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Co-H-structures on equivariant Moore spaces
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Martin Arkowitz (Hanover, N.H.) and
Marek Golasinski (Torun)

Abstract. Let G be a finite group, Og the category of canonical orbits of G and
A : Og — Ab a contravariant functor to the category of abelian groups. We investigate
the set of G-homotopy classes of comultiplications of a Moore G-space of type (A,n)
where n > 2 and prove that if such a Moore G-space X is a cogroup, then it has a unique
comultiplication if dim X < 2n — 1. If dim X = 2n — 1, then the set of comultiplications
of X is in one-one correspondence with Ext" (A, A® A). Then the case G = Ly leads
to an example of infinitely many G-homotopically distinct G-maps ¢; : X — Y such that
<pf{, gpfl : X" — YH are homotopic for all 4,j and all subgroups H C G.

1. Introduction. If A is an abelian group and n an integer > 2, then
a Moore space of type (A,n) is a space with a single nonvanishing homology
group A in dimension n. Moore spaces play a central role in homotopy theory
and have been widely studied. In particular, the co-H-structures of a Moore
space have been investigated. It is known that for n > 2 there is a unique
co-H-structure (up to homotopy) on a Moore space, but that for n = 2 there
may be several distinct co-H-structures (e.g., see [A—G]). In this paper we
consider these results within the context of equivariant homotopy theory.

Throughout, G denotes a finite group and all spaces, maps, homotopies
and actions are pointed. We work in the category G-Top, of G-spaces which
have the G-homotopy type of G-CW-complexes [Br]. We denote by Qg the
category of canonical orbits of G whose objects are the left cosets G/H as
H ranges over all subgroups of G and whose morphisms are the equivariant
maps G/H — G/K with respect to left translation. An Og-module is a
contravariant functor from Qg into Ab, the category of abelian groups. For
a pair (X,Y) of G-spaces and an integer n > 1, an Og-module H,,(X,Y) :
Og — Ab can be defined as follows: H,(X,Y)(G/H) = H,(XH YH),
where H,, denotes the nth singular homology functor and X is the H-
fixedpoint subspace of X. Similarly, with n > 3 (n > 2 if Y is the base point
*) we define 7,(X,Y) : Og — Ab using the nth homotopy functor 7. For
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Y = %, these Og-modules are denoted by ﬁn(X ) and 7, (X), respectively.
Now let A : Og — Ab be an Og-module and n > 2 an integer. Following

Kahn [Kay], we define a Moore G-space of type (A,n) to be a G-space X

such that

(1) X*H is 1-connected for all subgroups H of G,
(2) H,(X) = A as Og-modules,
(3) H;(X) = 0 for i # n.

If the H-fixedpoint sets X are disregarded when H is a nontrivial
subgroup, then we obtain a classical Moore G-space. More precisely, if A is
a G-module and n > 2, then a classical Moore G-space of type (A,n) is a
G-space X such that

(1) X is 1-connected,
(2) H,(X) =2 A as G-modules,
(3) H;(X) =0 for i # n.

Moore G-spaces have been considered in several papers ([Doi], [Dos],
[Ka;], [Kas]) and shown to be important in equivariant homotopy theory
(e.g., the construction of an equivariant homology decomposition [Kas]).
Furthermore, classical Moore spaces have been extensively studied in con-
nection with the Steenrod problem (e.g., [Cal, [Kag], [Sm]). Unlike the
nonequivariant case, Moore G-spaces need not exist for any Og-module
A, and when they exist, they need not be unique (see Section 2 for known
existence and uniqueness results). This is so even for classical Moore G-
spaces.

In this paper we extend the results of [A—-G] to the equivariant case and
investigate the set of G-homotopy classes of comultiplications of a Moore
G-space. We begin with some generalities on closed model categories C.
We show that if X is a cogroup object in HoC, the associated homotopy
category of C, then the collection of comultiplications of X is in one-one
correspondence with the set of morphisms Ho C(X, F'), where F is the fi-
bre of the canonical morphism X V X — X x X. Next we introduce two
closed model structures on G-Top,, one to be used for Moore G-spaces
and the other for classical Moore G-spaces. We then deduce in the next
section that a Moore G-space X of type (A,n) which is a cogroup has a
unique comultiplication if dim X < 2n — 1. If dim X = 2n — 1, we show
that the set of comultiplications of X is in one-one correspondence with
Ext" '(A, A ® A). Analogous results are established for classical Moore
G-spaces. We then apply these considerations to the case G' = Z,x. This
leads to an example of infinitely many G-homotopically distinct G-maps
©; + X — Y such that !, gofl : XH — YH are homotopic for all 4, and
all subgroups H C G.
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2. Background. The general reference here for category theory is [Qu].
Let C be a pointed category with finite products and coproducts. For objects
X and Y of C, morphisms are written f : X — Y or f € C(X,Y). In
particular, the zero morphism is 0 : X — Y and the identity morphism is
1x : X — X. Let X VY denote the coproduct of X and Y and X x Y the
product of X and Y. Then for an object X, there is a canonical morphism j :
XVX — X xX determined by two morphisms (1x,0),(0,1x) : X — X xX.
Let A = (1x,1x) : X — X x X be the diagonal morphism. A morphism
p: X — XV X such that jo = A is called a comultiplication of X, and
X is said to have co-structure . If (1Vp)p=(pVI1)p: X - XVXVX
then ¢ is associative. If there exists a morphism n : X — X such that
VinVix)e=V({AxVn)e=0:X — X, where V: X VX — X is the
folding morphism, we say that 1 is an inverse. The triple (X, ¢,n) is then
called a cogroup object in C. If (X, ¢, n) is a cogroup object in C and Y is any
object, then ¢ and 7 induce a group structure on the set C(X,Y") such that
for every morphism g : Y — Y”, the induced map ¢, : C(X,Y) — C(X,Y”)
is a homomorphism.

Now let C be a pointed closed model category. We localize C with respect
to the class of weak equivalences and obtain the homotopy category HoC
[Qu]. A co-structure on an object in HoC is called a co-H-structure and a
cogroup object in HoC is called a co-H-group. Quillen [Qu] has defined a
suspension functor X~ HoC — Ho C such that X' X is a co-H-group. For any
objects X,Y in HoC, let us denote HoC(X,Y) by [X,Y]. Then if f : X —
Y, there exists an object F', called the fibre of f, such that for any object
Z, the following sequence is exact [Qu]:

=z, X1 sz Y - (2, F) = [z, X] 32, 7).

Let X be a co-H-group, C(X) C [X, X V X] the set of co-H-structures of
X and F the fibre of the canonical morphism j : X V X — X x X. Then
the set C(X) is an orbit of the action of the group [X, F] on [X, X V X]
by (right) translation. So there is, in general, no natural group structure on
C(X). However, if an element of C(X) is chosen as a base point it is possible
to offer a direct interpretation of the group structure of C(X).

PROPOSITION 2.1. For any co-H-group object X in Ho C, there is a group
isomorphism
C(X)S [X,F).
The proof follows from the above long exact sequence applied to j to-
gether with the methods of [A-G].
Next let Top, be the category of pointed topological spaces. We give

Top, the structure of a pointed closed model category by defining weak
equivalences, fibrations and cofibrations in Top, in the usual way [Qu]. Let
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G-Top, be the category with objects pointed G-spaces and morphisms G-
maps. We define a closed model category structure I on G-Top, as follows:

I-1. A G-map f: X — Y is a weak equivalence if the maps f7 : X# —
YH of H-fixedpoint subspaces are weak equivalences in Top, for all sub-
groups H C G.

I-2. A G-map f : E — B is a fibration if f : E# — B are fibrations
in Top, for all subgroups H C G.

I-3. Cofibrations are determined by weak equivalences and fibrations by
means of the lifting property [Qu, p. 5.1].

We also define a second closed model category structure I on G-Top,:

II-1. A G-map f : X — Y is a weak equivalence if f is a weak equivalence
in Top,.

II-2. A G-map f: E — B is a fibration if f is a fibration in Top,.

11-3. Cofibrations are determined by weak equivalences and fibrations
as above.

One checks that I and II satisfy the axioms for a pointed closed model
category (cf. [D-D—K]) and thus one obtains homotopy categories

Ho' G-Top, and Ho™ G-Top,

by localizing with respect to the weak equivalences of I and II, respectively.

Finally, we summarize from [Ka; | conditions for the existence and unique-
ness of a Moore G-space X of type (A,n), where A is an Og-module. We
are especially interested in when X is a cogroup in the appropriate category.
If projdim A < 1, then a Moore G-space X of type (A,n) exists and any
two are G-equivalent (i.e., equivalent objects in Ho' G-Top,). We denote X
by M(A,n). Thus, for projdimA < 1, YM(A,n) = M(A,n + 1). There-
fore, a Moore G-space of type (A,n) with n > 3 and projdim A < 1 is
a co-H-group. This is also true for n = 2. For, following Kahn’s methods
[Ka;], we can find a G-space K such that

— A fori=1,
H@'(K)_{o for i # 1.

By uniqueness, M (A,2) = Y K. Therefore, M (A,n) is a cogroup object
in Ho' G-Top, for n > 2 and projdim A < 1.

If A is a G-module and projdim A < oo, then by [Kaq, p. 260] a classical
Moore G-space of type (A,n) exists and any two are equivalent (i.e., are
equivalent objects in Ho™ G-Top, ). This is seen by assigning an Qg-module
A to A as follows: let AV(G/H) =0 for H # F and AV(G/E) = A, where
E is the trivial subgroup of G. Then proj dim A < 1 and the existence of a
classical Moore G-space follows from the previous paragraph. Uniqueness is
also established and one concludes as above that a classical Moore G-space



Co-H-structures on equivariant Moore spaces 63

of type (A,n) with projdimA < oo and n > 2 is a cogroup object in
Ho'™ G-Top,.

We next assume that A is a rational Og-module, that is, an Qg-module
such that each A(G/H) is a vector space over the field Q of rational numbers.
Using the above results and work of [Un], we conclude that a Moore G-
space of type (A,n) always exists. If, in addition, projdim A < n, then all
such Moore G-spaces are equivalent. Thus if A is a rational Qg-module of
proj dim < n, the Moore G-space of type (A, n) is a cogroup object in Ho! G-
Top,, n > 2. Similar considerations apply to classical Moore G-spaces.

3. Comultiplications. In this section we use Proposition 2.1 to deter-
mine the set C(X) of co-H-structures of X, where X is a Moore G-space of
type (A, n), a co-group and dim X < 2n — 1. In preparation for this we need
some results on Bredon cohomology.

For a given Og-module B, Bredon [Br| and Illman [Il3] construct an
equivariant cohomology theory H{(—, B) defined on the category of pairs
of G-spaces and G-maps. This cohomology theory satisfies all the Eilenberg—
Steenrod axioms for cohomology suitably interpreted for equivariant spaces
and maps. The category of Og-modules (i.e., the category whose objects are
O¢g-modules and whose morphisms are natural transformations) contains
sufficiently many projectives and injectives [Br|. Thus one can define Ext”
for this category in the usual way as the right derived functor of the Hom
functor.

For a pair (X,Y) of G-CW-complexes, Bredon [Br| derives a spectral
sequence {EP9} with

EY? = Ext?(H,(X,Y),B) = H%(X,Y; B).
There is a decreasing filtration of the group HP*? = HE (X, Y; B),
HPte — p—1pgprta D FOfgprta 2...D Fprtagprta — 0,
with
FpHp+q/Fp+1Hp+q — Egéq‘
Let now X be a Moore G-space of type (A, n) for an QOg-module A and

n > 2. Then the Bredon spectral sequence degenerates, i.e., EY'Y = 0 for
p>0and ¢ #n and EY'" = Ext’(A, B). Thus

0=ENI=FEY'=...=FEP% forq#n and EY" =FE{"=...=EFER".
Hence FP~1HP/FP-9+t1HP = FP=4:4 = () for q # n and so (cf. [Ka;])
(3.1) HY(X,B) = Ext’" "(A, B).

For a Moore G-space X of type (A,n), let F' denote the fibre of the map
7: XVX — X x X in the category Ho' G-Top, and let X be a cogroup in
Ho' G-Top,. We denote by [—, —]¢ the set of morphisms in Ho' G-Top,.
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THEOREM 3.2. Under the above assumptions, if dimX =d < 2n —1

then the set C(X) of co-H-structures of X is in one-one correspondence with
the group Ext®™"(A, mwq(F)).

Proof. Since H;(X x X, XVX) = 0fori < 2n and Hy, (X xX, XVX) =
H,(X)®H,(X)=A®A, by the Hurewicz theorem, 7;( X x X, XVX) =0
for i < 2n and 72, (X x X, XVX)=A®A. Thus m;(F) =0fori <2n—1
and mo,_1(F) = A ® A. Let F; denote the dth term of the Postnikov
G-tower of the G-space F' ([D-D-K], [Tr1]) and f4 : F — Fy the canonical
map. Then the morphism 7;(F) — m;(Fy) induced by f; is an isomorphism
for ¢ < d and epimorphism for ¢ = d + 1. Since dim X = d, the equivariant
Whitehead theorem ([I;], [Ma]) implies that (fq). : [X, Fle — [X, F4lg is
a bijection. But Fy = K(my(F),d), the Eilenberg—MacLane space of type
(mq(F),d), since d < 2n — 1. Therefore

X, Fle = [X, File = [X, K (ma(F), d)|c = HE (X, ma(F))

and this is Ext? " (A, 74(F)) by (3.1). The result now follows from Propo-
sition 2.1. =m

COROLLARY 3.3. If dim X < 2n — 1, then C(X) has one element. If
dim X = 2n — 1, then C(X) is in one-one correspondence with Ext™ '(A,
ARA).

Now let A be a G-module and X a classical Moore G-space of type (A, n)
and a cogroup object in the category Ho'! G-Top,. Then, by Proposition 2.1,
C(X) is in one-one correspondence with the set [X, Fi of morphisms in
HOIIG—TOp* of X to F', where F is the fibre of j : X VX — X x X.
From the Hurewicz theorem we deduce that m;(F) = 0 for i < 2n — 1 and
Ton—1(F) =2 A® A as G-modules. Suppose that dim X =d < 2n — 1 and Fy
is the dth term of the Postnikov G-tower of F'. Then as above [X, Flyz is in
one-one correspondence with [X, Fy]ir and Fy is an Eilenberg-MacLane G-
space K (mq(F),d). Let w4(F') be the Og-module defined by 74(F)(G/H)
= 0 for H # E and 74(F)(G/E) = m4(F), where E is the trivial sub-
group of G. Then [X, Fylir = [X, K(74(F),d)], where K(mq(F),d) is the
Eilenberg-MacLane G-space of type (7w4(F),d). Hence by (3.1), [X, Fm &
Extd " (A, ma(F)), where Ext?, denotes the pth Ext functor in the category
of G-modules. Thus we obtain

COROLLARY 3.4. Let A be a G-module and X a classical Moore G-space
of type (A,n) and a cogroup object in Ho™ G-Top,. If dimX < 2n — 1,
then C(X) has one element. If dim X = 2n — 1, then C(X) is in one-one
correspondence with Extly (A, A® A).

Remark 3.5. Corollary 3.2 (and 3.3) can also be proved by using a spec-
tral sequence derived from an exact couple based on dual Puppe sequences
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obtained from the fibrations K(m,,q) — F, — F,_1 (cf. [M-T, Chap. 14]).
In addition, this method shows, under the hypothesis of Corollary 3.3, that
if dim X > 2n — 1 and Ext" '(A, A ® A) # 0, then C(X) has more than
one element.

4. An example. Let Z,» be the group of integers modp”, where p is a
prime, and let us denote Oz , by O(Zyx). Any O(Zx)-module A determines
a sequence
where A; = A(Zyr/Zyr—i) and m; = A(m;), where m; @ Zy/ZLpp—i —
Lo [ Lpi—i+1 are projections.

We restrict our considerations to rational Q(Z,.)-modules, where all A;
are Q-vector spaces and all m; are linear maps. Triantafillou [Tr] shows
that for any such O(Z,x)-module A, projdim A < 1. Furthermore, A is
projective if and only if all m; are injections.

We define a rational O(Z,)-module A to be null if all m; = 0. With
such a null Q(Z,«)-module we associate the commutative diagram

Ap g Aq g Ao 2, o g Ay,
I 1P 1 p2 - 1 P
A0S Agear B Ao Aredy OB L ekl Aig @ 4
1 T io T do,1 Tid0,1,... k-1
g 0,1 90,1,...,k—2

0 — Ao - Ay @ Ay = Ag®...® Ap_q

where the arrows represent canonical projections and injections. Here the
second horizontal line gives a rational O(Z,«)-module Py and the third hor-
izontal line gives a rational Q(Z,)-module P; such that

PO(Zpk/Zpk—i) =AD...0A; = P]_(Zpk/Zpk—i+l).

Since all the maps in Py and P; are injective, Py and P; are projective
O(Z, )-modules. Therefore, we have a projective resolution

If B is another null O(Z,)-module, then the induced map
d* : Hom(Py, B) — Hom(P;, B)

is zero. Hence
n—1
Ext'(A, B) = Hom(P;, B)/Imd* = Hom(P;, B) = @) Hom(A;, Biy1).
=0

Thus we have proved
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PROPOSITION 4.1. If A and B are null Q(Z,)-modules then
k—1
Ext'(A, B) = @) Hom(4;, Bi11).
i=0
This leads to the following example.

EXAMPLE 4.2. For the group G = Z,, there are G-spaces X and Y and
G-maps ¢; : X —Y,i=1,2,..., such that ¢; and ¢; are not G-homotopic
for all ¢ # j and gof{,gof’ : X — YH are homotopic for all i, j and all
subgroups H of G.

For this example we let A be a null O(Z,)-module such that Hom(A;,
Ait1®A;41) # 0 for some i € {0,1,...,k—1}, for example, A; = A;11 = Q.
Since projdim A < 1, there is a Moore G-space X of type (A, 2) which is
a co-H-group (see Section 2). Kahn [Kay, p. 259] has shown how to con-
struct X such that dim X = 3. By Corollary 3.3, C(X) is in one-one cor-
respondence with Extl(A, A ® A). By Proposition 4.1, this latter group is
isomorphic to @?:_11 Hom(A;, Ait1 ® Aiy1) # 0. Thus C(X) is an infinite
set and so there are infinitely many co-H-structures ¢; : X - XVX =Y in
Ho' G-Top, . However, for any subgroup H, X is the nonequivariant Moore
space of type (A(G/H),2) and each o is a comultiplication of X*. But
by [A-G] the comultiplications of X are in one-one correspondence with
Ext(A(G/H),A(G/H) ® A(G/H)). This group is trivial since A(G/H) is
a Q-vector space. Thus for each subgroup H of G, ¢ is homotopic to cp]H
forallz,7=1,2,... m

Finally, we close with a problem suggested by [A-G]. Given an action
of a finite group G on Z,,, the integers modm. Suppose there is a classical
Moore G-space X of type (Zy,,2) which is a co-H-group.

PROBLEM 4.3. Describe the set C(X) of all comultiplications of X.
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