
FUNDAMENTA
MATHEMATICAE

146 (1994)

Algebraic ramifications of the common extension problem
for group-valued measures

by

R. G ö b e l (Essen) and R. M. S h o r t t (Middletown, Conn.)

Abstract. Let G be an Abelian group and let µ : A → G and ν : B → G be finitely
additive measures (charges) defined on fields A and B of subsets of a set X. It is assumed
that µ and ν agree on A∩B, i.e. they are consistent. The existence of common extensions
of µ and ν is investigated, and conditions on A and B facilitating such extensions are
given.

0. Introduction. We consider the following problem: Let G be an
Abelian group and let µ and ν be G-valued charges (i.e. finitely additive
measures) defined on fields A and B of subsets of a set X. When does
there exist a common extension of µ and ν to a charge % defined on A ∨ B,
the field generated by A ∪ B? Clearly, one must assume at least that the
charges µ and ν are consistent, i.e. µ = ν on A ∩ B. Earlier work of
K. M. Rangaswamy and J. D. Reid [11] and K. P. S. Bhaskara Rao and
R. M. Shortt [4] has shown that the answer is in the affirmative so long as G
is the homomorphic image of a compact group (i.e. is cotorsion). In fact, [4]
and [11] demonstrate that this property characterizes the class of cotorsion
groups.

In the present article, the focus shifts to include consideration of the
fields A and B. In §2, an invariant d of the pair (A,B) is introduced: d is
a distance function on the Stone space of A ∨ B. The function d provides
information about the geometry of A and B and the algebraic structure of
the ring of simple functions measurable for A∨ B. See Lemmas 2.1 and 2.3
together with Theorem 2.4.

In §3, the case where A and B are isomorphic to power set algebras is
considered in terms of the common extension of charges (Lemma 3.1), and
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2 R. Göbel and R. M. Shortt

thence is derived a general result (Theorem 3.2) to the effect that when-
ever the d-function is bounded, common extensions of consistent charges
always exist, irrespective of the group G. This is the case when the fields A
and B are independent or even only almost independent, so that common
extensions always exist for such fields (Theorem 4.2).

Section 5 gives an application of the techniques used in §3 to the situation
where A and B are the spectral fields of continuous functions defined on a
compact metric space X (Theorem 5.1).

Sections 6 and 7 stress the algebraic aspects of the relevant quotient
group of A ∨ B-measurable simple functions and approach the question of
characterizing those torsion-free groups that can arise as groups of A ∨ B-
measurable simple functions modulo sums of A-measurable and B-measur-
able functions. It is shown in Theorem 6.1 that every rational group arises in
this way; this class of groups is also shown to be closed under the taking of
direct sums. For fixed fields A and B, the question is posed for which groups
G consistent G-valued charges on A and B have a common extension. The
notion of general cotorsion theories is applied to solve this problem when
both G and the quotient group of simple functions are rational (Theorem
7.1). When the quotient group of A ∨ B-measurable simple functions is a
group such as Zω, however, it remains an interesting open problem whether a
non-cotorsionG exists with the property that all consistentG-valued charges
on A and B have a common extension.

1. Exposition of the problem. All of the groups we consider are
Abelian, and we employ the usual additive notation. Let X be a non-empty
set and let A be a field (Boolean algebra) of subsets of X. Let G be an
Abelian group; a function µ : A → G is a (G-valued) charge if µ(A1∪A2) =
µ(A1) + µ(A2) whenever A1 and A2 are disjoint sets in A. If G = R (or
Z or Q) and range(µ) = {0, 1}, then µ is said to be a 0-1 charge. Then
{A ∈ A : µ(A) = 1} is an ultrafilter of A (considered as a Boolean algebra);
furthermore, every ultrafilter of A arises in this way. Define S(X,A), or
S(A) for short, to be the set of all functions f : X → Z such that range(f) is
finite and such that f−1(n) ∈ A for every n ∈ Z. These are the A-measurable
simple functions on X. We see that S(X,A) becomes a ring under pointwise
addition and multiplication of functions.

Let µ : A → G be a G-valued charge. Given A ∈ A, let IA be its indi-
cator function. Then the mapping IA → µ(A) extends uniquely to a group
homomorphism from S(X,A) to G. The value of this homomorphism at
f ∈ S(X,A) is the integral

∫
f dµ. Conversely, every group homomorphism

from S(X,A) to G can be formed in this way. It is often easier to work with
S(X,A) than A and sometimes easier to work with homomorphisms than
with set functions.
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The question of whether a G-valued charge can be extended to a charge
defined on a larger field of sets has been completely solved by T. Carlson
and K. Prikry [5], who proved the following result. Let P(X) be the power
set field of X.

1.1. Lemma. Let µ : A → G be a G-valued charge on (X,A). There is a
charge % : P(X)→ G such that %(A) = µ(A) for all A ∈ A.

I n d i c a t i o n. The proof relies on the fact, discovered by Nöbeling and
Specker, that every ring of the form S(X,A) is, when considered solely
as a group, free Abelian and that when A is a subfield of B, then S(A)
is a direct summand in S(B). (A proof of this due to Bergman, as well
as general information about such rings, is to be found in [7; §97].) Thus,
one may write S(P(X)) = S(A) ⊕ F for some group F . Composing pro-
jection onto the factor S(A) with the charge µ yields the desired exten-
sion %.

A more elusive problem arises from the attempt to extend two charges
simultaneously. Suppose that A and B are fields of subsets of a set X and
that µ : A → G and ν : B → G are charges. We say that µ and ν are
consistent if µ(C) = ν(C) for all C ∈ A∩B. For a given G, we ask whether
two consistentG-valued charges have a common extension, i.e. whether there
exists a G-valued charge % such that %(A) = µ(A) for all A ∈ A and %(B) =
ν(B) for all B ∈ B. The charge % is to be defined on A ∨ B, the field
generated by A∪B. (Then Lemma 1.1 may be employed to obtain a common
extension defined on all the subsets of X.) Given consistent charges µ :
A → G and ν : B → G, define a homomorphism ϕ : S(A) + S(B) → G by
setting

ϕ(f + g) =
∫
f dµ+

∫
g dν.

Here, S(A) + S(B) is the subgroup of all sums f + g with f ∈ S(A) and
g ∈ S(B). One easily checks that ϕ is well defined and that µ and ν have
a common extension % : A ∨ B → G if and only if ϕ can be extended
to a homomorphism ϕ′ : S(A ∨ B) → G. (Then %(C) =

∫
IC d%.) It thus

becomes possible to deduce, as in [4; §3] and [11; 3.6], the following re-
sult.

1.2. Lemma. Let A and B be fields of subsets of a set X and let G be a
group. Then every pair of consistent charges µ : A → G and ν : B → G has
a common extension % : A ∨ B → G if and only if Ext(H(A,B), G) = 0,
where H(A,B) = S(A ∨ B)/[S(A) + S(B)].

A group G is said to be a cotorsion group if Ext(Q, G) = 0 or, equiva-
lently, Ext(H,G) = 0 for all torsion-free groups H. (See [7; §54].) It is not
hard to prove that S(A) + S(B) is a pure subgroup of S(A ∨ B), so that
H(A,B) is torsion-free. Also, there exists a pair (A,B) such that H(A,B)
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contains Q as a subgroup. (Later, we show that H(A,B) ∼= Q is realizable.)
Putting all this together yields ([4; 3.2] and [11; 3.6]) the following result.
Say that a group G has the common extension property if every pair of
consistent G-valued charges (on any A and B) admits of a common exten-
sion.

1.3. Theorem. A group G has the common extension property if and
only if it is a cotorsion group.

This class of groups contains all divisible groups such as R and Q as well
as all compact Hausdorff topological groups (compare the extension theorem
in [1]). The group Z is not cotorsion, however.

The problem of characterizing the class of groups that always allow ex-
tensions is thus solved. Shifting focus to the fields A and B, we may ask what
properties of the pair (A,B) facilitate common extensions. For example, it
was proved in [3; Theorem 4.5] that common extensions always exist when
A and B are independent fields. This result will be generalized in §4. We
close this section with an observation.

1.4. Lemma. Let A and B be fields of subsets of a set X. Every pair
of consistent charges µ and ν on A and B (with values in a free group G
of rank 2|X|) have a common G-valued extension (we quantify here over all
possible choices of G) if and only if S(A)+S(B) is a summand in S(A∨B),
i.e. H(A,B) is free.

P r o o f. Suppose that S(A∨B) = [S(A) + S(B)]⊕F for some subgroup
F ⊆ S(A ∨ B) and let µ and ν be consistent G-valued charges. Let ϕ :
S(A)+S(B)→ G be the homomorphism ϕ(f+g) =

∫
f dµ+

∫
g dν described

above. Define % : A ∨ B → G by putting % = ϕ ◦ π, where π : S(A ∨ B) →
S(A) + S(B) is the projection with kernel F . We see that % is a G-valued
common extension of µ and ν.

Now suppose that A and B are such that any pair of consistent charges
µ : A → G and ν : B → G have a common extension. Let G be the
free group S(A) + S(B) and µ : A → G and ν : B → G the charges
defined by µ(A) = IA and ν(B) = IB . Then µ and ν are consistent, and
ϕ : S(A)+S(B)→ G is the identity mapping. Since µ and ν have a common
extension, ϕ extends to a homomorphism ϕ′ : S(A ∨ B) → G. Putting
F = ker(ϕ′) yields S(A ∨ B) = [S(A) + S(B)]⊕ F , as desired.

2. The geometry of A and B. Let A and B be fields of subsets of a
non-empty set X and let n ≥ 2 be an integer. A cycle of length n for the
pair (A,B) is a pair of partitions X = A0 ∪ . . .∪An−1 = B0 ∪ . . .∪Bn−1 of
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X into non-empty sets Ai ∈ A and Bi ∈ B such that

(∗) Ai ∩Bj is
{

non-empty if i ≡ j (mod n) or i ≡ j + 1 (mod n),
empty otherwise.

Call a cycle non-trivial if IAi∩Bj 6∈ S(A) + S(B) for each pair (i, j) such
that i ≡ j (mod n) or i ≡ j + 1 (mod n). It is not hard to check that such
a cycle is non-trivial if and ony if IAi∩Bj 6∈ S(A) +S(B) for some pair (i, j)
such that i ≡ j (mod n) or i ≡ j + 1 (mod n).

Once again, let A and B be fields of subsets of a set X. Let St(A), St(B)
and St(A∨B) be the Stone representation spaces of the Boolean algebras A,
B and A∨B respectively. We define a function Φ : St(A∨B)→ St(A)×St(B)
by putting Φ(u) = (u1, u2), where u1 and u2 are the restrictions of the 0-1
charge (ultrafilter) u to A and B, respectively. Clearly, Φ is a continuous
function. For A ∈ A and B ∈ B, we see that u(A ∩ B) = 0 if and only if
either u(A) = 0 or u(B) = 0. It follows that the mapping Φ is one-one and
therefore a homeomorphism of St(A ∨ B) onto R = R(A,B) = range(Φ).
Since any 0-1 charge on A (or on B) can be extended to a 0-1 charge on
A∨B, we see that π1(R) = St(A) and π2(R) = St(B), where π1 and π2 are
the coordinate projections from St(A)× St(B).

Given points p and p′ in R = R(A,B), a sequence p0, p1, . . . , pn in R
is a p-chain of length n from p to p′ if p0 = p, pn = p′, and for each
i = 0, 1, . . . , n− 1, either π1(pi) = π1(pi+1) or π2(pi) = π2(pi+1). We define
d : R × R → {0, 1, . . . ,∞} by putting d(p, p′) = 0 in case p = p′ and
otherwise

d(p, p′) = inf{n : there is a p-chain of length n from p to p′}.
The function d is a distance, i.e. it is symmetric and satisfies the triangle
inequality. Note that d(p, p′) =∞ is possible.

2.1. Lemma. Let A and B be fields of subsets of a set X and suppose that
A ∩ B = {∅, X}. For a fixed positive integer n, suppose that d(p, p′) < 2n
for all p, p′ ∈ R(A,B). Then all cycles for the pair (A,B) have length < 2n.

P r o o f. Suppose there exists a cycle of length ≥ 2n. It is not hard
to see that there is then a cycle of length exactly 2n, which we write as
A0, A1, . . . , A2n−1, B0, B1, . . . , B2n−1, where the Ai and Bi are clopen sub-
sets of St(A) and St(B), respectively. Choose p ∈ A0∩B0 and p′ ∈ An∩Bn.
We assert that d(p, p′) ≥ 2n, establishing the lemma.

To see this, suppose that p = p0, p1, . . . , pN = p′ is a p-chain of minimal
length N = d(p, p′) joining p to p′. But then we see that pi ∈ Aj ∩ Bk,
where either j + k ≡ i (mod 2n) or j + k ≡ −i (mod 2n). (In traversing
this minimal p-chain, each step from pi to pi+1 must shift positions from
one “box” to the next in the following diagram.)
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Since pN = p′ ∈ An ∩Bn, it must be that N = 2n, as desired.

2.2. Question. Is the converse of Lemma 2.1 true?

It was proved in [4; §2] that there exist fields A and B on a set X such
that H(A,B) = S(A ∨ B)/[S(A) + S(B)] contains elements (cosets) that
are divisible by every positive integer: H(A,B) in this case contains Q as
a subgroup. There is a close connection between divisibility of elements of
H(A,B) and the existence of cycles for the pair (A,B), as explored in the
following set of results.

2.3. Lemma. Let A and B be fields of subsets of a set X and let n ≥ 2
be an integer. The following conditions are equivalent :

(i) There is an indicator function f ∈ S(A∨B) representing a non-zero
coset f + [S(A) + S(B)] of H(A,B) that is divisible by n in the group
H(A,B).

(ii) There is a non-trivial cycle of length n for the pair (A,B).

P r o o f. (i)⇒(ii). If f+[S(A)+S(B)] is divisible by n, then we may write
f = nl + g + h for some functions l ∈ S(A ∨ B), g ∈ S(A), and h ∈ S(B).
We put, for i = 0, 1, . . . , n− 1,

Ai = {x ∈ X : g(x) ≡ i (mod n)}, Bi = {x ∈ X : h(x) ≡ −i (mod n)}
Then Ai ∈ A and Bi ∈ B for each i, and A0, . . . , An−1 and B0, . . . , Bn−1 are
partitions of X. We have f(x) ≡ g(x) + h(x) (mod n). Since f takes only
the values 0 and 1, it follows that Ai ∩ Bj = ∅ when j is not congruent to
i or i − 1 modulo n. Let l0 be the indicator function of the set A0 ∩ Bn−1
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and define

g0 =
n−1∑

i=0

iIAj , h0 =
n−1∑

i=0

−iIBj .

Then f = nl0 + g0 + h0. Since f ∈ S(A) + S(B), it follows that l0 ∈
S(A) +S(B). Now suppose that the indicator of A0 ∩B0 is in S(A) +S(B).
Then l0 ∈ S(A) + S(B), a contradiction. We now see that A0, . . . , An−1,
B0, . . . , Bn−1 is a non-trivial cycle of length n.

(ii)⇒(i). Let A0, . . . , An−1, B0, . . . , Bn−1 be a non-trivial cycle of length
n for the pair (A,B). We define

f = IA0∩Bn−1 +
n−1∑

i=0

IAi∩Bi−1 , l = IA0∩Bn−1 ,

g =
n−1∑

i=0

iIAi , h =
n−1∑

i=0

−iIBi .

Then f = nl + g + h, where g ∈ S(A), h ∈ S(B) and l ∈ S(A ∨ B).
Since the cycle is non-trivial, it follows that l 6∈ S(A) + S(B). Moreover,
since S(A) + S(B) is a pure subgroup, f is the desired indicator with f 6∈
S(A) + S(B).

2.4. Theorem. Let A and B be fields of subsets of a set X. Suppose that
there is some positive integer M such that every non-trivial cycle for (A,B)
is of length less than M . Then for each non-trivial coset f+S(A)+S(B) in
H(A,B), there is a maximal m for which f +S(A) +S(B) = mf ′+S(A) +
S(B) for some f ′ ∈ S(A ∨ B).

P r o o f. We note first that when f is an indicator function, the theorem
follows directly from the preceding lemma. For a general f , we suppose
the contrary, i.e. that f + S(A) + S(B) may be divided by arbitrarily large
integers. Since constant functions belong to S(A)+S(B), it involves no loss of
generality to suppose that f ≥ 0. Choose now some n ≥ max{f(x) : x ∈ X}
such that f = nl + g + h for some l ∈ S(A ∨ B), g ∈ S(A) and h ∈ S(B).
We write g = ng0 + g1 and h = nh0 + h1, where gi ∈ S(A) and hi ∈ S(B)
are such that 0 ≤ g1 ≤ n− 1 and −n+ 1 ≤ h1 ≤ 0. Put l0 = l + g0 + h0, so
that f = nl0 + g1 +h1. We now see that l0 must be an indicator function: if
l0(x) ≥ 2, then f(x) ≥ 2n+g1(x)+h1(x) ≥ 2n−n+1 = n+1, a contradiction;
if l0(x) ≤ −1, then f(x) ≤ −n+ g1(x) + h1(x) ≤ −n+ n− 1 = −1, another
contradiction. The first sentence of the proof, applied to l0, together with
purity of the subgroup S(A) +S(B), shows that f +S(A) +S(B) cannot be
divided by arbitrarily large integers, a contradiction.

2.5. Question. Is the converse of Theorem 2.4 true? In particular, if
H(A,B) is free, then are the non-trivial cycles of (A,B) of bounded length?
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3. Positive results for general fields. We begin this section with a
result regarding a case where A and B are isomorphic to power set algebras.
It and its method of proof shall find application later.

3.1. Power set lemma. Let X1 and X2 be non-empty sets and let X
be a non-empty subset of the product X1 ×X2. Assume that the projections
of X are all of X1 and X2. Define A = {(A × X2) ∩ X : A ⊆ X1} and
B = {(X1 × B) ∩ X : B ⊆ X2}. Suppose that A ∩ B = {∅, X}. Then the
following are equivalent :

(i) There is an integer M such that every cycle for (A,B) is of length
less than M .

(ii) For any group G, any two consistent G-valued charges on A and
B have a common extension to a G-valued charge on A ∨ B, i.e. the group
H(A,B) is free.

P r o o f. (i)⇒(ii). Let A0 be an arbitrary singleton subset of X1. Put
R0 = {(x1, x2) ∈ X : x1 ∈ A0} and inductively define

Ri =
{ {(x1, x2) ∈ X : ∃(y1, y2) ∈ Ri−1 with x2 = y2} if i is odd,
{(x1, x2) ∈ X : ∃(y1, y2) ∈ Ri−1 with x1 = y1} if i is even.

Set T0 = R0 and Ti+1 = Ri+1 −Ri; for i = 0, 1, . . . , put Ai = π1(T2i−1) for
i > 0 and put Bi = π2(T2i). (The πi are projections to the factors Xi.) We
see that Ai × Bj ∩ X 6= ∅ is possible only if i = j or i = j + 1. We assert
that Ai = ∅ for i ≥ M : otherwise, put C = X1 − (A0 ∪ . . . ∪ AM−1) and
D = X2 − (B0 ∪ . . . ∪BM−1) and note that A0 ∪ C,A1, . . . , AM−1, B0 ∪D,
B1, . . . , BM−1 would be a cycle for (A,B) of length M . Likewise, Bi = ∅ for
i ≥ M . Suppose that N is the largest integer such that BN is non-empty.
For each 2i ≤ N , let G2i ⊆ T2i be the graph of a function x = g2i(y) from
Bi to Ai; also, for 2i+ 1 ≤ N , let G2i+1 ⊆ T2i+1 be the graph of a function
y = g2i+1(x) from Ai+1 to Bi.

Suppose now that µ and ν are consistent G-valued charges on A and
B, respectively. We can view µ and ν as charges defined on the power sets
P(X1) and P(X2). Define charges %i on P(X) by descending induction,
putting %2N (S) = ν(π2(G2N ∩ S)) and defining

%2i−1(S) = µ(π1(G2i−1 ∩ S))− %2i(π1(G2i−1 ∩ S)×X2)

and

%2i(S) = ν(π2(G2i ∩ S))− %2i+1(X1 × π2(G2i ∩ S)).

It is a small matter to verify that the G-valued charge % = %0 +%1 + . . .+%2N

is a common extension of µ and ν.
(ii)⇒(i). We suppose that (i) fails and (ii) holds. Repeat the process used

in the first half of the proof to construct the sets A0, A1, . . . and B0, B1, . . .
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Now put Y1 = A0 ∪A1 ∪ . . . and Y2 = B0 ∪B1 ∪ . . . ; then (Y1 ×X2) ∩X =
(X1 × Y2) ∩X is a non-empty set in A ∩ B and therefore is all of X.

We assert that there is some M such that Ai = Bi = ∅ for i ≥ M . If
not, define two fields of subsets of N as follows: C [resp. D] is the field of
all subsets of N that are unions of the sets {0}, {1, 2}, . . . , {2i − 1, 2i}, . . .
[resp. the sets {0, 1}, {2, 3}, . . . , {2i, 2i+1}, . . .]. It was shown in [4; §2] that
there are consistent Z-valued charges µ and ν on C and D with no common
extension to P(N) or, equivalently, to C ∨ D. Define measurable functions
f : X → N by putting f(x) = n for x ∈ Tn. Define Z-valued set functions
µ′ and ν′ by µ′(f−1(C)) = µ(C) when C ∈ C and ν′(f−1(D)) = ν(D) when
D ∈ D. These are charges on the fields f−1(C) ⊆ A and f−1(D) ⊆ B; extend
these (Lemma 1.1) to consistent charges µ′′ and ν′′ on A and B. (Since A∩B
is trivial, consistency is almost automatic.) If % were a common extension
of these, the %′ = % ◦ f−1 would yield a common extension of µ and ν, a
contradiction. Thus, it must be that some M exists with Ai = Bi = ∅ for
i ≥M .

It is not hard to check, much as in the proof of Lemma 2.1, that M + 1
is an upper bound on the length of cycles for (A,B).

This lemma facilitates the proof of a result for general fields involving
boundedness of the distance function d.

3.2. Theorem. Let A and B be fields of subsets of a set X and suppose
that the distance function d is bounded. Then for any group G, any two
consistent G-valued charges µ and ν on A and B have a common extension
to a G-valued charge on A ∨ B, i.e. the group H(A,B) is free.

P r o o f. We consider again R(A,B) ⊆ St(A) × St(B). Consider also the
power set algebras A0 = P(St(A)) and B0 = P(St(B)). Use Lemma 1.1 to
extend µ and ν to charges µ0 and ν0 on A0 and B0. We mimic the construc-
tions in the proof of the preceding “power set lemma” treating R(A,B) as
X, and St(A) and St(B) as X1 and X2. We form the sequences of subsets
A0, A1, . . . and B0, B1, . . . of X1 and X2, noting that since the function d is
bounded, A0∩B0 is trivial, and there is some largest integer N such that BN
is non-empty. Then the previous lemma applies to show that the charges µ0

and ν0 are automatically consistent and in fact have a common extension to
P(R(A,B)). The restriction of this charge to the clopen subsets of R(A,B)
yields a G-valued extension charge on A ∨ B.

N.B. It is worth noting that we have proved something a little stronger
than the statement of the theorem: in fact, we have shown that under this
hypothesis on d, any extensions of the original charges to the power set
algebras of the corresponding Stone spaces have a common extension; in
particular, they are automatically consistent!
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We present a special case where d is bounded.

3.3. Corollary. Suppose that A∩B is trivial and that R(A,B) is open
in St(A)× St(B). Then the function d is bounded , and so A and B always
admit common extensions, i.e. H(A,B) is free.

P r o o f. Since R(A,B) is compact, we see that it is really a finite union
of clopen rectangles Ci × Dj . The fields C and D generated by these two
respective collections of sets Ci and Dj are finite and so are atomic with
atoms A1, . . . , Am and B1, . . . , Bn. It is easy to see that d ≤ m+ n.

We summarize the results obtained so far by means of the following
diagram:

d is bounded

xxqqqqqqqqq MMMMMMMMM&&A and B admit
common extensions
(H(A,B) is free)

non-trivial cycles
of (A,B) of

bounded lengthOOOOOOOOOOO'' wwooooooooooo

elements of H(A,B) only
finitely often divisible

The implication upper left in the diagram cannot be reversed, as shown by
the following construction suggested by L. C. Robertson.

3.4. Example. Define a subset of the plane as follows:

R =
∞⋃
n=1

{(
1− 1

2n+1 , 1−
1
2n

)
,

(
1− 1

2n
, 1− 1

2n

)}
∪
{(

1
2
, 1
)
,

(
1, 1
)}

.

Define X1 = X2 = {1−1/2n : n ≥ 1}∪{1}. Then the Xi and R are compact,
zero-dimensional spaces with R ⊆ X1 ×X2. Define fields

A = {(C ×X2) ∩R : C clopen subset of X1},
B = {(X1 × C) ∩R : C clopen subset of X2}.

Then A and B are fields of subsets of R with A ∩ B = {∅, R}. Also, X1
∼=

St(A) and X2
∼= St(B); under this identification, R = R(A,B). It is easy to

see that d is not bounded, although it never takes the value ∞. However,
the group H(A,B) is free. In fact, H(A,B) ∼= Z, and the indicator of any
point of R other than (1, 1) serves as a generator.

3.5. Question. Can the other three implications in the diagram be re-
versed?
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4. Independent and locally independent fields. The notion of in-
dependence of fields of sets was apparently introduced by Marczewski, who
proved that consistent, non-negative R-valued charges on independent fields
always had a non-negative common extension [10].

There is a weaker notion of “almost independence”, used by Lipecki [9],
who investigated bounded extensions of bounded charges. (Compare [2].) In-
dependence was applied to group-valued charges in [3], where a complicated
algebraic proof was used to show that H(A,B) is free whenever A and B
are independent. In this section, a simpler proof is given using the distance
function d: the method applies also to the case of almost independent fields.

Let A and B be fields of subsets of a non-empty set X. Say that A
is locally independent of B if for all partitions of X = A1 ∪ . . . ∪ Am =
B1 ∪ . . . ∪Bn into A- and B-sets, there exists some i0 so that Ai ∩Bi0 6= ∅
for i = 1, . . . ,m.

Note that the definition is asymmetric in A and B and that A and B are
almost independent (see Lipecki [9]) if and only if A is locally independent
of B and also B is locally independent of A.

The proof of the following result was suggested to the second author by
A. Molitor.

4.1. Theorem. Let A and B be fields of subsets of a non-empty set X
with A locally independent of B. For every partition of X = B1 ∪ . . . ∪Bn
into B-sets, there is some i0 such that A ∩ Bi0 6= ∅ for every non-empty
A ∈ A.

P r o o f. Let St(B) be the Stone space for the algebra B and let ϕ : B → C
be the canonical isomorphism between B and the algebra C of clopen subsets
of St(B). For each pair π = (A1, . . . , Am, B1, . . . , Bn) of partitions of X =
A1 ∪ . . . ∪Am = B1 ∪ . . . ∪Bn into sets Ai ∈ A and Bi ∈ B, define

K(π) =
⋃
{ϕ(Bi) : Bi ∩Aj 6= ∅ for all j = 1, . . . ,m}.

It follows from local independence that each K(π) is non-empty. The family
of all sets K(π) has the finite intersection property: if π and π′ are pairs of
partitions, we let π′′ be the pair of common refinements of the partitions in
π and π′; then K(π′′) ⊆ K(π)

⋂
K(π′). Since each K(π) is compact, there

is some point s ∈ ⋂πK(π). The point s represents an ultrafilter U ⊆ B.
Given a partition X = B1 ∪ . . . ∪ Bm with Bi ∈ B, we find i0 so that

Bi0 ∈ U . Given a non-empty A ∈ A, we consider the pair of partitions
π = (A,X −A, B1, . . . , Bn). (We may assume that A 6= X.) Now s ∈ K(π)
and s ∈ ϕ(Bi0), so that Bi0 ∩A 6= ∅, as required.

N o t e. Considering the representation of A ∨ B as the clopen algebra
on R(A,B), we have proved the existence of some s ∈ St(B) such that
St(A)× {s} ⊆ R(A,B).
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Two fields A and B on X are said to be independent if A ∩ B 6= ∅
whenever A ∈ A and B ∈ B are non-empty. Clearly, independence implies
local independence.

4.2. Theorem. Let A and B be fields of subsets of a set X with A locally
independent of B (e.g., if A and B are independent). Then H(A,B) is free.

P r o o f. Under this hypothesis, it is easy to use Theorem 4.1 and verify
that d ≤ 3. Then apply Theorem 3.2.

5. Compact metric spaces. In this section, we apply the method
outlined in the power set Lemma 3.1 to a special case where A and B arise
as subfields of Borel subsets of a compact metric space.

5.1. Theorem. Let f : K → R and g : K → R be continuous functions
on a compact metric space K. Let A and B be the spectral fields generated
by f and g as follows:

A = {f−1(C) : C a Borel subset of R},
B = {g−1(C) : C a Borel subset of R}.

Suppose that A ∩ B = {∅,K}. The following conditions are equivalent :

(i) There is some integer M such that every cycle for (A,B) is of length
less than M .

(ii) For any group G, any two consistent G-valued charges on A and B
have a common extension to a G-valued charge on A ∨ B, i.e. H(A,B) is
free.

P r o o f. We very closely imitate the proof of Lemma 3.1. Define X1 =
range(f) and X2 = range(g) and the function Ψ : K → X1 ×X2 by Ψ(x) =
(f(x), g(x)). Put X = range(Ψ) and define fields A0 and B0 on X by

A0 = {(A×X2) ∩X : A a Borel subset of X1},
B0 = {(X1 ×B) ∩X : B a Borel subset of X2}.

Since A ∩ B is trivial, so is A0 ∩ B0.
(i)⇒(ii). Just as in the proof of Lemma 3.1, we take A0 to be an arbitrary

singleton subset of X1 and define the sets R0, R1, . . . , T0, T1, . . . , A1, . . . , and
B0, B1, . . . Since X is compact, so are Ri and A0∪ . . .∪Ai and B0∪ . . .∪Bi
for each i. Thus, each Ai [resp. Bi] is a Borel subset of X1 [resp. X2]. As in
the proof of 3.1, Ai = Bi = ∅ for i ≥ M . As in the proof of 3.1, construct
graphs Gi ⊆ Ti.

Suppose now that µ and ν are consistent G-valued charges on A and B.
Define µ0 and ν0 on A0 and B0 by µ0((A × X2) ∩ X) = µ(f−1(A)) and
similarly for B ⊆ X2. As in 3.1, we can view µ0 and ν0 as charges defined on
(the Borel subsets of) X1 and X2. Using Lemma 1.1, these charges µ0 and
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ν0 may be extended to P(X1) and P(X2). This we do and define the charges
pi and p by the same formulae as in the proof of 3.1: here, p is defined on
P(X). Let τ be any charge on A ∨ B such that τ(Ψ−1(C)) = p(C) for all
C ⊆ X. This τ extends µ and ν.

N o t e. There is, as with the proof of Theorem 3.2, great freedom here in
the extension of µ0 and ν0 to P(X1) and P(X2)—any two such extensions
are automatically consistent.

(ii)⇒(i). Once again, we follow the proof of Lemma 3.1. We find that
X1 =

⋃
Ai and X2 =

⋃
Bi and that there is some M such that Ai = Bi = ∅

for i ≥ M . Then M + 1 is an upper bound on the length of cycles for
(A,B).

5.2. Question. Is Theorem 6.1 true when the space K is not assumed
compact (perhaps only complete and separable) or if f and g are not con-
tinuous, but only Borel measurable? These conditions were used (in both
parts of proof) to show that the Ai and Bi are Borel.

6. The class of groups H(A,B). In this section, we consider the ques-
tion of which (torsion-free) groups can arise as H(A,B) for appropriately
chosen A and B. We begin by showing that every subgroup of Q can be
realized in this way.

Every subgroup of H of Q is a direct limit of copies of Z, i.e. there
is a sequence (n2, n3, . . .) of integers nk > 1 and a system of groups and
homomorphisms

Hk
ϕk→ Hk+1, Hk

ψk→ H (k ≥ 1)

with Hk
∼= Hk+1

∼= Z, ϕk(m) = nk+1m, and ψk+1 ◦ ϕk = ψk such that ψk
is one-one and H =

⋃
ψk(Hk). Let p1 < p2 < . . . be the sequence of all

prime numbers. Then given a sequence (n1, n2, . . .) we define χr = sup{n :
pnr |

∏k
i=1 ni for all large k}. Then χ = (χr)r∈ω is the characteristic of the

sequence (ni). For characteristic and the related notion of type, see [7; Vol.
II, p. 108]. Two such groups H and H ′ are isomorphic if and only if their
types described above are equal (see [7; Vol. II, p. 110, Theorem 85.1]).

6.1. Theorem. For every subgroup H of Q, there are a set X and fields
A and B of subsets of X such that A ∩ B = {∅, X} and H(A,B) ∼= H.

P r o o f. We consider H as a direct limit of copies of Z as above with cor-
responding sequence (n2, n3, . . .). Put n1 = 1. Define sets Xk = {0, 1, 2, . . . ,
nk − 1} for k = 1, 2, . . . and put P0 = X1 × X2 × . . . For each x ∈ P0, we
write x = (x(1), x(2), . . .). Define

E = {x ∈ P0 : either (∃N)(x(k) = 0 for all k ≥ N)

or (∃N)(x(k) = nk − 1 for all k ≥ N)}
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and put P = P0\E. For each m, let Cm be the field on P generated by all
m-dimensional rectangles of the form R = {x ∈ P : x(1) = k1, . . . , x(m)
= km}. Then put C =

⋃ Cm.
We will define X as a subset of P × P by means of a partition of X =

D ∪ F1 ∪ F2 ∪ . . . First, we set D = {(x, x) : x ∈ P}, the diagonal in P × P .
Then we put

Fk = {(x, y) ∈ P × P : x(i) = 0 and y(i) = ni − 1 for all i < k;

x(k) = y(k) + 1; x(j) = y(j) for all j > k}.
It is not hard to verify that F =

⋃
Fk is the (graph of) a one-one C-

measurable function from P onto P . This completes the definition of X.
Let π1 : P × P → P [resp. π2 : P × P → P ] be projection to the first

[resp. second] factor of P × P . Define

Ak = {X ∩ π−1
1 (C) : C ∈ Ck}, Bk = {X ∩ π−1

2 (C) : C ∈ Ck}.
These and A =

⋃Ak, B =
⋃Bk are fields of subsets of X. For each k =

1, 2, . . . , define uk : P → Z by the formula

uk(x) = x(1) + x(2)n1 + x(3)n1n2 + . . .+ x(k)n1 . . . nk−1.

Then the atoms of the finite field Ak are given by

Aki = {(x, y) ∈ X : uk(x) = i}, i = 0, 1, . . . , n1 . . . nk − 1,

and those of Bk by

Bki = {(x, y) ∈ X : uk(y) = i}, i = 0, 1, . . . , n1 . . . nk − 1.

It is simple to check that Aki ∩ Bkj 6= ∅ exactly when i = j or i = j + 1 or
both i = 0 and j = n1 . . . nk − 1.

It is easy to check that Hk = H(Ak,Bk) ∼= Z with generator hk+S(Ak)+
S(Bk), where hk is the indicator function of the set Akn1...nk−1 ∩Bkn1...nk−1.
We see that

hk(x, y) =
{

1 if x = y and x(i) = ni − 1 for all i ≤ k,
0 otherwise.

Now define e = IF . Since D = {(x, y) : x(1) = y(1)}, we see that D and
hence also F is A1∨B1-measurable. We also define, for each k ≥ 1, functions
fk and gk on X:

fk(x, y) = uk(x),

gk(x, y) =
{

1 if y(i) = ni − 1 for all i ≤ k,
−uk(y) otherwise.

From what has already been said, it is clear that fk ∈ S(Ak) and gk ∈ S(Bk).

Claim. For each k ≥ 1, we have the equation e = fk + gk − n1 . . . nkhk.
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P r o o f o f c l a i m. We hold k and p ∈ X fixed and distinguish four
cases.

C a s e 1. p = (x, x) and hk(p) = 0. In this case e(p) = 0, fk(p) = uk(x)
and gk(p) = −uk(x), so that the equation follows easily.

C a s e 2. p = (x, x) and hk(p) = 1. Then e(p) = 0 and gk(p) = 1. Also,

fk(p) = uk(x)

= (n1 − 1) + (n2 − 1)n1 + (n3 − 1)n1n2 + . . .+ (nk − 1)n1n2 . . . nk−1

= n1n2 . . . nk − 1,

so the equation is satisfied.

C a s e 3. p = (x, y) ∈ F with x(1) = x(2) = . . . = x(k) = 0. Then it
follows that p ∈ Fm for some m ≥ k + 1, so that y(i) = nk − 1 for all i ≤ k.
Thus fk(p) = uk(x) = 0 and gk(p) = 1. Also, e(p) = 1 and hk(p) = 0, so the
equation follows.

C a s e 4. p = (x, y) ∈ Fm for some m ≤ k. Then

fk(p) = uk(x)

= x(1) + x(2)n1 + . . .+ x(m− 1)n1n2 . . . nm−2

+ x(m)n1 . . . nm−1 + x(m+ 1)n1 . . . nm + . . .+ x(k)n1 . . . nk−1,

gk(p) = − uk(y)

= − y(1)− y(2)n1 − . . .− y(m− 1)n1 . . . nm−2

− y(m)n1 . . . nm−1 − y(m+ 1)n1 . . . nm − . . .− y(k)n1 . . . nk−1.

Now x(i) = 0 and y(i) = ni − 1 for all i < m; also, x(m) = y(m) + 1; and
x(j) = y(j) for all j > m. It follows that

fk(p) + gk(p)

= n1 . . . nm−1 − (n1 − 1)− (n2 − 1)n1 − . . .− (nm−1 − 1)n1 . . . nm−2

= n1 . . . nm−1 − (n1 . . . nm−1 − 1) = 1.

Also, e(p) = 1 and hk(p) = 0, and the claim is thus established.

We now define, for each k ≥ 1, a function ψk : Hk → H(A,B) by putting
ψk(h + S(Ak) + S(Bk)) = h + S(A) + S(B). Since S(Ak) ⊆ S(A) and
S(Bk) ⊆ S(B), it follows that ψk is a well-defined group homomorphism. In
order to prove that ψk is injective, it suffices to prove that hk 6∈ S(A)+S(B).
This is sufficient for two reasons: the coset of hk generates Hk, and the
subgroup S(A) + S(B) is pure in S(A ∨ B). But, again using the purity
of S(A) + S(B), we see from the equation e = fk + gk − n1 . . . nkhk that
hk ∈ S(A) +S(B) if and only if e ∈ S(A) +S(B). But then there is some N
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such that e ∈ S(AN )+S(BN ). From the equation e = fN+gN−n1 . . . nNhN ,
we see (purity again!) that hN ∈ S(AN ) + S(BN ), a contradiction. So ψk is
injective.

In fact, we have proved that, for each k, (S(A) + S(B)) ∩ S(Ak ∨ Bk) =
S(Ak) + S(Bk).

Next, we define ϕk : Hk → Hk+1 by putting ϕk(h + S(Ak) + S(Bk)) =
h + S(Ak+1) + S(Bk+1). Then ϕk is a well-defined homomorphism. From
the equation of the claim, we may write

fk + gk − n1 . . . nkhk = e = fk+1 + gk+1 − n1 . . . nknk+1hk+1.

Thus n1 . . . nk+1hk+1−n1 . . . nkhk = n1 . . . nk(nk+1hk+1−hk) is an element
of S(Ak+1)+S(Bk+1): by purity, so also is nk+1hk+1−hk. Thus, considered
as a mapping between cyclic groups Hk and Hk+1, ϕk is multiplication by
nk+1. The conditions ψk+1 ◦ ϕk = ψk and H(A,B) =

⋃
ψk(Hk) are easy to

see.
Thus, we have realizedH asH(A,B) for fieldsA and B onX, as required.

The condition A ∩ B = {∅, X} follows easily from the fact that Ak ∩ Bk =
{∅, X} for each k.

Our next step is to show that the class of groups H(A,B) is closed under
the taking of direct sums. Let {Xi : i ∈ I} be a family of disjoint non-empty
sets and let {Ai : i ∈ I} be a corresponding family of fields Ai on Xi.
Put X =

⋃{Xi : i ∈ I} and define
∑Ai as the field comprising all sets⋃{Ai : i ∈ I} such that Ai ∈ Ai for each i, and either

(i) for all but finitely many i ∈ I, we have Ai = ∅, or
(ii) for all but finitely many i ∈ I, Ai = Xi.

Then
∑Ai is the field generated by

⋃Ai. So (
∑Ai)∨(

∑Bi) =
∑

(Ai∨Bi).
6.2. Lemma. Let Xi (i ∈ I) be a family of disjoint non-empty sets as

above with fields Ai and Bi on Xi. Then

S((
∑Ai) ∨ (

∑Bi))
S(
∑Ai) + S(

∑Bi)
∼=
⊕

i∈I

S(Ai ∨ Bi)
S(Ai) + S(Bi) .

P r o o f. We exhibit an isomorphism ϕ from the right member of the
isomorphism to the left. Let (f1, f2, . . .) be a sequence in the product, where
each fi ∈ S(Ai ∨ Bi) and f i = fi + S(Ai) + S(Bi). Put ϕ(f1, f2, . . .) = f ,
where f : X → Z (X =

⋃
Xi) is defined by f(x) = fi(x) for x ∈ Xi. It is

easy to check that ϕ is well defined and provides the desired isomorphism.

A consequence of this lemma is that all free groups are realizable as
groups of the form H(A,B).

6.3. Question. Is there a torsion-free group not isomorphic to H(A,B)
for any A and B?
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7. Cotorsion theories and the problem of common extensions.
If R is a subgroup of Q, then we can find a pair AR,BR of fields on a set
XR such that AR∩BR = {∅, XR} and H(AR,BR) = S(AR∨BR)/(S(AR)+
S(BR)) ∼= R (Theorem 6.1).

We say that a group G has the lifting property for R if all consistent
charges σA : AR → G and σB : BR → G can be extended to a common
extension σ : P(XR) → G. According to Lemma 1.2 this is equivalent to
saying that

(∗) Ext(R,G) = 0

for a given rational group R as above. Fortunately this question (and a little
more) can be answered by some progress in Abelian groups from about a
decade ago.

The groups G in (∗) are collected in a class {R}⊥ = {G : Ext(R,G) = 0}
(cf. [12; p. 12] and [8]). This class {R}⊥ is the so-called “cotorsion compo-
nent” of a “cotorsion theory cogenerated by R”. The other component is
called the “cotorsion-free component” F{R} of this cotorsion theory and is
defined to be F{R} = {Y : Ext(Y,G) = 0 for all G ∈ {R}⊥}. If R = Q, then
the groups in {Q}⊥ are called cotorsion groups, a notion due to D. K. Har-
rison. An easy calculation shows that F{Q} is the class of all torsion-free
groups (cf. [7; Vol. 1, p. 282]). Hence “rational cotorsion theories”, which
have these pairs (F{R}, {R}⊥), are a natural generalization of the classical
cotorsion theory. This extension can be found in [12].

One of the main theorems in [12] is a characterization of the groups G in
{R}⊥ or equivalently of our groups G with (∗). In order to state this result,
we recall some notation. If R ⊆ Q, then we may assume that 1 ∈ R without
loss of generality. In this case we can say that the characteristic χ(R) is the
characteristic χ(1) of 1 ∈ R which is a sequence (rp) (p ∈ P = all primes),
where rp is the largest positive integer n such that pn divides 1 in R. If n
does not exist, we set rp = ∞. Then we put GRp = G/prpG if rp < ∞ and
GRp = Ext(Z(p∞), G) if rp =∞. The group GRp is bounded in the first case
and the p-component of the classical cotorsion completion of G in the second
case (cf. [7; Vol. 1, pp. 224, 248, 249]), hence GRp is cotorsion. Products of
cotorsion groups are cotorsion, and

∏
p∈P GRp will always be cotorsion. If

GR denotes the subgroup
⋂
p∈P p

rpG of G, then [12, Theorem 3.5] gives the
following characterization:

7.1. Theorem. If R is a rational group, then the following are equiva-
lent :

(i) G ∈ {R}⊥.
(ii) G/GR ∼=

∏
p∈PG

R
p .

(iii) G/GR is cotorsion.
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I n d i c a t i o n: [12; p. 21].

If G ∈ {R}⊥ is countable, then G/GR is also countable. Then, by The-
orem 7.1(ii), we see that there is some finite E ⊆ P such that G/GR ∼=∏
p∈E GRp . There are then two cases to analyze:

C a s e 1. If GR = 0, then G/GR ∼= G ⊆ Q is cotorsion, so that either
G = 0 or G ∼= Q.

C a s e 2. If GR 6= 0, then G/GR is at once torsion and cotorsion. A the-
orem of Harrison and Nunke [7; Vol. 1, p. 235, Cor. 54.4] then says that
G/GR = B ⊕D, with B a bounded group and D divisible. We now prove
D = 0 and a little more using the isomorphism G/GR ∼=

∏
p∈E GRp . Since

G is of rank 1, G/prpG ∼= Zpkp , with kp ≤ rp for rp < ∞. If rp = ∞, then
GRp = Ext(Z(p∞), G), and rank(G) = 1 implies that the rank of a p-basic
subgroup of G is 1 or 0. If it is 1, then GRp = Ip (p-adic integers) and if
0, then GRp = 0; see [7; Vol. 1, p. 224]. The first case is excluded by the
isomorphism G/GR ∼=

∏
p∈E G

R
p and the restriction |G/GR| < 2ω. Hence

GRp = Ext(Z(p∞), G) = 0. We derive B =
⊕{Zpkp : p ∈ E, rp < ∞} and

D = 0. We find G/GR ∼=
⊕{Zpkp : p ∈ E′} with E′ = {p ∈ P: either

R or G is not divisible by p} a finite set. Since pkp |R and rp ≤ kp, also
k =

∏
p∈E′ p

rp |R and 1 ∈ R′, where the mapping x → x/k is an isomor-
phism of R onto R′ ⊆ Q. If χ(R′) = (r′p), then r′p = 0 for all p ∈ E′. Hence
GRp = 0 for p ∈ E′, and GR′ = G. Using Theorem 7.1 again, we have

7.2. Corollary. If R and G are rational groups, then G ∈ {R}⊥ if
and only if R ∼= R′ for some group R′ with R ⊆ R′ ⊆ Q and GR′ ∼= G.

The corollary replaces the inadequate remark on p. 22 in [12; after The-
orem 3.5]. It says that we can recognize the isomorphism classes of rational
groups from their cotorsion classes {R}⊥. If we consider only those ratio-
nal groups R with idempotent types (i.e. subrings of Q), then we can, e.g.,
choose R = R′.

We order two torsion theories by the inclusion of their cotorsion compo-
nent. Then it follows that the set (C,⊆) of all rational cotorsion theories (or
equivalently all their cotorsion parts {R}⊥) is order isomorphic to the set of
all isomorphism classes of rational groups. The latter has been characterized
to be order isomorphic to the set of types, which is well understood (cf. [7;
Vol. 2, p. 110, Theorem 85.1]. In particular, |C| = 2ℵ0 . We will sumarize a
special case applied to our lifting problem.

7.3. Corollary. There are pairs (Ai,Bi) of fields on sets Xi and groups
Gi for i < 2ℵ0 such that Gj has the lifting property for the fields (Ai,Bi) if
and only if i = j.
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This tells us that the lifting problem is at least as complex as the theory
of types or equivalently the cotorsion theory of rational groups. Our result
(6.1) can also be supplied for more general cotorsion theories [12]. If (X ,Y)
is a pair of classes of abelian groups, we say that X ⊥ Y if and only if
Ext(X,Y ) = 0 for all X ∈ X and Y ∈ Y. Generalizing {R}⊥, we set
X⊥ = {Y : X ⊥ Y } and ⊥X = {Y : Y ⊥ X} (cf. [8]). We replaced {Y }
by Y for simplicity. A pair (X ,Y) is a cotorsion theory if the following
holds:

(1) X ⊥ Y;
(2) maximality of Y: X ⊥ Y implies Y ∈ Y;
(3) maximality of X : X ⊥ Y implies X ∈ X .

It follows that X⊥ = Y and ⊥Y = X , hence ⊥(X⊥) = X and (⊥Y)⊥ = Y.
We have seen that the classes X ,Y are closed under the closure operations
FA =⊥ (A⊥) and CA = (⊥A)⊥ respectively, and any cotorsion theory can
be viewed as (FX ,X⊥) (cogenerated by X ) or as (⊥X , CX ) generated by X .
Then CX is called the cotorsion closure of X and FX is the cotorsion-free
closure of X . This is compatible with the classical cotorsion theory (torsion-
free, cotorsion) = (FQ,Q⊥).

Three “almost classical” cotorsion theories (FX ,X⊥) are of special in-
terest in group theory:

(a) the classical cotorsion theory, where X = {Q};
(b) local cotorsion theory with X = {Zp = {n/pm : n,m ∈ Z} : p any

prime}; and
(c) X = {Z(p): the localizations at any primes p}, called quasi-cotorsion

theory.

It follows that cotorsion ⇒ quasi-cotorsion ⇒ local cotorsion (cf. [12;
p. 27]). A reduced group K in the (non-splitting) exact sequence 0→ K →∏
p Ip →

⊕
Q → 0 and G =

⊕ Ip show that the mentioned cotorsion
classes are a proper chain.

From (5.1) and the above theory we obtain a pair of fields (A,B) on X
with H(A,B) = Q having consistent G-charges (σ1, σ2) which do not lift to
P(X). However, there is a pair of fields Aq,Bq on Xq, e.g. Aq =

⊕
pAp,

Aq =
⊕

pAp with H(Ap,Bp) = Z(p) with the lifting property into G but
not into K.

This strengthens a recent result in [2] and [11], where G-charges in (1)
come from all pairs of fields. We also can use only one pair of fields (A,B)
with H(A,B) = Q to find out that G must be cotorsion. We close with the
question whether the class of groups H(A,B) is closed also under taking
direct products.
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