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Connectivity of diagonal products of Baire one functions

by

A. M a l i s z e w s k i (Bydgoszcz)

Abstract. We characterize those Baire one functions f for which the diagonal product
x 7→ (f(x), g(x)) has a connected graph whenever g is approximately continuous or is a
derivative.

I. Introduction. It is well known for a long time that the product of two
derivatives need not be a derivative. Moreover, the characteristic function of
every closed set can be written as the product of two bounded derivatives [2].
So the graph of the product of two derivatives need not be connected, whence
the graph of the diagonal product of two derivatives need not be connected.
On the other hand, it is well known (and easy to prove) that the product
of a bounded approximately continuous function with a bounded deriva-
tive is a derivative again, so its graph is connected. However, the graph of
the diagonal product of a bounded approximately continuous function with
a bounded derivative is not necessarily connected. In 1963 Neugebauer [7]
constructed a bounded approximately continuous function f and a bounded
derivative g such that f(0) = g(0) = 0 and [f(x)]2 +[g(x)]2 ≥ 1/4 for x 6= 0,
so the graph of f4g is not connected. In this paper our aim is to character-
ize those Baire one functions f for which the diagonal product f4g has a
connected graph whenever g is approximately continuous or is a derivative.

II. Preliminaries. The real line (−∞,∞) is denoted by R and the set
of positive integers by N. The only measure used is Lebesgue measure in R
and all integrals are Lebesgue integrals. For each set A ⊂ R, intA denotes
its (Euclidean) interior, clA its closure, frA its boundary and |A| its outer
measure.
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The word function means a mapping from R into R unless otherwise
explicitly stated. The graph of a function f : X → Y will be denoted
by Γ (f). We denote by D the family of all derivatives. If X and Y are
metric spaces, then the family of all Baire one functions from X into Y
(i.e., pointwise limits of sequences of continuous functions) will be denoted
by B1(X,Y ). We write B1 for B1(R,R).

The terms d-closed , d-interior (d-int) etc. will refer to the Denjoy topol-
ogy (density topology) on R. (See, e.g., [3], [9], [5].) We say that a function f
is approximately continuous if it is continuous relative to the Denjoy topol-
ogy. The family of all approximately continuous functions will be denoted
by Cap. Recall that each element of Cap is a Baire one function and each
bounded element of Cap is a derivative (see, e.g., [1]).

We denote by b the family of all bounded functions. We drop the “∩”
sign between classes of functions, e.g., bCap denotes the family of all bounded
approximately continuous functions.

We denote by C the family of all continuous functions, by Ca.e. the family
of all functions which are continuous almost everywhere and by C0 the family
of all functions which are continuous except possibly at one point. It is
well known that elements of CapCa.e. are exactly those functions which are
continuous with respect to the so-called a.e.-topology [8]. Recall that a set
A ⊂ R is a.e.-open if and only if it is d-open and |A| = |intA|.

For each set T ⊂ R and a, b ∈ R, a < b, we denote by ϕT (a, b) the
measure of the greatest interval J contained in (a, b) \T if any such interval
exists, and 0 otherwise. We say that a set T ⊂ R is porous at x ∈ R from
the left if

lim sup
η→0+

ϕT (x− η, x)
η

> 0.

Being porous from the right is defined similarly.
We say that a set T ⊂ R is non-degenerate at x ∈ R from the left if

lim sup
η→0+

|T ∩ (x− η, x)|
η

> 0.

Non-degeneracy from the right is defined similarly.
Let Y be a topological space and let f : R→ Y . We say that

• f is a Darboux function if the f -image of each interval is connected,
• f is peripherally continuous if

f−1(U) ∩ (x− η, x) 6= ∅ 6= f−1(U) ∩ (x, x+ η)

for each x ∈ R, each neighborhood U ⊂ Y of f(x) and each η > 0.

Given two functions f, g : R → R, we define their diagonal product
f4g : R→ R2 by (f4g) (x) = (f(x), g(x)).
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Let A ⊂ B1. The maximal diagonal class of A with respect to connectivity
is the family M4(A) of those Baire one functions whose diagonal product
with each function from A has a connected graph.

III. Auxiliary lemmas. There are many conditions which are equiva-
lent to the connectivity of the graph of a function f ∈ B1 (cf. [1, Theorem 1.1,
p. 9]). For our purpose we will generalize two of them.

Lemma 1. Assume that Y is a T1-space and f : R → Y is a Darboux
function. Then f is peripherally continuous.

P r o o f. Suppose that f is not peripherally continuous from the left at
some x ∈ R. Let a neighborhood U ⊂ Y of f(x) and η > 0 be such that
f−1(U)∩ (x− η, x) = ∅. Set A = f((x− η, x]) and V = Y \ {f(x)}. Since Y
is a T1-space, V is open. Hence A1 = A ∩ U = {f(x)} and A2 = A ∩ V are
open in A, disjoint and non-empty, and A1 ∪A2 = A. So A is not connected
and f is not a Darboux function, which completes the proof.

Lemma 2. Assume that Y is a metric space and f ∈ B1(R, Y ) is periph-
erally continuous. Then the graph of f is connected.

P r o o f. Suppose that Γ (f) is not connected. Then there exist disjoint
non-empty sets E1, E2 ⊂ Γ (f), open in Γ (f), such that E1 ∪ E2 = Γ (f).
For j ∈ {1, 2} let Dj be the preimage of Ej under the map x 7→ (x, f(x)).
Then D1, D2 are disjoint, non-empty and D1 ∪ D2 = R, so frD1 6= ∅.
By [4] (§31.X.5, p. 397), the set of points of continuity of f | frD1 is non-
empty. Let x be one. By symmetry, we may assume that x ∈ D1 and that
(x − τ, x) ∩D2 6= ∅ for each τ > 0. Since E1 and E2 are disjoint and open
in Γ (f), there exists a neighborhood U ⊂ Y of f(x) and a τ1 > 0 such that
f(t) 6∈ U for t ∈ (x− τ1, x+ τ1)∩D2. Since f | frD1 is continuous at x, there
exists a τ2 ∈ (0, τ1) such that f(t) ∈ U for each t ∈ (x − τ2, x] ∩ frD1. So
D2∩ (x−τ2, x)∩ frD1 = ∅, whence D2∩ (x−τ2, x) 6= ∅ is open. Let (a, b) be
a component of D2 ∩ (x− τ2, x). Then b ∈ (x− τ2, x] ∩ frD1 and f(b) ∈ U .
But f(t) 6∈ U for t ∈ (a, b). So f is not peripherally continuous at b from the
left, contrary to the assumption.

The next lemma follows easily from the definitions.

Lemma 3. Assume that Y is an arbitrary topological space and that the
graph of f : R→ Y is connected. Then f is a Darboux function.

From the above three lemmas we get the following theorem.

Theorem 4. Let Y be a metric space and f ∈ B1(R, Y ). Then the fol-
lowing conditions are equivalent :

(A) f is a Darboux function,
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(B) f is peripherally continuous,
(C) f has a connected graph.

We will also need the following lemma.

Lemma 5 [6, Lemma 9]. Assume that {Jn : n ∈ N} is a family of non-
overlapping intervals and (rn) is a sequence of non-negative numbers with∑∞
n=1 rn <∞. Then there exists a sequence (tn) such that |tn| = 1 for each

n ∈ N and for every interval I ⊂ R,∣∣∣
∑

Jn⊂I
tnrn

∣∣∣ ≤ 2 sup {rn : Jn ⊂ I}.

IV. Main results. First we will deal with the family Cap.

Proposition 6. Let f ∈ B1. Then the following conditions are equiva-
lent :

(i) f ∈M4(Cap),
(ii) f ∈M4(bCap),

(iii) for each x ∈ R and each ε > 0 the set f−1([f(x) − ε, f(x) + ε]) is
bilaterally non-degenerate at x.

P r o o f. The implication (i)⇒(ii) is obvious.
(ii)⇒(iii). Suppose that for some x ∈ R and some ε > 0, C is not non-

degenerate at x from the left, where C = f−1([f(x)− ε, f(x) + ε]). For each
n ∈ N set xn = x− 1/n, In = [xn, xn+1] and An = In \ C, find a closed set
Bn ⊂ d-intAn such that |An \ Bn| ≤ |An|/n, and use Lemma 12 of [10] to
find an approximately continuous function gn such that 0 ≤ gn ≤ 1 on R,
gn = 1 off An and gn = 0 on Bn. Define

g(t) =
{

0 if t ≤ x1 or t ≥ x,
εgn(t) if t ∈ In, n ∈ N.

Then clearly g is bounded and approximately continuous except possibly at
x, and it is continuous at x from the right. Moreover, for each t ∈ [xn, xn+1],

|{z ∈ [t, x] : g(z)− g(x) = 0}|
x− t ≥ 1

x− xn
∣∣∣
∞⋃

k=n+1

Bk

∣∣∣

≥ n

n+ 1

(
1− 1

n+ 1

) |[xn+1, x] \ C|
x− xn+1

.

So g is approximately continuous at x from the left. But for each t ∈ [x1, x)
either t 6∈ ⋃∞n=1An, so that g(t) = g(t) − g(x) = ε, or t ∈ ⋃∞n=1An, and
then t 6∈ C and |f(t)− f(x)| > ε. Hence f4g is not peripherally continuous
at x from the left and by Theorem 4, f 6∈ M4(bCap).

Similarly we proceed if C is not non-degenerate at x from the right.
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(iii)⇒(i). Let g ∈ Cap. Fix an x ∈ R and an ε > 0. Let C be as above
and D = g−1([g(x)− ε, g(x) + ε]). Since C is non-degenerate at x from the
left, we can find a sequence an ↗ x such that

lim
n→∞

|[an, x] ∩ C|
x− an = 2c > 0.

Let η ∈ (0, ε) be such that

|[an, x] ∩ C|
x− an > c if an > x− η, n ∈ N,

and
|[t, x] ∩D|
x− t > 1− c if t ∈ (x− η, x).

Then |[an, x) ∩ C ∩D| > 0 for each n ∈ N with an > x − η. Hence f4g is
peripherally continuous at x from the left.

Similarly we can prove that f4g is peripherally continuous at x from the
right. This implies that the graph of f4g is connected, so f ∈M4(Cap).

Now we turn to the family D.

Proposition 7. Let f ∈ B1. Then the following conditions are equiva-
lent :

(i) f ∈M4(D),
(ii) f ∈M4(bDC0),

(iii) for each x ∈ R and each ε > 0 the complement of f−1([f(x) − ε,
f(x) + ε]) is bilaterally porous at x.

P r o o f. The implication (i)⇒(ii) is obvious.
(ii)⇒(iii). Suppose that for some x ∈ R and some ε ∈ (0, 1), R \C is not

porous at x from the left, where C = f−1([f(x)− ε, f(x) + ε]). Then there
exists a sequence xn ↗ x such that xn 6∈ C for each n ∈ N and

(1) lim
n→∞

xn+1 − xn
x− xn = 0.

For each n ∈ N set An = [xn, xn+1] \ C. We consider two cases:

• Assume that intAn 6= ∅ for each n ∈ N. Let yn ∈ (an, bn) ⊂ intAn.
For each n ∈ N put Jn = [yn, yn+1], define a continuous function gn by

gn(t) =





0 if t ≤ yn or t ≥ yn+1,
1 if t ∈ [bn, an+1],
linear in [yn, bn] and [an+1, yn+1],

and set rn =
∫
Jn
gn. Choose a sequence (tn) according to Lemma 5. Define

g(t) =
{

0 if t ≤ a1 or t ≥ x,
tnεgn(t) if t ∈ Jn, n ∈ N.
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Then clearly g is bounded and continuous except possibly at x, and it is
continuous at x from the right. Moreover, for each t ∈ Jn,

1
x− t

∣∣∣
x∫
t

g
∣∣∣ ≤ 1

x− t
(∣∣∣

∞∑

k=n+1

∫
Jk

g
∣∣∣+
∫
Jn

|g|
)

≤ 3ε sup{|Jk| : k ≥ n}
x− t

≤ 3ε sup
{
xk+2 − xk
x− xn+2

: k ≥ n
}

≤ 3ε sup
{
xk+2 − xk
x− xk ·

(
1− xk+2 − xk

x− xk

)−1

: k ≥ n
}
.

So by (1), g is a derivative, whence g ∈ bDC0. But for each t ∈ [a1, x) either
t 6∈ ⋃∞n=1(an, bn), so that |g(t)| = |g(t) − g(x)| = ε, or t ∈ ⋃∞n=1(an, bn),
in which case t 6∈ C and |f(t) − f(x)| > ε. It follows that f4g is not
peripherally continuous at x from the left and f 6∈ M4(bDC0).
• Assume that intAn = ∅ for some n ∈ N. Then C is residual in

[xn, xn+1]. Define ε′ = (|f(xn) − f(x)| − ε)/2 and C ′ = f−1([f(xn) − ε′,
f(xn) + ε′]). Then C ′ is a Gδ set and C ′ ∩C = ∅, so C ′ is nowhere dense in
[xn, xn+1]. Hence the complement of C ′ is not porous at xn from the right
and for every interval J , int(J \ C ′) 6= ∅. Now proceed as in the previous
case, using xn instead of x and ε′ instead of ε.

Similarly we proceed if R \ C is not porous at x from the right.
(iii)⇒(i). Let g ∈ D and let G be its primitive. Fix an x ∈ R and an

ε > 0. Define C as above. Since R \ C is porous at x from the left, we can
find a sequence an ↗ x such that [a2n−1, a2n] ⊂ C and

lim
n→∞

a2n − a2n−1

x− a2n−1
= 2c > 0.

Let η ∈ (0, ε) be such that for each t ∈ (x− η, x),
a2n − a2n−1

x− a2n−1
> c if a2n−1 > x− η, n ∈ N,

and ∣∣∣∣
G(t)−G(x)

t− x − g(x)
∣∣∣∣ ≤

cε

2
if t ∈ (x− η, x).

Then for each n ∈ N with a2n−1 > x− η, we get∣∣∣∣
G(a2n)−G(a2n−1)

a2n − a2n−1
− g(x)

∣∣∣∣ ≤
2x− a2n − a2n−1

a2n − a2n−1
· cε

2
< ε.

Hence there exists a t ∈ [a2n−1, a2n] such that |g(t) − g(x)| ≤ ε. But since
[a2n−1, a2n] ⊂ C, also |f(t)− f(x)| ≤ ε. It follows that f4g is peripherally
continuous at x from the left.
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Similarly we can prove that f4g is peripherally continuous at x from the
right. This implies that the graph of f4g is connected, so f ∈M4(D).

R e m a r k. By Proposition 7, we get M4(DCa.e.) = M4(D). It turns
out that the analogous result does not hold for the family Cap.

Proposition 8. Let f ∈ B1. Then the following conditions are equiva-
lent :

(i) f ∈M4(CapCa.e.),
(ii) f ∈M4(bCapC0),

(iii) for each x ∈ R and each ε > 0 the closure of f−1([f(x)−ε, f(x)+ε])
is bilaterally non-degenerate at x.

P r o o f. The implication (i)⇒(ii) is obvious.
(ii)⇒(iii). Suppose that for some x ∈ R and some ε > 0, clC is not

non-degenerate at x from the left, where C = f−1([f(x)− ε, f(x) + ε]). For
each n ∈ N set xn = x − 1/n, In = [xn, xn+1] and An = int In \ clC, find
a closed set Bn ⊂ An such that |An \ Bn| ≤ |An|/n, and find a continuous
function gn such that 0 ≤ gn ≤ 1 on R, gn = 1 off An and gn = 0 on Bn.
Define

g(t) =
{

0 if t ≤ x1 or t ≥ x,
εgn(t) if t ∈ In, n ∈ N.

Then clearly g ∈ bC0. Repeating the argument of Proposition 6 one can see
that g ∈ Cap and f4g is not peripherally continuous at x from the left.
Hence f 6∈ M4(bCapCa.e.).

Similarly we proceed if clC is not non-degenerate at x from the right.
(iii)⇒(i). Let g ∈ CapCa.e.. Fix an x ∈ R and an ε > 0. Let C be as above

and D = g−1((g(x) − ε, g(x) + ε)). Since clC is bilaterally non-degenerate
at x, we can find a sequence an ↗ x such that

lim
n→∞

|[an, x] ∩ clC|
x− an = 2c > 0.

Let η ∈ (0, ε) be such that

|[an, x] ∩ clC|
x− an > c if an > x− η, n ∈ N,

and
|[t, x] ∩D|
x− t > 1− c if t ∈ (x− η, x).

Then for each n ∈ N with an > x− η, we get

|(an, x) ∩ clC ∩D| = |(an, x) ∩ clC ∩ intD| > 0.

(We used the fact that D is a.e.-open.) Hence (an, x) ∩ C ∩D 6= ∅, so f4g
is peripherally continuous at x from the left.
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Similarly we prove that f4g is peripherally continuous at x from the
right. This implies that the graph of f4g is connected and that f ∈
M4(CapCa.e.).

Proposition 9. M4(CapCa.e.) \M4(Cap) 6= ∅.
P r o o f. For each n ∈ N set an = 1 and find a nowhere dense perfect

set Fn such that inf Fn = an+1, supFn = an and |Fn| = (1−1/n)(an−an+1).
Observe that

(2) 0 ∈ d-int
(

(−∞, 0] ∪
∞⋃
n=1

Fn

)
.

Fix an n ∈ N. Let {En,k : k ∈ N} be the family of all components of
(an+1, an) \ Fn. For all k ∈ N if En,k = (bn,k − cn,k, bn,k + cn,k), then let
fn,k be a continuous function such that fn,k(bn,k) = 1 and fn,k(x) = 0 if
|x− bn,k| ≥ max {cn,k, c2n,k}. Define

f(x) =

{
fn,k(x) if x ∈ En,k, n, k ∈ N,
1 if x ≤ 0,
0 otherwise.

Then evidently f is approximately continuous on R\{0} and it is continuous
at 0 from the left, so at these points condition (iii) of Proposition 8 is
satisfied. Fix an ε ∈ (0, 1) and set C = f−1([1−ε, 1+ε]). Then C∩⋃∞n=1 Fn =
∅ and since C ∩ En,k 6= ∅ for all n, k ∈ N, we have clC ⊃ ⋃∞n=1 Fn. Hence
by (2), f does not satisfy condition (iii) of Proposition 6 and it does satisfy
condition (iii) of Proposition 8, which completes the proof.

R e m a r k. It is easy to see that the function constructed in the proof
of Proposition 9 is discontinuous on a set of positive measure. This leads
to conjecturing that for functions from Ca.e. the proposition analogous to
Proposition 7 holds. This is indeed true.

Proposition 10. M4(CapCa.e.) ∩ Ca.e. =M4(Cap) ∩ Ca.e..
P r o o f. The inclusion “⊃” is obviously satisfied.
Let f ∈ M4(CapCa.e.) ∩ Ca.e., x ∈ R and ε > 0. Set C = f−1([f(x) − ε,

f(x) + ε]). By Proposition 8, clC is bilaterally non-degenerate at x. Since
t ∈ C implies |f(t) − f(x)| ≤ ε, it follows that for every t ∈ clC, if t is
a point of continuity of f , then |f(t) − f(x)| ≤ ε. Hence |clC \ C| = 0
and C is bilaterally non-degenerate at x, i.e., condition (iii) of Proposition 6
is satisfied.
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