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Minor cycles for interval maps

by

Michał M i s i u r e w i c z (Indianapolis, Ind.)

Abstract. For continuous maps of an interval into itself we consider cycles (periodic
orbits) that are non-reducible in the sense that there is no non-trivial partition into blocks
of consecutive points permuted by the map. Among them we identify the miror ones. They
are those whose existence does not imply existence of other non-reducible cycles of the
same period. Moreover, we find minor patterns of a given period with minimal entropy.

1. Introduction and basic definitions. The aim of this paper is to
find the simplest types of non-reducible cycles for continuous interval maps.
Let us try to state this in a more rigorous way. The terminology used here is
mainly the same as in [ALM]. Perhaps also [ALM] gives a good background
for understanding this paper; there is also an extensive list of relevant pub-
lications there.

We consider the space I of all continuous maps f : I → I, where I is
a closed interval. A cycle of f is a periodic orbit of f , and by its period
we mean the smallest period. If f, g ∈ I and P,Q are cycles of f, g re-
spectively, then the pairs (P, f) and (Q, g) are equivalent if there exists a
homeomorphism ϕ of the smallest interval containing P onto the smallest
interval containing Q such that ϕ(P ) = Q and ϕ ◦ f ◦ϕ−1|Q = g|Q (in other
words, the permutations on both orbits are the same, up to the change of
orientation). The equivalence classes of this relation are called patterns. If
P (more precisely, (P, f), but we shall usually suppress f) has pattern A
then we shall write A = [P ] and we shall call P a representative of A in f .
We shall also say in this case that f exhibits A.

A pattern A forces a pattern B if all maps in I exhibiting A also ex-
hibit B. A cycle P of f has a non-trivial block structure if P = {x1, . . . , xk}
with x1 < . . . < xk and it can be divided into blocks P1 = {x1, . . . , xm},
P2 = {xm+1, . . . , x2m}, . . . , Ps = {xsm−m+1, . . . , xsm} such that m, s > 1,
sm = k and f maps each block Pi onto some block Pj(i). A cycle without
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a non-trivial block structure will be called non-reducible. Clearly, if two cy-
cles are equivalent and one of them is non-reducible, so is the other one.
Therefore we may speak about non-reducible patterns.

Now we can state our aim in a more precise way. Namely, we are going
to find all minimal non-reducible patterns of a given period k (“minimal”
means not forcing any other pattern in this class). We shall call them minor
patterns. As the reader may have guessed, minor stands for “minimal non-
reducible”; this explains also why the term non-reducible is used rather than
irreducible. For their representatives we shall use the term minor cycles. We
shall also find among them the ones with minimal entropy (the entropy of a
pattern is the infimum of the topological entropies of maps exhibiting this
pattern). Entropy measures to some extent how complicated a pattern is,
so minimizing it is a natural idea.

The way the problem solved in this paper arose is the following. Re-
cently a similar theory for the orientation preserving homeomorphisms of
the disk has been developed (see e.g. [FM]). There non-reducible patterns
are either twist (exhibited by rotations) or pseudo-Anosov (after removing
the cycle, the map is isotopic to a pseudo-Anosov homeomorphism). The
class of pseudo-Anosov patterns seems to be an important one, and one of
the natural questions is to find the ones with minimal entropy among those
of a given period. This generates immediately another question: how is it for
interval maps? Once this question is posed, the next one arises: for interval
maps, can we find not only entropy-minimal, but also all forcing-minimal
patterns among the non-reducible patterns of a given period? These two
questions are answered in this paper.

We shall use some standard notions and techniques of combinatorial
dynamics. In particular, we shall assume that the reader is familiar with the
following notions and their elementary use: f -covering, P -basic intervals, a
P -graph (= a Markov graph), a loop, a P -monotone map, a P -linear map,
topological entropy, a rome, a horseshoe.

The author is grateful to Jarosław Wróblewski, who wrote the computer
programs which started this research. Those programs were based on the
ideas of [BCMM] and made it possible to find experimentally minor patterns
of low periods.

2. Preliminary results. We are looking for the minor patterns of period
k. If k = 1 or 2 then there is only one pattern of period k, so it is minor.
If k ≥ 3 is odd then there is a unique primary pattern of period k, namely
the Štefan pattern (see e.g. [S], [ALM]). Since there are no other primary
patterns of period k, it is forced by every pattern of this period. This pattern
is non-reducible, and therefore it is a unique minor pattern of period k.
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Thus, we are left with the case k ≥ 4 even. To avoid unnecessary frac-
tions, we shall usually write k = 2n.

There are two cases of a block structure of a cycle P , particularly interest-
ing from our point of view. The first one is when there are two blocks. Then
we will say that there is a division for P . Otherwise, we will say that there
is no division for P (see [LMPY]). The other interesting case is when each
block consists of two points. In this case we will say that P is a 2-extension
(see [ALM]). In fact, these are the only consequences of non-reducibility of
P we will use: there is no division for P and P is not a 2-extension. For the
patterns we shall also use those terms: division, no division, 2-extension.

Very often we will use (without referring to it) the following basic fact
(see [ALM]):

If f is P -monotone and exhibits a pattern B then [P ] forces B.

We will also use once an existence of a P -adjusted map, that is, a P -
monotone map which has only one representative of [P ] (namely P itself)
(see [ALMY]).

The situation when there is no division for P has been investigated thor-
oughly in [LMPY]. We will use some consequences of the results of [LMPY].

Lemma 2.1. Let A be a pattern of period 2n, n ≥ 2, with no division.
Then A forces the Štefan pattern of period n if n is odd , and n + 1 if
n is even.

P r o o f. Let P = {x0, x1, . . . , x2n−1} be a representative of A in a P -
linear map f and let f(xi) = xi+1 for i = 0, 1, . . . , 2n−2, and f(x2n−1) = x0.
In the notation of [LMPY], x2n = x0, so by Proposition 2.4 of [LMPY], f
has a cycle of period n if n is odd, and n + 1 if n is even. Thus, A forces
some pattern of this period, so it forces the Štefan pattern of this period.

To state the next lemma, we introduce the following property:

(?) if x < z then f(x) > x and if x > z then f(x) < x.

Lemma 2.2. Let P be a cycle of f with no division. Then either there is
a fixed point z of f such that (?) holds for all x ∈ P , or there exist closed
intervals K,M with disjoint interiors and a common endpoint belonging to
P , such that each of them f -covers K ∪M , and P \ (K ∪M) 6= ∅.

P r o o f. This is basically Lemma 3.1 and Corollary 3.2 of [LMPY]. The
statement is slightly different, but the proof of Lemma 3.1 of [LMPY] shows
the existence of such intervals. The only thing we have to add is an argument
showing that P \ (K ∪M) 6= ∅. We have inf(K ∪M) = xn ≥ xn+1 (in the
notation of Lemma 3.1 of [LMPY]) and if xn+1 = xn then the period of P
is 1, so xn = x0, a contradiction. Therefore xn+1 ∈ P \ (K ∪M).
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We use the above lemma, which is rather technical, to get a nice property
of minor cycles.

Lemma 2.3. Let P be a minor cycle of f of period k > 2. Then f has a
fixed point z such that (?) holds for every x ∈ P .

P r o o f. Since P is minor, there is no division for it. Therefore Lemma 2.2
holds. Suppose first that f is P -adjusted and intervals K,M with the prop-
erties described in Lemma 2.2 exist. Then f has a periodic point x such
that fk(x) = x, with x, f(x) ∈ K and f i(x) ∈ M for i = 2, 3, . . . , k − 1.
Let Q be the cycle of f to which x belongs. It is contained in K ∪M , and
P \ (K ∪M) 6= ∅, so it is disjoint from P . Therefore no point of Q is the
common point of K and M . The period q of Q divides k. Since f(x) ∈ K,
we have fq+1(x) = f(x) ∈ K, and since 1 ≤ q ≤ k, we get q = k − 1 or
q = k. However, k > 2, so k − 1 does not divide k. Therefore q = k. If Q
has a non-trivial block structure then the two leftmost points of Q belong
to the same block. Those points are x and f(x) and this contradicts the
property that the image of a block is disjoint from the block itself. Thus, Q
is non-reducible, that is, [Q] is a non-reducible pattern of period k. Since f
is P -adjusted and Q 6= P , we get that [P ] forces [Q] and [Q] 6= [P ], so [P ]
is not a minor pattern, a contradiction. Hence, f has a fixed point z such
that (?) holds for all x ∈ P .

Now, if f is not necessarily P -adjusted, we take a P -adjusted map g and
get a fixed point t of g such that (?) holds for all x ∈ P and g, t replacing f, z.
The point t belongs to some P -basic interval [a, b]. Then f(a) = g(a) ≥ b and
f(b) = g(b) ≤ a. Therefore f has a fixed point z in (a, b). Since f |P = g|P ,
(?) is satisfied for all x ∈ P .

R e m a r k 2.4. It is easy to see that if, in Lemma 2.3, f is P -monotone
then z is the unique fixed point of f and (?) holds for all x ∈ I.

3. Green patterns. Assume that P is a cycle of a P -linear map f ∈ I,
z is a fixed point of f such that (?) holds for all x ∈ P , P has period 2n,
n ≥ 2, and there is no division for P . Notice that here z plays a similar role
to 0 in [ALMY] for maps of the triod Y . Therefore we shall use here a similar
terminology. Namely, if x ∈ P then the pair A = (x, f(x)) is an arrow in P
with the beginning x = b(A) and end f(x) = e(A). An arrow is green if its
beginning and end are on the same side of z, and black otherwise. We shall
write P− for {x ∈ P : x < z} and P+ for {x ∈ P : x > z}.

Lemma 3.1. The number of green arrows in P is even. Moreover ,
Card(P−) minus the number of green arrows in P− is equal to Card(P+)
minus the number of green arrows in P+.
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P r o o f. Let g− (respectively g+) be the number of green arrows in P−
(respectively P+), and let b− (respectively b+) be the number of black arrows
beginning in P− (respectively P+). When we look at the arrows beginning
in P− and P+, then we get Card(P−) = b− + g− and Card(P+) = b+ + g+.
When we look at the arrows ending in P− and P+, then we get Card(P−) =
b+ + g− and Card(P+) = b− + g+. Therefore b− = b+, so 2n = Card(P−) +
Card(P+) = 2b−+ (g−+ g+). Hence the number g−+ g+ of all green arrows
in P is even. Moreover, Card(P−)− g− = b− = b+ = Card(P+)− g+.

We shall call a cycle P of period 2n, n ≥ 2, for which there exists a
P -monotone map f with a fixed point z such that (?) holds for all x ∈ P ,
there are exactly two green arrows in P and f restricted to the set of the
beginnings of black arrows in P is decreasing, a green cycle. Clearly, if P is
a green cycle then all P -monotone maps have those properties. Moreover, if
P is green then all cycles with the same pattern as P are green, so we may
speak about a green pattern [P ].

It is easy to classify and describe green patterns of a given period. We
start with a simple lemma. When we have a green cycle P then we shall use
f and z as in the above definition.

Lemma 3.2. Let P be a green cycle. Then there is a green arrow in P
which begins at minP or maxP and there is a green arrow in P which ends
at maxP− or minP+.

P r o o f. Suppose that minP and maxP are the beginnings of black ar-
rows A1 and A2 respectively. Since no green arrow can end at minP or
maxP and f restricted to the set of the beginnings of black arrows in P is
decreasing, we have maxP = e(A1) and minP = e(A2). Thus, the period
of P is 2, a contradiction.

Suppose now that maxP− and minP+ are the ends of black arrows A1

and A2 respectively. Since no green arrow can begin at maxP− or minP+

and f restricted to the set of the beginnings of black arrows in P is de-
creasing, we have minP+ = b(A1) and maxP− = b(A2). As before, we get
a contradiction.

Let P be a green cycle of period 2n. Suppose first that both green arrows
in P are on the same side of z. Without loss of generality we may assume that
they are to the left of z. By Lemma 3.1, there are n+1 points in P− and n−1
points in P+. We shall denote those points by x1, . . . , xn+1 and y1, . . . , yn−1

in such a way that xn+1 < xn < . . . < x1 < z < y1 < y2 < . . . < yn−1. By
Lemma 3.2, there is a green arrow beginning at xn+1 and there is a green
arrow ending at x1. Thus, there are s, l ∈ {2, . . . , n} such that the green
arrows begin at xn+1 and xl and end at xs and x1 (although we do not
know yet which arrow ends where).
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Once s and l are fixed, we know all the black arrows (since f restricted
to the set of the beginnings of black arrows in P is decreasing). Namely, the
black arrows beginning at xi with i < l end at yi; the ones beginning at xi
with l < i ≤ n end at yi−1; the ones beginning at yi with i < s − 1 end at
xi+1 and the ones beginning at yi with i ≥ s− 1 end at xi+2.

If l < s then f(xl) = x1, and then f2(xi) = xi+1 for i = 1, . . . , l − 1,
so the trajectory of xl never passes through xn+1. Since P is a cycle, we
get a contradiction. Therefore we have s ≤ l. If s ≤ i < l then we get
f2(xi) = xi+2. Thus, again since P is a cycle, we get the following rule:

(i) if l− s is even then the green arrows go from xn+1 to xs and from xl
to x1;

(ii) if l− s is odd then the green arrows go from xn+1 to x1 and from xl
to xs.

Hence, we see that specifying s and l defines a green pattern of period
2n completely. We shall denote such a pattern by Bn(s, l).

By tracing arrows, we also get the following lemma, which will be useful
later.

Lemma 3.3. If [P ] = Bn(s, l) then f2(xi) = xi+1 for 1 ≤ i ≤ s− 2 and
for l + 1 ≤ i ≤ n, and f2(xi) = xi+2 for s − 1 ≤ i ≤ l − 1. Moreover ,
f(xl−1) = yl−1, f(yl−1) = xl+1 and f(xl+1) = yl.

Let us assume now that the green arrows are on different sides of z. By
Lemma 3.1, there are n points in P− and n points in P+. We shall denote
those points by x1, . . . , xn and y1, . . . , yn in such a way that xn < xn−1 <
. . . < x1 < z < y1 < y2 < . . . < yn. By Lemma 3.2, there is a green arrow
beginning at xn or yn. Without loss of generality we may assume that this
is xn. Again by Lemma 3.2, there is a green arrow ending at y1 or x1. In
the first case, one green arrow goes from xn to xs for some s with 1 ≤ s < n
and the other one from yl to y1 for some l with 1 < l ≤ n. In the second
case, one green arrow goes from xn to x1 and the other one from yl to ys
for some s, l with 1 ≤ s < l ≤ n. As before, this information is enough to
tell how the black arrows go, so it determines the pattern. As before, we
easily see that in the first case l > s and l− s is odd, and in the second case
l − s is also odd. In the first case we shall denote the pattern by Cn(s, l)
and in the second case by Dn(s, l). Notice also that Dn(1, l) = Cn(1, l) and
Dn(s, n) = Cn(s, n), so we have to consider Dn(s, l) only for 1 < s < l < n.

Again by tracing arrows, we get the next lemma.

Lemma 3.4. If [P ] = Cn(s, l) then f2(xi) = xi+2 for s ≤ i ≤ l − 2,
f2(xi) = xi+1 for l ≤ i ≤ n − 1, f2(yi) = yi+1 for 1 ≤ i ≤ s − 1, and
f2(yi) = yi+2 for s ≤ i ≤ l − 1. If [P ] = Dn(s, l) then f2(yi) = yi+2 for
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s ≤ i ≤ l − 1. Moreover , f(yl−1) = xl, f(xl) = yl+1, f(yl+1) = xl+1 and
f(xn−1) = yn; if l = n then additionally f(yn−1) = xn.

The proofs of Lemmas 3.3 and 3.4 are elementary and we leave them to
the reader. We conclude this section by listing the green patterns for further
reference and drawing some examples of green cycles.

The green patterns are the following:

(i) Bn(s, l) with 2 ≤ s ≤ l ≤ n and l − s even. Then the green arrows
go from xn+1 to xs and from xl to x1.

(ii) Bn(s, l) with 2 ≤ s ≤ l ≤ n and l− s odd. Then the green arrows go
from xn+1 to x1 and from xl to xs.

(iii) Cn(s, l) with 1 ≤ s < l ≤ n and l− s odd. Then the green arrows go
from xn to xs and from yl to y1.

(iv) Dn(s, l) with 1 < s < l < n and l − s odd. Then the green arrows
go from xn to x1 and from yl to ys.

x x x x x x x z y y y y y
7 6 5 4 3 2 1 1 2 3 4 5

Fig. 3.1. A cycle with pattern B6(3, 5)

x x x x x x x z y y y y y
7 6 5 4 3 2 1 1 2 3 4 5

Fig. 3.2. A cycle with pattern B6(3, 6)
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x x x x x x z y y y y y y
6 5 4 3 2 1 1 2 3 4 5 6

Fig. 3.3. A cycle with pattern C6(2, 5)

x x x x x x z y y y y y y
6 5 4 3 2 1 1 2 3 4 5 6

Fig. 3.4. A cycle with pattern D6(2, 5)

4. Minor patterns are green. In this section we assume that P is a
cycle of a P -linear map f ∈ I, z is a fixed point of f such that (?) holds for
all x ∈ P , P has period 2n, n ≥ 2, and there is no division for P .

If x, y ∈ I then 〈x, y〉 will denote the interval [x, y] if x < y, the interval
[y, x] if y < x, and the set {x} if x = y. Similarly, 〈P 〉 will denote the
smallest interval containing P .

For x ∈ I we set

F (x) =
{

max f([x, z]) if x ≤ z,
min f([z, x]) if x ≥ z.

Clearly, F is non-decreasing and F (x) = f(x) unless F is constant in a
neighborhood of x.

If g ∈ I has a unique fixed point z then we shall say that a trajectory
(gi(x))mi=0 is spiraling outwards if gi(x) ∈ 〈z, gi+2(x)〉 for i = 0, 1, . . . ,m− 2
and z ∈ 〈gi(x), gi+1(x)〉 for i = 0, 1, . . . ,m− 1.
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Lemma 4.1. All F-trajectories of points of 〈P 〉 are spiraling outwards.

P r o o f. We have F (x) ≤ z for x ≥ z and F (x) ≥ z for x ≤ z. Therefore
z is the unique fixed point of F and z ∈ 〈x, F (x)〉 for any x ∈ I. Moreover,
since f is P -linear, we have f(I) = 〈P 〉, so F (I) = 〈P 〉. Hence, if some
F -trajectory of a point of 〈P 〉 is not spiraling outwards then there exists
y ∈ 〈P 〉 such that F 2(y) ∈ 〈y, z〉 and F 2(y) 6= y. In such a case the interval
〈y, F (y)〉 is F -invariant, so by the definition of F , it is also f -invariant. Since
f is P -linear and the period of P is greater than 2, the absolute value of the
slope of f on the P -basic interval containing z is larger than 1. Therefore
〈y, F (y)〉 cannot be contained in this interval, so it contains some point
of P . Consequently, it contains the whole set P . Therefore y = minP or
maxP . However, since (?) holds for all x ∈ P , we get F (minP ) = maxP
and F (maxP ) = minP , a contradiction.

We set, for any x, y ∈ P ,

m(x, y) = min{m ≥ 0 : y ∈ 〈z, Fm(x)〉}.
Since F is monotone, we have m(x, t) ≤ m(x, y)+m(y, t) for any x, y, t ∈ P .

We need some technical lemmas.

Lemma 4.2. Let x ∈ P and y = f j(x). Then m(x, y) ≤ j. Moreover ,
if m(x, y) = j then f i(x) ∈ 〈z, F i(x)〉 for i = 0, 1, . . . , j and (f i(x))ji=0 is
spiraling outwards.

P r o o f. There are numbers 0 ≤ p0 < p1 < . . . < ps ≤ j such that if
i ∈ {0, 1, . . . , j − 1} then f i(x) is the beginning of a black arrow if and only
if i ∈ {p0, p1, . . . , ps}. We have fp0(x) ∈ 〈z, x〉 and if fpi(x) ∈ 〈z, F i(x)〉 then
fpi+1(x) ∈ 〈z, F i+1(x)〉. Therefore by induction we get fpi(x) ∈ 〈z, F i(x)〉
for all i, so in particular fps(x) ∈ 〈z, F s(x)〉. But then y = f j(x) ∈
〈z, fps(x)〉 ⊂ 〈z, F s(x)〉. Since s ≤ j, we get m(x, y) ≤ s ≤ j.

Assume now that m(x, y) = j. Then s = j, so pi = i for all i. Thus,
f i(x) ∈ 〈z, F i(x)〉 for i = 0, 1, . . . , j. By Lemma 4.1, (F i(x))ji=0 is spiraling
outwards, and thus z ∈ 〈f i(x), f i+1(x)〉 for i = 0, 1, . . . , j − 1. Suppose
that f i+2(x) ∈ 〈z, f i(x)〉 for some i ≤ j − 2. Then f i+2(x) ∈ 〈z, F i(x)〉,
so by induction we get f j(x) ∈ 〈z, F j−2(x)〉, that is, m(x, y) ≤ j − 2,
a contradiction. Therefore f i(x) ∈ 〈z, f i+2(x)〉 for i = 0, 1, . . . , j − 2, so
(f i(x))ji=0 is spiraling outwards.

Lemma 4.3. Assume that n is odd , A1 6= A2 are green arrows in P on
the same side of z and all four numbers m(e(Ai), b(Aj)), i, j = 1, 2, are
larger than or equal to n− 1. Then P is a 2-extension.

P r o o f. We have b(A2) = fm1(e(A1)) and b(A1) = fm2(e(A2)) for some
m1,m2 ≥ 0 with m1 + m2 + 2 = 2n. By Lemma 4.2, m1,m2 ≥ n − 1, so
m1 = m2 = m(e(A1), b(A2)) = m(e(A2), b(A1)).
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Suppose that f j(e(A1)) ∈ 〈z, f i(e(A2))〉 for some 0 ≤ i < j ≤ n −
1. By Lemma 4.2, we have f i(e(A2)) ∈ 〈z, F i(e(A2))〉, so f j(e(A1)) ∈
〈z, F i(e(A2))〉. Consequently, m(e(A2), f j(e(A1))) ≤ i. On the other hand,
by Lemma 4.2, since b(A2) = fn−1(e(A1)), we have m(f j(e(A1)), b(A2)) ≤
n − 1 − j. Thus, m(e(A2), b(A2)) ≤ i + n − 1 − j < n − 1, a contradiction.
Therefore if f j(e(A1)) ∈ 〈z, f i(e(A2))〉 for some i, j ∈ {0, 1, . . . , n− 1} then
i ≥ j. Similarly, if f j(e(A2)) ∈ 〈z, f i(e(A1))〉 for some i, j ∈ {0, 1, . . . , n−1}
then also i ≥ j. Moreover, by Lemma 4.2, the trajectories (f i(e(A1)))n−1

i=0
and (f i(e(A2)))n−1

i=0 are spiraling outwards. Therefore, assuming that A1

and A2 are to the left of z (which we can do without loss of generality),
the ordering of the points of P is the following. First come the points
fn−1(e(Ai)), i = 1, 2; then fn−3(e(Ai)), i = 1, 2; then . . . ; then e(Ai), i =
1, 2; then f(e(Ai)), i = 1, 2; then f3(e(Ai)), i = 1, 2; then . . . ; then
fn−2(e(Ai)), i = 1, 2. Thus, P is a 2-extension (in fact, it is a 2-extension
of a Štefan cycle of period n).

Lemma 4.4. All green patterns are non-reducible except Bn(2, n) for n
odd , which is a 2-extension.

P r o o f. Assume that a green cycle P has a non-trivial block structure.
Then the map obtained after contracting the smallest interval containing
each block into a point has still a fixed point, so z is outside those intervals.
Since P has green arrows, the cycle Q obtained in such a way also has a
green arrow, so the number of green arrows in P is at least as large as the
cardinality of each block. Since there are only 2 green arrows in P , there
are only 2 points in each block, that is, P is a 2-extension. Then the green
arrows in P begin at adjacent points of P and end at adjacent points of P .
The only green patterns with this property are Bn(2, n). The direct checking
shows that Bn(2, n) is a 2-extension for n odd and is not a 2-extension for
n even.

The following is the key lemma of this section, if not of the whole paper.

Lemma 4.5. Assume that there is no division for P and that P is not a
2-extension. Then f has a cycle Q such that one of the following holds:

(i) Q has period m odd , 3 ≤ m < n,
(ii) Q is green of period 2m, 1 < m < n,

(iii) Q is green of period 2n and is not a 2-extension.

Moreover , if there is a green arrow A in P such that m(e(A), b(A)) < n− 1
then f has a cycle Q such that (i) holds.

P r o o f. Since P is not a 2-extension, there is a green arrow in P . By
Lemma 3.1, there are at least two of them. Choose two green arrows A1 6= A2

in P and denote for i = 1, 2 by c(Ai) the point closest to b(Ai) among those
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points of P ∩ 〈b(Ai), z〉 which are the beginnings of black arrows. Such a
point exists since the points of P− and P+ closest to z are the beginnings
of black arrows. Consider a loop

〈b(A1), c(A1)〉 → 〈z, e(A1)〉 → 〈z, F (e(A1))〉 → 〈z, F 2(e(A1))〉 → . . .→
〈z, Fm1−1(e(A1))〉 → 〈b(A2), c(A2)〉 → 〈z, e(A2)〉 → 〈z, F (e(A2))〉 →
〈z, F 2(e(A2))〉 → . . .→ 〈z, Fm1−1(e(A1))〉 → 〈b(A1), c(A1)〉,

where m1 = m(e(A1), b(A2)) and m2 = m(e(A2), b(A1)). In this loop each
interval of the form 〈z, F i(e(Aj))〉 F -covers the next one with orientation
reversed. Moreover, 〈b(Aj), c(Aj)〉 f -covers 〈z, e(Aj)〉 with orientation pre-
served. When we go along the loop from 〈b(Aj), c(Aj)〉 to 〈b(A3−j), c(A3−j)〉,
we change the side of z mj times. When we go around the whole loop, we
have to return to the same side of z, so m1 + m2 is even. Therefore when
we return, we do it with orientation preserved. Thus, there is an interval
K ⊂ 〈b(A1), c(A1)〉 such that ϕi(K) is contained in the ith interval of the
loop for i = 0, 1, . . . ,m1 + m2 + 1 (we consider 〈b(A1), c(A1)〉 to be the
0th interval), and the left (respectively right) endpoint of K is mapped by
ψ = ϕm1+m2+2 to the left (respectively right) endpoint of 〈b(A1), c(A1)〉.
Here ϕ = F when we consider the map on 〈z, F i(e(Aj))〉, and ϕ = f on
〈b(Aj), c(Aj)〉.

There is a fixed point x ∈ K of ψ such that ψ is not constant in any
neighborhood of x (the graph of ψ has to intersect the diagonal from “below”
to “above”). Thus, none of the points ϕi(x) has a neighborhood on which
ϕ is constant. Hence, ϕ(ϕi(x)) = f(ϕi(x)), so the ϕ-orbit of x is the same
as the f -orbit of x. Therefore this orbit is a cycle of f . Call this cycle Q.

Let q be the period of Q. The beginnings of the green arrows in Q
correspond to the intervals 〈b(Aj), c(Aj)〉 of the loop. Since fq maps the
set of the beginnings of green arrows in Q onto itself, there are only two
possibilities: either q = m1 + m2 + 2 or q = (m1 + m2 + 2)/2. Moreover,
in the second case m1 = m2. In both cases, f restricted to the set of the
beginnings of black arrows in Q is equal to F restricted to the same set, so it
is decreasing. In the first case, there are two green arrows in Q, in the second
case there is only one. By Remark 2.4, (?) holds for all x ∈ Q. Therefore, in
the first case Q is a green cycle.

Suppose that for one of Aj we have m(e(Aj), b(Aj)) < n−1. Then in the
same way as Q (using the loop 〈b(Aj), c(Aj)〉 → 〈z, e(Aj)〉 → 〈z, F (e(Aj))〉
→ 〈z, F 2(e(Aj))〉 → . . . → 〈z, Fmj−1(e(Aj))〉 → 〈b(Aj), c(Aj)〉) we get a
cycle Q′ of period m(e(Aj), b(Aj)) + 1 < n, with exactly one green arrow.
Since there is only one green arrow in Q′, the period of Q′ is odd. Moreover,
m(e(Aj), b(Aj)) ≥ 2, so this period is at least 3. Thus, we get a cycle of type
described in (i). In particular, this proves the last statement of the lemma.
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Assume now that m(e(Aj), b(Aj)) ≥ n− 1 for j = 1, 2. If q = (m1 +m2

+ 2)/2, then m1 = m2, so if q = n, we get m1 = m2 = n − 1. In this
case, since Q has only one green arrow, n is odd. Since m1 is even, A1 and
A2 are on the same side of z. Thus, by Lemma 4.3, P is a 2-extension, a
contradiction. By Lemma 4.2, m1 + m2 + 2 ≤ 2n. Therefore q < n. Again,
since Q has only one green arrow, q is odd. At least one of the numbers
m1,m2 is larger than or equal to 2, and since they are equal, both are larger
than or equal to 2. Therefore q ≥ 3. Thus, Q is of type described in (i).

The remaining case is q = m1 + m2 + 2. If q < 2n then Q is of type
described in (ii) (we have q > 2 since for q = 2 there would be no green ar-
rows). Assume that q = 2n. Suppose that Q is a 2-extension. By Lemma 4.4,
[Q] = Bn(2, n) and n is odd. Then m1 = m2 = n − 1, and by Lemma 4.3,
P is a 2-extension, a contradiction. Therefore Q is not a 2-extension, so it
is of type described in (iii).

Lemma 4.6. Let 3 ≤ m < n and let m be odd. Then any pattern of period
m forces a non-reducible pattern of period 2n.

P r o o f. Let Q be a Štefan cycle of period m of a Q-linear map g. With
the standard notation the Q-graph looks as in Figure 4.1 (see e.g. [BGMY],
[ALM]), where the fixed point of g is in I1.

I1 I2

Is−1 I3

Is−2 I4

. . . I5

//

"# //
?????ÂÂwwwwwww;;

//
EEEEEEEEEEEEEEEE""

²² ²²
. . .

OO

ÄÄ�����ccGGGGGGGG
oo

Fig. 4.1. The P -graph of a Štefan cycle P

Consider the loop I1 → I1 → I2 → I3 → . . . → Im−1 → I1 → I1 →
. . . → I1 → I2 → I3 → . . . → Im−1 → I1 of length 2n (that is, we go along
the short loop I1 → I1 once, then along the long loop I1 → I2 → I3 →
. . . → Im−1 → I1 once, then along the short loop 2n − 2m + 1 times, and
again along the long loop once). This loop is simple (it is not a repetition
of a shorter loop), so it is associated with a cycle R of period 2n. The map
g on

⋃m−2
i=1 Ii is decreasing, so all arrows in R beginning there are black.
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There are two arrows in R beginning in Im−1. They are followed by an odd
number of arrows I1 → I1 and then an arrow I1 → I2, and I2 is on the same
side of the fixed point as Im−1. Therefore those arrows are green. Thus, the
cycle R is green. The distances along the loop between the occurrences of
Im−1 are different, so R is not a 2-extension. Thus, by Lemma 4.4, R is
non-reducible. Since g is Q-linear, [Q] forces [R].

Now, any pattern of period m forces [Q], so it forces [R].

Lemma 4.7. For n ≥ 2, any pattern Bn(s, l) with l − s odd which is not
a 2-extension, forces a pattern of some period m odd with 3 ≤ m < n.

P r o o f. Let P be as usual, with [P ] = Bn(s, l), l − s odd and P not a
2-extension. If A is the green arrow from xl to xs, by Lemma 3.3 we have

m(e(A), b(A)) = 2 · l − s+ 1
2

= l − s+ 1.

If n is odd, then by Lemma 4.4, (s, l) 6= (2, n), so l − s + 1 < n − 1. If n
is even, l − s + 1 ≤ n − 1, but l − s + 1 is even, whereas n − 1 is odd, so
l−s+1 < n−1. Hence, in both cases m(e(A), b(A)) < n−1. By Lemma 4.5,
[P ] forces some pattern B of period m odd with 3 ≤ m < n.

Lemma 4.8. Let 1 < m < n and let B be a green pattern of period 2m.
Then B forces a non-reducible pattern of period 2n.

P r o o f. If B is a 2-extension then by Lemma 4.4, m is odd, so B forces
a pattern of period m odd with 3 ≤ m < n (the one whose 2-extension B
is). Therefore by Lemma 4.6 it forces a non-reducible pattern of period 2n.

Assume that B is not a 2-extension. If B = Bm(s, l) with l− s odd, then
by Lemma 4.7, it forces a pattern of some period r odd with 3 ≤ r < m, so
again it forces a non-reducible pattern of period 2n.

The rest of the green patterns of period 2m have the following property.
Let Q be a representative of B in a Q-linear map g with the fixed point t. For
x ∈ Q let J(x) be the (Q∪{t})-basic interval adjacent to x and lying on the
same side of t as x. Then J(x) g-covers J(g(x)) for each x ∈ Q. Indeed, the
only way this condition could be violated is that x and the other endpoint
of J(x) are beginnings of green arrows and g reverses orientation on J(x).
This can happen only if B = Bm(s,m) with m− s odd, but those patterns
have been considered before, so we are not considering them now.

The condition described above implies that the fundamental loop of Q in
the (Q∪{t})-graph is J(x)→ J(g(x))→ J(g2(x))→ . . .→ J(g2m−1(x))→
J(x). Therefore the fundamental loop of Q in the Q-graph passes twice
through the Q-basic interval I1 containing t (and once through any other
Q-basic interval). Thus, the fundamental loop of Q in the Q-graph can be
written as α = I1 → J2 → J3 → . . . → J2m → I1 (where one of Jj ’s is I1).
Consider the loop β = I1 → J2 → J3 → . . . → J2m → I1 → I1 → . . . → I1
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of length 2n (we go along the fundamental loop once and then along the
loop I1 → I1 2n − 2m times). This loop is simple, so there is a cycle R of
period 2n associated with it. The same arrows in α and β correspond to
the green arrows in Q and R respectively, and new arrows in β correspond
to black arrows (g is orientation reversing on I1). Therefore the cycle R is
green. The point corresponding to the first appearance of I1 in the final
block of I1’s in β is the end of a green arrow in R. However, the point of
R adjacent to it and further from t corresponds to the third appearance of
I1 in this block, so it is the end of a black arrow. Therefore, by Lemma 4.4,
[R] is non-reducible. Thus, B = [Q] forces the non-reducible pattern [R] of
period 2n.

Now we are ready to prove the result announced in the title of this
section.

Theorem 4.9. All minor patterns of period 2n with n ≥ 2 are green.

P r o o f. Let P, f, z be as usual, and assume that P is minor. By
Lemma 4.5, f has a cycle Q of one of the types described there.

If Q is as in (i) then [P ] forces the pattern [Q] of period m odd with
3 ≤ m < n. By Lemma 4.6, [Q] forces a non-reducible pattern B of period
2n. Therefore [P ] forces B. Since [P ] 6= [Q], by the antisymmetry of the
forcing relation we get [P ] 6= B. Hence, [P ] is not minor, a contradiction.

If Q is as in (ii) then [P ] forces the green pattern [Q] of period 2m with
1 < m < n. By Lemma 4.8, [Q] forces a non-reducible pattern C of period
2n. Hence, as before, we get a contradiction.

Therefore Q has to be of the type described in (iii). Thus, [P ] forces the
green pattern [Q] of period 2n which is not a 2-extension. By Lemma 4.4,
[Q] is non-reducible. Since [P ] is minor, it follows that [P ] = [Q]. Therefore
[P ] is green.

5. Green patterns which are minor. In this section we are going to
find out which green patterns are minor.

Theorem 5.1. Any minor pattern of period 2n, n ≥ 2, is one of the
following :

(i) Bn(s, l) with 2 ≤ s ≤ l ≤ n and s+ l equal to n+ 1 or n+ 3 if n is
odd , and n+ 2 if n is even,

(ii) Cn(s, l) with 1 ≤ s < l ≤ n and s+ l equal to n or n+ 2 if n is odd ,
and n+ 1 if n is even.

P r o o f. We shall use the notation of Section 3. Assume that a green cycle
P is minor. One of the green arrows in P begins at minP . We shall call this
arrow A1 and the other green arrow A2. By Lemmas 4.5 and 4.6 we see that
for both green arrows Aj , j = 1, 2, we have m(e(Aj), b(Aj)) ≥ n− 1.
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If [P ] = Bn(s, l) then from Lemmas 4.7 and 4.6 we deduce (in the same
way as in the previous section) that l − s is even. Lemma 3.3 gives us

m(e(A1), b(A1)) = 2
(
l − s

2
+ 1 + n− l

)
= 2n+ 2− l − s

and

m(e(A2), b(A2)) = 2
(
s− 2 +

l − s
2

+ 1
)

= s+ l − 2.

Therefore 2n+2−l−s ≥ n−1 and s+l−2 ≥ n−1, that is, n+1 ≤ s+l ≤ n+3.
Since l− s is even, so is s+ l, and we get s+ l = n+ 1 or n+ 3 if n is odd,
and s+ l = n+ 2 if n is even.

If [P ] = Cn(s, l) then Lemma 3.4 gives us

m(e(A1), b(A1)) = 2
(
l − 1− s

2
+ 1 + n− l

)
= 2n+ 1− s− l

and

m(e(A2), b(A2)) = 2
(
s− 1 +

l + 1− s
2

)
= s+ l − 1.

Therefore 2n+1−s−l ≥ n−1 and s+l−1 ≥ n−1, that is, n ≤ s+l ≤ n+2.
Since l− s is odd, so is s+ l, and we get s+ l = n or n+ 2 if n is odd, and
s+ l = n+ 1 if n is even.

If [P ] = Dn(s, l) with 2 ≤ s < l ≤ n− 1 then Lemma 3.4 gives us

m(e(A2), b(A2)) = 2 · l + 1− s
2

= l + 1− s.
Therefore l + 1− s ≥ n− 1, so n− 2 ≥ n− 1, a contradiction.

Now we have good candidates for minor patterns and we have to prove
that they are really minor.

Theorem 5.2. All patterns listed in Theorem 5.1 are minor.

P r o o f. Again we shall use the notation of Section 3. Look at the (P ∪
{z})-graph. Set I0 = [x1, z], J0 = [z, y1] and Ii = [xi+1, xi], Ji = [yi, yi+1]
for i > 0.

The patterns Bn(3, n) for n odd and Bn(2, n) for n even are unimodal.
There are no other unimodal patterns listed in Theorem 5.1, so those have
to be minor. Consider the rest of the patterns listed there. If P is a represen-
tative of one of them then no P -basic interval has both endpoints which are
the beginnings of green arrows. Therefore if in the (P ∪ {z})-graph there is
an arrow S from Ii to Ij (or from Ji to Jj) then exactly one of the endpoints
of Ii (respectively Ji) is the beginning of a green arrow A. When we follow
some path in the (P ∪{z})-graph and use such an arrow S then we shall say
that we move along A (cf. [ALMY]). To get a loop associated with a green
cycle we have to move along green arrows exactly twice.
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In such a loop of length 2n, if we move twice along the same green arrow
A then the number of steps between those moves is at least n−1 (otherwise
we would have m(e(A), b(A)) < n− 1, and we would get a contradiction in
the same way as we did already several times), and we do not get earlier to a
(P ∪{z})-basic interval from which this move begins. Therefore in the cycle
Q associated with this loop, both green arrows begin at the two leftmost (or
the two rightmost) points. This means that if [Q] is listed in Theorem 5.1
then [Q] = Bn(3, n) if n is odd, and [Q] = Bn(2, n) if n is even. However,
in Bn(i, n) the numbers of steps necessary to get from the end of one green
arrow to the beginning of the other one are n− i and n+ i− 2, whereas for
Q those numbers are both n− 1, a contradiction.

Thus, to get a loop associated with Q such that [Q] is listed in Theo-
rem 5.1, we have to move along both green arrows in P . As in the proof of
Lemma 4.8, since no P -basic interval has both endpoints which are begin-
nings of green arrows, if a (P ∪ {z})-basic interval J ⊂ 〈x, z〉 with x as an
endpoint f -covers some (P ∪{z})-basic interval J ′ which is on the same side
of z as f(x), then J ′ ⊂ 〈f(x), z〉. Therefore if we start from any interval to
which we moved along a green arrow, and we want to get to an interval ad-
jacent to the beginning of the other green arrow, the fastest way is to follow
the fundamental loop, and any other way is longer. Since the length of the
loop associated with Q is 2n, and this is also the length of the fundamental
loop, we see that those two loops have to coincide. Consequently, Q = P . In
view of Theorem 5.1, this shows that [P ] is minor.

Just for statistics, notice that for a given n ≥ 2, there are 2n− 2 minor
patterns of period 2n if n is odd, and n if n is even. In each case half of them
are of the form Bn(s, l) and another half of the form Cn(s, l). One of them
(Bn(3, n) if n is odd and Bn(2, n) if n is even) is unimodal, one (Cn(2, n) if n
is odd and Cn(1, n) if n is even) is bimodal, and all the others are trimodal.

Fig. 5.1. The graphs of f for [P ] = B4(2, 4) (left) and [P ] = B4(3, 3) (right)
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Fig. 5.2. The graphs of f for [P ] = C4(1, 4) (left) and [P ] = C4(2, 3) (right)

6. Minor patterns with minimal entropy. In this section we shall
find minor patterns of a given period 2n with minimal entropy. Clearly, they
are also non-reducible patterns of this period with minimal entropy. We also
compute this minimal entropy.

Among the minor patterns of period 2n there is one which is unimodal.
Unimodal is in some sense simplest. Therefore it is a good candidate for
having minimal entropy. We shall show that this is indeed so.

Lemma 6.1. The entropy of the pattern Bn(s, l) with 2 ≤ s ≤ l < n, with
l − s even and with n ≥ 2, is larger than or equal to log

√
3.

P r o o f. Let P be a cycle with [P ] = Bn(s, l), and let f, z, xi, yi be as
usual. Consider the intervals J = [xl+1, xl], K = [xl, xl−1], L = [xl−1, z] and
M = [z, yl−1]. By Lemma 3.3, we have f(xl+1) = yl > yl−1, f(xl−1) = yl−1

and f(yl−1) = xl+1. Moreover, f(xl) = x1 < z and f(z) = z. Therefore
each of the intervals J,K,L f -covers M and M f -covers each of J,K,L (see
Figure 6.1). Thus, there is a 3-horseshoe for f2, so h(f) ≥ log

√
3. Hence,

h(P ) ≥ log
√

3.

Lemma 6.2. The entropy of the pattern Cn(s, l) with 1 ≤ s < l ≤ n even
and with n ≥ 2 is larger than or equal to log

√
3.

P r o o f. Let P be a cycle with [P ] = Cn(s, l), and let f, z, xi, yi be as
usual. Assume first that l < n. Consider the intervals J = [xl, z], K =
[z, yl−1], L = [yl−1, yl] and M = [yl, yl+1]. By Lemma 3.4, we have f(xl) =
yl+1, f(yl−1) = xl and f(yl+1) = xl+1 < xl. Moreover, f(z) = z and
f(yl) = y1 > z. Therefore J f -covers each of the intervals K,L,M and each
of K,L,M f -covers J (see Figure 6.2). Thus, as in the proof of the preceding
lemma, h(P ) ≥ log

√
3.
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x x x z yJ K L M
l+1 l l –1 l –1

Fig. 6.1. Intervals J,K,L,M for [P ] = Bn(s, l)

x z y y yJ K L M
l l –1 l l+1

Fig. 6.2. Intervals J,K,L,M for [P ] = Cn(s, l), l < n

Assume now that l = n. Consider the intervals J = [xn, xn−1], K =
[xn−1, z], L = [z, yn−1] and M = [yn−1, yn]. By Lemma 3.4, f(xn−1) = yn
and f(yn−1) = xn. Moreover, f(xn) = xs < z, f(z) = z and f(yn) = y1 > z.
Therefore each of the intervals J,K f -covers each of L,M and vice versa
(see Figure 6.3). We get a 4-horseshoe for f2, so in the same way as before
we obtain h(P ) ≥ log

√
4 > log

√
3.

The only minor patterns of period 2n whose entropy we did not estimate
are the patterns Bn(3, n) for n odd and Bn(2, n) for n even, that is, the
unimodal ones.

Let n be odd and [P ] = Bn(3, n). We use our standard notation (addi-
tionally we denote by K the P -basic interval containing z).
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x x z y yJ K L M
n n–1 n–1 n

Fig. 6.3. Intervals J,K,L,M for [P ] = Cn(s, n)

x x x ... x x x x y y y y ... y y
n+1 n n–1 4 3 2 1 1 2 3 4 n–2 n–1

I I I I I K J J J Jn n–1 3 2 1 1 2 3 n–2

Fig. 6.4. A cycle with pattern Bn(3, n), n odd

The P -graph of f is the following:

I2 → J2 → I4 → J4 → . . .→ In−1

↗
K → I1 → J1

↘
I3 → J3 → I5 → J5 → . . .→ In

and additionally there are arrows from In to I1 and I2, and from In−1 to
K and all Ji’s. The set {K, In−1, In} is a rome and there are paths of the
following length from the rome to itself: K → K: 1; K → In−1: n; K → In:
n; In−1 → K: 1; In−1 → In−1: n−1, n−3, . . . , 2; In−1 → In: n−1, n−3, . . . , 2;
In → K: none; In → In−1: n, n − 2; In → In: n. Thus, the entropy of P is
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the logarithm of the largest root of the equation d(x) = 0, where

d(x) =∣∣∣∣∣∣

x−1−1 x−n x−n

x−1 x−(n−1)+x−(n−3)+ . . .+x−2−1 x−(n−1)+x−(n−3)+ . . .+x−2

0 x−n+x−(n−2) x−n−1

∣∣∣∣∣∣
.

We have

x2n+1d(x)

=

∣∣∣∣∣∣

1− x 1 1
1 x+ x3 + . . .+ xn−2 − xn x+ x3 + . . .+ xn−2

0 1 + x2 1− xn

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1− x 1 1
1 x−xn

1−x2 − xn x−xn
1−x2

0 1 + x2 1− xn

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1− x 0 1
1 −xn x−xn

1−x2

0 x2 + xn 1− xn

∣∣∣∣∣∣
,

so

(1− x2)x2n+1d(x) =

∣∣∣∣∣∣

1− x 0 1
1− x2 −xn−2(1− x2) x− xn

0 1 + xn−2 1− xn

∣∣∣∣∣∣

= (1− x)

∣∣∣∣∣∣

1 0 1
1 + x xn − xn−2 x− xn

0 1 + xn−2 1− xn

∣∣∣∣∣∣
.

Hence, we get

(1 + x)x2n−1d(x) = (xn − xn−2)(1− xn) + (1 + x)(1− xn−2)

− (1 + xn−2)(x− xn)

= − x2n + 2x2n−2 + 2xn + 1.

Thus, the entropy of Bn(3, n) is equal to the logarithm of the largest root
of the equation b(x) = 0, where (here n is odd)

bn(x) = x2n − 2x2n−2 − 2xn − 1 .

Let now n be even and [P ] = Bn(2, n). We use again the same standard
notation. The P -graph of f is
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I1 → J1 → I3 → J3 → . . .→ In−1

↗
K
↘

I2 → J2 → I4 → J4 → . . .→ In

and additionally there are arrows from In to I1, and from In−1 to K and all
Ji’s. As before, the set {K, In−1, In} is a rome (we can take also {K, In−1},
but then counting paths is more complicated) and there are paths of the fol-
lowing length from the rome to itself: K → K: 1; K → In−1: n−1; K → In:
n − 1; In−1 → K: 1; In−1 → In−1: n − 2, n − 4, . . . , 2; In−1 → In: n − 2,
n−4, . . . , 2; In → K: none; In → In−1: n−1; In → In: none. Thus, the entro-
py of P is the logarithm of the largest root of the equation c(x) = 0, where

c(x) =∣∣∣∣∣∣

x−1−1 x−(n−1) x−(n−1)

x−1 x−(n−2)+x−(n−4)+ . . .+x−2−1 x−(n−2)+x−(n−4)+ . . .+x−2

0 x−(n−1) −1

∣∣∣∣∣∣
.

x x x ... x x x x y y ... y y
n+1 n n–1 4 3 2 1 1 2 n–2 n–1

I I I I I K J Jn n–1 3 2 1 1 n–2

Fig. 6.5. A cycle with pattern Bn(2, n), n even

We have

x2n−1c(x)

=

∣∣∣∣∣∣

1− x 1 1
1 x+ x3 + . . .+ xn−3 − xn−1 x+ x3 + . . .+ xn−3

0 1 −xn−1

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1− x 1 1
1 x−xn−1

1−x2 − xn−1 x−xn−1

1−x2

0 1 −xn−1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1− x 0 1
1 −xn−1 x−xn−1

1−x2

0 1 + xn−1 −xn−1

∣∣∣∣∣∣
,
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so

(1− x2)x2n−1c(x) =

∣∣∣∣∣∣

1− x 0 1
1− x2 −xn−1(1− x2) x− xn−1

0 1 + xn−1 −xn−1

∣∣∣∣∣∣

= (1− x)

∣∣∣∣∣∣

1 0 1
1 + x xn+1 − xn−1 x− xn−1

0 1 + xn−1 −xn−1

∣∣∣∣∣∣
.

Hence, we get

(1 + x)x2n−1c(x) = (xn+1 − xn−1)(−xn−1) + (1 + x)(1 + xn−1)

− (1 + xn−1)(x− xn−1)

= − x2n + 2x2n−2 + 2xn−1 + 1.

Thus, the entropy of Bn(2, n) is equal to the logarithm of the largest root
of the equation b(x) = 0, where (here n is even)

bn(x) = x2n − 2x2n−2 − 2xn−1 − 1.

Theorem 6.3. For a given n ≥ 2, among minor patterns of period 2n
the one with the smallest entropy is Bn(3, n) if n is odd and Bn(2, n) if
n is even. Its entropy is the logarithm of the largest root of the equation
bn(x) = 0.

P r o o f. We know already that h(Bn(3, n)) for n odd and h(Bn(2, n)) for
n even is equal to the logarithm of the largest root of the equation bn(x) = 0.

Let n ≥ 4. For x ≥ √3 we have

bn(x) ≥ x2n − 2x2n−2 − 2xn − 1 = (x2 − 2)x2n−2 − 2xn − 1

≥ x2n−2 − 2xn − 1 = xn(xn−2 − 2)− 1

≥ xn(x2 − 2)− 1 ≥ xn − 1 > 0.

Therefore h(Bn(3, n)) for n odd and h(Bn(2, n)) for n even is smaller than
log
√

3. By Theorem 5.1 and Lemmas 6.1 and 6.2, the entropy of any other
minor pattern of period 2n is larger. This completes the proof in this case.

For n = 2 there are two patterns to consider: B2(2, 2) and C2(1, 2). The
P -graph in the first case is

I1

↗↙
K ↑
↘

I2

and in the second case it is
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I1
↗↙

K ↑↓
↘↖

J1

We see that the first graph is isomorphic to a proper subgraph of the second
one and it is transitive, so h(B2(2, 2)) < h(C2(1, 2)).

For n = 3 there are four patterns to consider. Using standard techniques
of [BGMY] we can easily compute the polynomials for which the logarithms
of the largest roots are equal to the entropies of those patterns. They are

w1(x) = x5 − x4 − x3 − x2 + x− 1 for B3(3, 3),

w2(x) = x5 − x4 − 3x3 + x2 + x− 1 for B3(2, 2),

w3(x) = x5 − x4 − 3x3 + x2 − x− 1 for C3(1, 2) and C3(2, 3).

We see that w2(x) = w1(x) − 2x2(x − 1) < w1(x) for x > 1 and w3(x) =
w2(x) − 2x < w2(x) for x > 0. Since the coefficient of the largest power is
positive, this shows that the largest zero of w1 (it is larger than 1) is smaller
than the largest zero of w2, which is smaller than the largest zero of w3.
Hence, h(B3(3, 3)) < h(B3(2, 2)) < h(C3(1, 2)) = h(C3(2, 3)).

Finally, notice that the equation bn(x) = 0 is equivalent to x2 − 2 =
(2xn + 1)/x2n−2 for n odd and to x2 − 2 = (2xn−1 + 1)/x2n−2 for n even.
Therefore, as n→∞, the smallest entropy of a minor pattern of period 2n
tends to log

√
2 (remaining always larger than log

√
2).

This can also be deduced in a different way. Namely, the patternsBn(3, n)
for n odd and Bn(2, n) for n even are unimodal. Let Sn be the Štefan pat-
tern of period n ≥ 3 odd. By Lemma 2.1, if n ≥ 3 is odd then Bn(3, n)
forces Sn. By Lemma 4.8, Bn−1(2, n − 1) forces a non-reducible pattern of
period 2n, so it forces a minor pattern of period 2n. Since Bn−1(2, n− 1) is
unimodal, this minor pattern of period 2n also has to be unimodal, so it is
Bn(3, n). Thus, Bn−1(2, n − 1) forces Bn(3, n). By Lemma 4.6, Sn forces a
non-reducible pattern of period 2(n+1), so it forces a minor pattern of that
period. Since Sn is unimodal, this minor pattern of period 2(n+1) has to be
unimodal, so it is Bn+1(2, n+ 1). Thus, Sn forces Bn+1(2, n+ 1). Therefore
we see that B2(2, 2) forces B3(3, 3) forces S3 forces B4(2, 4) forces B5(3, 5)
forces S5 etc. Since we know that the limit of the entropies of Sn as n→∞
is log

√
2, the limits of the entropies of Bn(3, n) for n odd and Bn(2, n) for

n even are also equal to log
√

2.

7. Final remarks. There are striking similarities between the structure
of minor patterns for interval maps and the structure of primary patterns for
the maps of the triod Y (see [ALMY]) which fix the central point. Moreover,
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the ordering of periods of unimodal minor patterns obtained at the end of
the previous section is

4, 6, 3, 8, 10, 5, 12, 14, 7, . . . ,

so it is constructed in the same way as green and red orderings in [ALMY],
except that we add 2 instead of 3. Therefore we may regard an interval as
a “diod”, with the central point z fixed by the maps under consideration.

In some sense, for both I and Y the simplest patterns are the ones which
spiral out from the central point (black arrows) and come closer to it only
from time to time (colored arrows). The interval from the central point to
the end of a colored arrow cannot be stretched too soon (under the iterates
of the map) to an interval containing the beginning of this arrow. This
condition reduces the number of patterns under consideration significantly.
Among those which remain, some are extensions, but the rest are good
candidates for minor patterns. Then to find primary patterns, we have to
consider minor ones and their extensions. Here one has to take into account
the forcing among minor patterns and the divisibility of their periods.

It seems that the procedure described above can be used for looking for
primary patterns for maps of n-ods and even more complicated trees.
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