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Co-H-structures on equivariant Moore spaces

by

Martin A r k o w i t z (Hanover, N.H.) and
Marek G o l a s i ń s k i (Toruń)

Abstract. Let G be a finite group, OG the category of canonical orbits of G and
A : OG → Ab a contravariant functor to the category of abelian groups. We investigate
the set of G-homotopy classes of comultiplications of a Moore G-space of type (A, n)
where n ≥ 2 and prove that if such a Moore G-space X is a cogroup, then it has a unique
comultiplication if dimX < 2n − 1. If dimX = 2n − 1, then the set of comultiplications
of X is in one-one correspondence with Extn−1(A,A⊗A). Then the case G = Zpk leads
to an example of infinitely many G-homotopically distinct G-maps ϕi : X → Y such that
ϕHi , ϕHj : XH → Y H are homotopic for all i, j and all subgroups H ⊆ G.

1. Introduction. If A is an abelian group and n an integer ≥ 2, then
a Moore space of type (A,n) is a space with a single nonvanishing homology
group A in dimension n. Moore spaces play a central role in homotopy theory
and have been widely studied. In particular, the co-H-structures of a Moore
space have been investigated. It is known that for n > 2 there is a unique
co-H-structure (up to homotopy) on a Moore space, but that for n = 2 there
may be several distinct co-H-structures (e.g., see [A–G]). In this paper we
consider these results within the context of equivariant homotopy theory.

Throughout, G denotes a finite group and all spaces, maps, homotopies
and actions are pointed. We work in the category G-Top∗ of G-spaces which
have the G-homotopy type of G-CW -complexes [Br]. We denote by OG the
category of canonical orbits of G whose objects are the left cosets G/H as
H ranges over all subgroups of G and whose morphisms are the equivariant
maps G/H → G/K with respect to left translation. An OG-module is a
contravariant functor from OG into Ab, the category of abelian groups. For
a pair (X,Y ) of G-spaces and an integer n ≥ 1, an OG-module Hn(X,Y ) :
OG → Ab can be defined as follows: Hn(X,Y )(G/H) = Hn(XH , Y H),
where Hn denotes the nth singular homology functor and XH is the H-
fixedpoint subspace of X. Similarly, with n ≥ 3 (n ≥ 2 if Y is the base point
∗) we define πn(X,Y ) : OG → Ab using the nth homotopy functor πn. For
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Y = ∗, these OG-modules are denoted by H̃n(X) and πn(X), respectively.
Now let A : OG → Ab be an OG-module and n ≥ 2 an integer. Following

Kahn [Ka1], we define a Moore G-space of type (A, n) to be a G-space X
such that

(1) XH is 1-connected for all subgroups H of G,
(2) H̃n(X) ∼= A as OG-modules,
(3) H̃i(X) = 0 for i 6= n.

If the H-fixedpoint sets XH are disregarded when H is a nontrivial
subgroup, then we obtain a classical Moore G-space. More precisely, if A is
a G-module and n ≥ 2, then a classical Moore G-space of type (A,n) is a
G-space X such that

(1) X is 1-connected,
(2) H̃n(X) ∼= A as G-modules,
(3) H̃i(X) = 0 for i 6= n.

Moore G-spaces have been considered in several papers ([Do1], [Do2],
[Ka1], [Ka2]) and shown to be important in equivariant homotopy theory
(e.g., the construction of an equivariant homology decomposition [Ka2]).
Furthermore, classical Moore spaces have been extensively studied in con-
nection with the Steenrod problem (e.g., [Ca], [Ka3], [Sm]). Unlike the
nonequivariant case, Moore G-spaces need not exist for any OG-module
A, and when they exist, they need not be unique (see Section 2 for known
existence and uniqueness results). This is so even for classical Moore G-
spaces.

In this paper we extend the results of [A–G] to the equivariant case and
investigate the set of G-homotopy classes of comultiplications of a Moore
G-space. We begin with some generalities on closed model categories C.
We show that if X is a cogroup object in HoC, the associated homotopy
category of C, then the collection of comultiplications of X is in one-one
correspondence with the set of morphisms HoC(X,F ), where F is the fi-
bre of the canonical morphism X ∨ X → X × X. Next we introduce two
closed model structures on G-Top∗, one to be used for Moore G-spaces
and the other for classical Moore G-spaces. We then deduce in the next
section that a Moore G-space X of type (A, n) which is a cogroup has a
unique comultiplication if dimX < 2n − 1. If dimX = 2n − 1, we show
that the set of comultiplications of X is in one-one correspondence with
Extn−1(A,A ⊗ A). Analogous results are established for classical Moore
G-spaces. We then apply these considerations to the case G = Zpk . This
leads to an example of infinitely many G-homotopically distinct G-maps
ϕi : X → Y such that ϕHi , ϕHj : XH → Y H are homotopic for all i, j and
all subgroups H ⊆ G.
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2. Background. The general reference here for category theory is [Qu].
Let C be a pointed category with finite products and coproducts. For objects
X and Y of C, morphisms are written f : X → Y or f ∈ C(X,Y ). In
particular, the zero morphism is 0 : X → Y and the identity morphism is
1X : X → X. Let X ∨ Y denote the coproduct of X and Y and X × Y the
product of X and Y . Then for an object X, there is a canonical morphism j :
X∨X → X×X determined by two morphisms (1X , 0), (0, 1X) : X → X×X.
Let 4 = (1X , 1X) : X → X × X be the diagonal morphism. A morphism
ϕ : X → X ∨ X such that jϕ = 4 is called a comultiplication of X, and
X is said to have co-structure ϕ. If (1 ∨ ϕ)ϕ = (ϕ ∨ 1)ϕ : X → X ∨X ∨X
then ϕ is associative. If there exists a morphism η : X → X such that
5(η ∨ 1X)ϕ = 5(1X ∨ η)ϕ = 0 : X → X, where 5 : X ∨ X → X is the
folding morphism, we say that η is an inverse. The triple (X,ϕ, η) is then
called a cogroup object in C. If (X,ϕ, η) is a cogroup object in C and Y is any
object, then ϕ and η induce a group structure on the set C(X,Y ) such that
for every morphism g : Y → Y ′, the induced map g∗ : C(X,Y )→ C(X,Y ′)
is a homomorphism.

Now let C be a pointed closed model category. We localize C with respect
to the class of weak equivalences and obtain the homotopy category HoC
[Qu]. A co-structure on an object in HoC is called a co-H-structure and a
cogroup object in HoC is called a co-H-group. Quillen [Qu] has defined a
suspension functor ΣHoC→ HoC such that ΣX is a co-H-group. For any
objects X,Y in HoC, let us denote HoC(X,Y ) by [X,Y ]. Then if f : X →
Y , there exists an object F , called the fibre of f , such that for any object
Z, the following sequence is exact [Qu]:

. . .→ [ΣZ,X]
f∗→ [ΣZ, Y ]→ [Z,F ]→ [Z,X]

f∗→ [Z, Y ].

Let X be a co-H-group, C(X) ⊆ [X,X ∨X] the set of co-H-structures of
X and F the fibre of the canonical morphism j : X ∨ X → X × X. Then
the set C(X) is an orbit of the action of the group [X,F ] on [X,X ∨ X]
by (right) translation. So there is, in general, no natural group structure on
C(X). However, if an element of C(X) is chosen as a base point it is possible
to offer a direct interpretation of the group structure of C(X).

Proposition 2.1. For any co-H-group object X in HoC, there is a group
isomorphism

C(X) '→ [X,F ].

The proof follows from the above long exact sequence applied to j to-
gether with the methods of [A–G].

Next let Top∗ be the category of pointed topological spaces. We give
Top∗ the structure of a pointed closed model category by defining weak
equivalences, fibrations and cofibrations in Top∗ in the usual way [Qu]. Let
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G-Top∗ be the category with objects pointed G-spaces and morphisms G-
maps. We define a closed model category structure I on G-Top∗ as follows:

I-1. A G-map f : X → Y is a weak equivalence if the maps fH : XH →
Y H of H-fixedpoint subspaces are weak equivalences in Top∗ for all sub-
groups H ⊆ G.

I-2. A G-map f : E → B is a fibration if fH : EH → BH are fibrations
in Top∗ for all subgroups H ⊆ G.

I-3. Cofibrations are determined by weak equivalences and fibrations by
means of the lifting property [Qu, p. 5.1].

We also define a second closed model category structure II on G-Top∗:

II-1. A G-map f : X → Y is a weak equivalence if f is a weak equivalence
in Top∗.

II-2. A G-map f : E → B is a fibration if f is a fibration in Top∗.
II-3. Cofibrations are determined by weak equivalences and fibrations

as above.

One checks that I and II satisfy the axioms for a pointed closed model
category (cf. [D–D–K]) and thus one obtains homotopy categories

HoIG-Top∗ and HoIIG-Top∗
by localizing with respect to the weak equivalences of I and II, respectively.

Finally, we summarize from [Ka1] conditions for the existence and unique-
ness of a Moore G-space X of type (A, n), where A is an OG-module. We
are especially interested in when X is a cogroup in the appropriate category.
If proj dimA ≤ 1, then a Moore G-space X of type (A, n) exists and any
two are G-equivalent (i.e., equivalent objects in HoIG-Top∗). We denote X
by M(A, n). Thus, for proj dimA ≤ 1, ΣM(A, n) ∼= M(A, n + 1). There-
fore, a Moore G-space of type (A, n) with n ≥ 3 and proj dimA ≤ 1 is
a co-H-group. This is also true for n = 2. For, following Kahn’s methods
[Ka1], we can find a G-space K such that

H̃i(K) =
{
A for i = 1,
0 for i 6= 1.

By uniqueness, M(A, 2) ∼= ΣK. Therefore, M(A, n) is a cogroup object
in HoIG-Top∗ for n ≥ 2 and proj dimA ≤ 1.

If A is a G-module and proj dimA <∞, then by [Ka1, p. 260] a classical
Moore G-space of type (A,n) exists and any two are equivalent (i.e., are
equivalent objects in HoIIG-Top∗). This is seen by assigning an OG-module
Ã to A as follows: let Ã(G/H) = 0 for H 6= E and Ã(G/E) = A, where
E is the trivial subgroup of G. Then proj dim Ã ≤ 1 and the existence of a
classical Moore G-space follows from the previous paragraph. Uniqueness is
also established and one concludes as above that a classical Moore G-space
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of type (A,n) with proj dimA < ∞ and n ≥ 2 is a cogroup object in
HoIIG-Top∗.

We next assume that A is a rational OG-module, that is, an OG-module
such that eachA(G/H) is a vector space over the fieldQ of rational numbers.
Using the above results and work of [Un], we conclude that a Moore G-
space of type (A, n) always exists. If, in addition, proj dimA < n, then all
such Moore G-spaces are equivalent. Thus if A is a rational OG-module of
proj dim < n, the Moore G-space of type (A, n) is a cogroup object in HoIG-
Top∗, n ≥ 2. Similar considerations apply to classical Moore G-spaces.

3. Comultiplications. In this section we use Proposition 2.1 to deter-
mine the set C(X) of co-H-structures of X, where X is a Moore G-space of
type (A, n), a co-group and dimX ≤ 2n−1. In preparation for this we need
some results on Bredon cohomology.

For a given OG-module B, Bredon [Br] and Illman [Il2] construct an
equivariant cohomology theory H∗G(−,B) defined on the category of pairs
of G-spaces and G-maps. This cohomology theory satisfies all the Eilenberg–
Steenrod axioms for cohomology suitably interpreted for equivariant spaces
and maps. The category of OG-modules (i.e., the category whose objects are
OG-modules and whose morphisms are natural transformations) contains
sufficiently many projectives and injectives [Br]. Thus one can define Extp

for this category in the usual way as the right derived functor of the Hom
functor.

For a pair (X,Y ) of G-CW -complexes, Bredon [Br] derives a spectral
sequence {Ep,qr } with

Ep,q2 = Extp(Hq(X,Y ),B)⇒ Hp+q
G (X,Y ;B).

There is a decreasing filtration of the group Hp+q = Hp+q
G (X,Y ;B),

Hp+q = F−1Hp+q ⊇ F 0Hp+q ⊇ . . . ⊇ F p+qHp+q = 0,

with
F pHp+q/F p+1Hp+q = Ep,q∞ .

Let now X be a Moore G-space of type (A, n) for an OG-module A and
n ≥ 2. Then the Bredon spectral sequence degenerates, i.e., Ep,q2 = 0 for
p ≥ 0 and q 6= n and Ep,n2 = Extp(A,B). Thus

0 = Ep,q2 = Ep,q3 = . . . = Ep,q∞ for q 6= n and Ep,n2 = Ep,n3 = . . . = Ep,n∞ .

Hence F p−qHp/F p−q+1Hp = Ep−q,q∞ = 0 for q 6= n and so (cf. [Ka1])

(3.1) Hp
G(X,B) = Extp−n(A,B).

For a Moore G-space X of type (A, n), let F denote the fibre of the map
j : X ∨X → X ×X in the category HoIG-Top∗ and let X be a cogroup in
HoIG-Top∗. We denote by [−,−]G the set of morphisms in HoIG-Top∗.
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Theorem 3.2. Under the above assumptions, if dimX = d ≤ 2n − 1
then the set C(X) of co-H-structures of X is in one-one correspondence with
the group Extd−n(A,πd(F )).

P r o o f. SinceHi(X×X,X∨X) = 0 for i < 2n andH2n(X×X,X∨X) =
Hn(X)⊗Hn(X) = A⊗A, by the Hurewicz theorem, πi(X×X,X∨X) = 0
for i < 2n and π2n(X ×X,X ∨X) = A⊗A. Thus πi(F ) = 0 for i < 2n− 1
and π2n−1(F ) = A ⊗ A. Let Fd denote the dth term of the Postnikov
G-tower of the G-space F ([D–D–K], [Tr1]) and fd : F → Fd the canonical
map. Then the morphism πi(F )→ πi(Fd) induced by fd is an isomorphism
for i ≤ d and epimorphism for i = d + 1. Since dimX = d, the equivariant
Whitehead theorem ([Il1], [Ma]) implies that (fd)∗ : [X,F ]G → [X,Fd]G is
a bijection. But Fd ∼= K(πd(F ), d), the Eilenberg–MacLane space of type
(πd(F ), d), since d ≤ 2n− 1. Therefore

[X,F ]G ∼= [X,Fd]G ∼= [X,K(πd(F ), d)]G ∼= Hd
G(X,πd(F ))

and this is Extd−n(A,πd(F )) by (3.1). The result now follows from Propo-
sition 2.1.

Corollary 3.3. If dimX < 2n − 1, then C(X) has one element. If
dimX = 2n − 1, then C(X) is in one-one correspondence with Extn−1(A,
A⊗A).

Now let A be a G-module and X a classical Moore G-space of type (A,n)
and a cogroup object in the category HoIIG-Top∗. Then, by Proposition 2.1,
C(X) is in one-one correspondence with the set [X,F ]II of morphisms in
HoIIG-Top∗ of X to F , where F is the fibre of j : X ∨ X → X × X.
From the Hurewicz theorem we deduce that πi(F ) = 0 for i < 2n − 1 and
π2n−1(F ) ∼= A⊗A as G-modules. Suppose that dimX = d ≤ 2n− 1 and Fd
is the dth term of the Postnikov G-tower of F . Then as above [X,F ]II is in
one-one correspondence with [X,Fd]II and Fd is an Eilenberg–MacLane G-
space K(πd(F ), d). Let π̃d(F ) be the OG-module defined by π̃d(F )(G/H)
= 0 for H 6= E and π̃d(F )(G/E) = πd(F ), where E is the trivial sub-
group of G. Then [X,Fd]II ∼= [X,K(π̃d(F ), d)], where K(π̃d(F ), d) is the
Eilenberg–MacLane G-space of type (π̃d(F ), d). Hence by (3.1), [X,F ]II ∼=
Extd−nG (A, πd(F )), where ExtpG denotes the pth Ext functor in the category
of G-modules. Thus we obtain

Corollary 3.4. Let A be a G-module and X a classical Moore G-space
of type (A,n) and a cogroup object in HoIIG-Top∗. If dimX < 2n − 1,
then C(X) has one element. If dimX = 2n − 1, then C(X) is in one-one
correspondence with Extn−1

G (A,A⊗A).

R e m a r k 3.5. Corollary 3.2 (and 3.3) can also be proved by using a spec-
tral sequence derived from an exact couple based on dual Puppe sequences
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obtained from the fibrations K(πq, q)→ Fq → Fq−1 (cf. [M–T, Chap. 14]).
In addition, this method shows, under the hypothesis of Corollary 3.3, that
if dimX > 2n − 1 and Extn−1(A,A ⊗A) 6= 0, then C(X) has more than
one element.

4. An example. Let Zpk be the group of integers modpk, where p is a
prime, and let us denote OZ

pk
by O(Zpk). Any O(Zpk)-moduleA determines

a sequence

A0
m1→ A1

m2→ . . .
mk→ Ak

where Ai = A(Zpk/Zpk−i) and mi = A(πi), where πi : Zpk/Zpk−i →
Zpk/Zpk−i+1 are projections.

We restrict our considerations to rational O(Zpk)-modules, where all Ai
are Q-vector spaces and all mi are linear maps. Triantafillou [Tr] shows
that for any such O(Zpk)-module A, proj dimA ≤ 1. Furthermore, A is
projective if and only if all mi are injections.

We define a rational O(Zpk)-module A to be null if all mi = 0. With
such a null O(Zpk)-module we associate the commutative diagram

A0
0→ A1

0→ A2
0→ . . .

0→ Ak

‖ ↑ p1 ↑ p2 . . . ↑ pk
A0

i0→ A0 ⊕A1
i0,1→ A0 ⊕A1 ⊕A2

i0,1,2→ . . .
i0,1,...,k−1−−−−−−−→ A0 ⊕ . . .⊕Ak

↑ ↑ i0 ↑ i0,1 . . . ↑ i0,1,...,k−1

0 → A0
i0→ A0 ⊕A1

i0,1→ . . .
i0,1,...,k−2−−−−−−−→ A0 ⊕ . . .⊕Ak−1

where the arrows represent canonical projections and injections. Here the
second horizontal line gives a rational O(Zpk)-module P0 and the third hor-
izontal line gives a rational O(Zpk)-module P1 such that

P0(Zpk/Zpk−i) = A0 ⊕ . . .⊕Ai = P1(Zpk/Zpk−i+1).

Since all the maps in P0 and P1 are injective, P0 and P1 are projective
O(Zpk)-modules. Therefore, we have a projective resolution

0→ P1
d→ P0

ε→A→ 0.

If B is another null O(Zpk)-module, then the induced map

d∗ : Hom(P0,B)→ Hom(P1,B)

is zero. Hence

Ext1(A,B) = Hom(P1,B)/ Im d∗ = Hom(P1,B) =
n−1⊕

i=0

Hom(Ai, Bi+1).

Thus we have proved



66 M. Arkowitz and M. Golasiński

Proposition 4.1. If A and B are null O(Zpk)-modules then

Ext1(A,B) =
k−1⊕

i=0

Hom(Ai, Bi+1).

This leads to the following example.

Example 4.2. For the group G = Zpk , there are G-spaces X and Y and
G-maps ϕi : X → Y , i = 1, 2, . . . , such that ϕi and ϕj are not G-homotopic
for all i 6= j and ϕHi , ϕ

H
j : XH → Y H are homotopic for all i, j and all

subgroups H of G.
For this example we let A be a null O(Zpk)-module such that Hom(Ai,

Ai+1⊗Ai+1) 6= 0 for some i ∈ {0, 1, . . . , k−1}, for example, Ai = Ai+1 = Q.
Since proj dimA ≤ 1, there is a Moore G-space X of type (A, 2) which is
a co-H-group (see Section 2). Kahn [Ka1, p. 259] has shown how to con-
struct X such that dimX = 3. By Corollary 3.3, C(X) is in one-one cor-
respondence with Ext1(A,A ⊗A). By Proposition 4.1, this latter group is
isomorphic to

⊕n−1
i=1 Hom(Ai, Ai+1 ⊗ Ai+1) 6= 0. Thus C(X) is an infinite

set and so there are infinitely many co-H-structures ϕi : X → X ∨X = Y in
HoIG-Top∗. However, for any subgroup H, XH is the nonequivariant Moore
space of type (A(G/H), 2) and each ϕHi is a comultiplication of XH . But
by [A–G] the comultiplications of XH are in one-one correspondence with
Ext(A(G/H),A(G/H) ⊗A(G/H)). This group is trivial since A(G/H) is
a Q-vector space. Thus for each subgroup H of G, ϕHi is homotopic to ϕHj
for all i, j = 1, 2, . . .

Finally, we close with a problem suggested by [A–G]. Given an action
of a finite group G on Zm, the integers modm. Suppose there is a classical
Moore G-space X of type (Zm, 2) which is a co-H-group.

Problem 4.3. Describe the set C(X) of all comultiplications of X.
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