomorphism f : X → X, we do not know
whether Wσ(x) is an Fσ-set in X or not, nor whether

Rs
1 = {(x, y) ∈ X ×X | lim

n→∞
d(fn(x), fn(y)) = 0} and

Ru
1 = {(x, y) ∈ X ×X | lim

n→∞
d(f−n(x), f−n(y)) = 0}

are Fσ-sets in X ×X or not. Note that if f is expansive, then Wσ(x) and
Rσ1 are Fσ-sets.

Hence, we have the following questions.

(4.6) Question. Let f be a homeomorphism of a compactum X with
dimX > 0, and suppose that there exists a weakly chaotic continuum Z
of f . Is then either f or f−1 chaotic in the sense of Li and Yorke on almost
all Cantor sets C ⊂ Z?

(4.7) Question. Let f be a homeomorphism of a compactum X with
dimX > 0, and Z a weakly σ-chaotic continuum of f . Does Z have σ-striped
structure?

(4.8) R e m a r k. In the statements of (4.3) and (4.5), we cannot replace
the assumption that f is a continuum-wise expansive homeomorphism with
the assumption that f is a homeomorphism with sensitive dependence on
initial conditions. Let f : S1 × I → S1 × I be as in (1) of (3.16). Then f
has sensitive dependence on initial conditions. Note that no nondegenerate
subset D of S1 × I is a scrambled set of f or f−1. Hence neither f nor f−1

is chaotic in the sense of Li and Yorke. Also, there is no closed subset Z of
S1 × I which has σ-striped structure.

(4.9) Corollary. Let f be a positively continuum-wise expansive map
of a compactum X with dimX > 0. Then there is an uncountable set S of
sequences {xn}∞n=0 in X such that for some η > 0, if {xn}, {yn} ∈ S and
{xn} 6= {yn}, then

(1) f(xn+1) = xn (n ≥ 0),
(2) lim supn→∞ d(xn, yn) > η,
(3) lim infn→∞ d(xn, yn) = 0,
(4) lim supn→∞ d(xn, p) > η for any periodic point p of f .

P r o o f. By [16, (3.1)], the shift map f̃ : (X, f) → (X, f) is a positively
continuum-wise expansive homeomorphism. By [16, (5.7)], dim(X, f) > 0.
Then Vu contains a nondegenerate element. By (3.8), there exists a u-chaotic
continuum of f̃ . Then the conclusion follows from the conditions (i)–(iii) as
in the proof of (4.1).

(4.10) Corollary. Let f : G → G be a map of a graph G which has
sensitive dependence on initial conditions. Then there is an uncountable set
S of sequences {xn}∞n=0 in G satisfying (1)–(4) of (4.9).
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P r o o f. By [16, (3.8)], for graphs, sensitive dependence on initial con-
ditions coincides with positive continuum-wise expansiveness. Hence (4.10)
follows from (4.9).

5. Chaotic continua and indecomposability. In this section, we con-
sider the indecomposability of chaotic continua. In [14] and [16], we proved
that if a homeomorphism f of a tree-like continuum X is (continuum-wise)
expansive , then X contains an indecomposable continuum. In [15] and [16],
we proved that if a homeomorphism f of a continuum X is (continuum-wise)
expansive and there is a finite family F of graphs such that X is F-like, then
X contains an indecomposable continuum.

Let X be a continuum and let p ∈ X. Then the set c(p) = {x ∈ X |
there is a proper subcontinuum A of X (A  X) containing p and x} is
called the composant of X containing p. Note that c(p) is a connected subset
of X containing p, and c(p) is dense in X. A continuum X is indecomposable
[20] if there are no two proper subcontinua A and B of X such that A ∪B
= X.

Let F be a family of compact polyhedra. A continuum X is F-like if for
any ε > 0, there is an onto map f : X → P for some P ∈ F such that
diam f−1(y) < ε for each y ∈ P . Note that a compactum X is F-like if and
only if X = invlim{Kn, fn}, where Kn ∈ F and fn : Kn+1 → Kn is onto for
each n = 0, 1, . . . If F = {all trees}, then an F-like continuum X is called
a tree-like continuum. Note that a continuum X is one-dimensional if and
only if there is a (countable) family F of graphs such that X is F-like.

Let X be a compactum and let A be a subcontinuum of X. We define an
index T (A;X), which is a natural number or∞, by the following conditions:
T (A;X) < n if and only if there are no n subcontinua B1, . . . , Bn of X such
that for each i, A∩Bi 6= ∅, Bi−A 6= ∅ and Bi∩Bj = ∅ (i 6= j). If T (A;X) ≥ n
for all n, then we define T (A;X) = ∞. Put T (X) = max{T (A;X) | A is
a subcontinuum of X, i.e., A ∈ C(X)}. Note that if dimC(X) < ∞, then
T (X) <∞.

Note that if X is an indecomposable continuum, then (1) for each x ∈
X, the composant c(x) is dense in X and (2) for each x ∈ X and each
neighborhood U of x in X, there is a point x′ ∈ U such that c(x)∩ c(x′) = ∅
(see [20]). These properties are similar to those in the definition of a weakly
chaotic continuum. We are interested in the relations between (continuum-
wise) expansive homeomorphisms and indecomposability.

One may ask whether chaotic continua of (continuum-wise) expansive
homeomorphisms are indecomposable. In general, they are not. In fact, con-
sider an Anosov diffeomorphism f of the 2-torus T 2. Then T 2 is a σ-chaotic
continuum of f for both σ = s and u (see (2.1)). Note that if a continuum X
admits a positively continuum-wise fully expansive homeomorphism, then
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X is itself a u-chaotic continuum of f (see (3.15)), and X is indecomposable
(see [17, (4.5)]).

Moreover, one may ask the following question: if f is a positively
continuum-wise expansive homeomorphism of a compactum X with dimX
> 0, is it true that each chaotic continuum of f is indecomposable? Also,
this question has a negative answer. Let f̃ : (S1, f) → (S1, f) be the shift
homeomorphism of the 2-adic solenoid (S1, f) as in (2.1). Then f̃ × f̃ :
(S1, f)× (S1, f)→ (S1, f)× (S1, f) is clearly positively continuum-wise ex-
pansive, and X = (S1, f)×(S1, f) is a u-chaotic continuum of f̃×f̃ , but X is
not indecomposable. However, the following problem in the one-dimensional
case remains open.

(5.1) Problem. Suppose that f is a (positively) continuum-wise expan-
sive homeomorphism of a one-dimensional compactum X and Z is a chaotic
continuum of f . Is Z indecomposable? (Note that the converse assertion is
not true; see (5) of (2.1).)

As a partial answer to this problem, we have the following theorem.

(5.2) Theorem. Let f be a homeomorphism of a compactum X with
dimX > 0. If T (X) < ∞ and there exists a chaotic continuum of f , then
it is indecomposable.

P r o o f. Suppose that T (X) < n < ∞ and Z is a σ-chaotic continuum
of f . Suppose, on the contrary, that Z is decomposable. Then there is a
proper subcontinuum A of Z such that IntZ A 6= ∅. Since V σ(x;Z) is dense
in Z for each x ∈ Z, by (4.4) we can easily choose n subcontinua B1, . . . , Bn
of Z such that for each i, A ∩Bi 6= ∅, Bi − A 6= ∅ and Bi ∩Bj = ∅ (i 6= j).
Then T (X) ≥ T (A;X) ≥ n. This is a contradiction.

(5.3) Corollary. Let f be a homeomorphism of a compactum X with
dimX > 0 and let F be a finite family of graphs. If X is F-like and there
exists a chaotic continuum of f , then it is indecomposable.

P r o o f. It suffices to show that T (X) <∞. Since F is a finite family of
graphs, we can choose a natural number n such that max{T (G) | G ∈ F}
< n. Suppose, on the contrary, that T (X) ≥ n. Then there is a subcontinuum
A of X and n subcontinua B1, . . . , Bn of X such that for each i, A∩Bi 6= ∅,
Bi−A 6= ∅, andBi∩Bj = ∅ (i 6= j). If we choose a sufficiently small ε > 0 and
an onto map g : X → G ∈ F such that diam g−1(y) < ε for each y ∈ G, then
for each i, g(A)∩g(Bi) 6= ∅, g(Bi)−g(A) 6= ∅ and g(Bi)∩g(Bj) = ∅ (i 6= j).
This implies that T (G) ≥ n, which is a contradiction.

(5.4) Corollary (cf. [15, (3.1)] and [16, (6.9)]). Let f be a continuum-
wise expansive homeomorphism of a compactum X with dimX > 0. If there
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is a finite family F of graphs such that X is F-like, then each chaotic con-
tinuum of f is indecomposable. In particular , if f : G → G is a map of a
graph G such that f has sensitive dependence on initial conditions, then each
chaotic continuum of the shift map f̃ : (G, f)→ (G, f) is indecomposable.

In [3, Theorem 5], Curry proved that if X is a plane tree-like continuum
so that for any ε > 0, X has two disjoint ε-dense subcontinua, then X is
either indecomposable or the union of two indecomposable continua.

(5.5) Corollary. Let f be a continuum-wise expansive homeomorphism
of a plane tree-like continuum X. Then every chaotic continuum of f is
either indecomposable or the union of two indecomposable continua.

The author wishes to thank the referee for his helpful comments.
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