A theory of non-absolutely convergent integrals in \mathbb{R}^n with singularities on a regular boundary

by

W. B. Jurkat and D. J. F. Nonnenmacher (Ulm)

Abstract. Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in \mathbb{R}^n , we are led to an integration process over quite general sets $A \subseteq \mathbb{R}^n$ with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form.

Introduction. Consider an *n*-dimensional vector field \vec{v} which is differentiable everywhere on \mathbb{R}^n . We seek an integration process which integrates div \vec{v} over reasonable sets $A (\subseteq \mathbb{R}^n)$ and expresses the integral $\int_A \operatorname{div} \vec{v}$ in terms of \vec{v} on the boundary ∂A of A in the expected way. While the classical Denjoy–Perron integral (1912/14) solves this problem in dimension one, first solutions in higher dimensions were given for intervals A only in the eighties by [Maw], [JKS], [Pf 1].

More general sets were first discussed in [Jar-Ku 1], where the authors treat compact sets $A \subseteq \mathbb{R}^2$ with a smooth boundary, while in general (see [Jar-Ku 2, 3]) they take $A = \mathbb{R}^n$ and allow certain exceptional points where differentiability is replaced by weaker conditions.

Another approach, involving transfinite induction, is discussed in [Pf 2]. Here BV sets A (e.g., compact sets A with $|\partial A|_{n-1} < \infty$) are treated, and (n-1)-dimensional sets are allowed where \vec{v} is only continuous or bounded.

In [Ju-No 1] we introduced a descriptive, axiomatic theory of non-absolutely convergent integrals in \mathbb{R}^n which was specialized in [Ju-No 2] to the relatively simple ν_1 -integral over compact intervals. This integral not only enjoys all the usual properties but yields a very general form of the divergence theorem including *exceptional points* where the vector field \vec{v} is not differentiable but still bounded, as well as *singularities* where \vec{v} is not bounded. At these singularities we assume \vec{v} to be of Lipschitz type with a negative exponent

¹⁹⁹¹ Mathematics Subject Classification: 26A39, 26B20.

^[69]

 $\beta > 1 - n$. Countably many types β are allowed, and the set of singularities of type β is assumed to have a finite outer $(\beta + n - 1)$ -dimensional Hausdorff measure. Similar singularities were discussed in [Pf 1] but they were restricted to lie on hyperplanes. Also [Jar-Ku 3] discussed singularities, but only at isolated points.

In [Ju-No 3], using the ν_1 -theory, we were able to treat this type of singularities in a corresponding divergence theorem on sets $A \in \mathcal{A}$, i.e. compact sets $A \subseteq \mathbb{R}^n$ with $|\partial A|_{n-1} < \infty$ (cf. also [No 1] where general BV sets A are discussed). Here we assumed the singularities to lie in the interior of A since otherwise the integral over ∂A (occurring in the divergence theorem) might not exist.

Imposing suitable regularity conditions on ∂A , balancing the magnitude of ∂A against the growth of the vector field, it is possible to relax this assumption. The involved ideas lead to a second specialization of our abstract theory which is presented in this paper. Here we fix an arbitrary set $S \subseteq \mathbb{R}^n$ (the set of potential singularities), and we treat sets $A \in \mathcal{A}$ which satisfy a simple (but very general) local regularity condition at each point $x \in S \cap \partial A$. In particular, the regularity condition is satisfied by any interval. The resulting $\nu(S)$ -integral over such sets A again has all the usual properties (as additivity and extension of Lebesgue's integral), and in a corresponding divergence theorem, which in particular generalizes our results in [Ju-No 2, 3], we can now treat on A singularities of the type mentioned above lying in S.

The dependence of our $\nu(S)$ -theory on S is as follows: if $S_1 \subseteq S_2 \ (\subseteq \mathbb{R}^n)$ then the $\nu(S_2)$ -integral extends the $\nu(S_1)$ -integral, and since the ν_1 -integral extends any $\nu(S)$ -integral all integrals discussed are compatible.

For $S = \emptyset$ and $S = \mathbb{R}^n$ we establish a substitution formula for bilipschitzian transformation maps by verifying the transformation axiom in our abstract theory [Ju-No 1].

Finally, we state without proof a directly constructive definition of the general $\nu(S)$ -integral in terms of Riemann sums. The proof is provided in [No 2].

0. Preliminaries. We denote by \mathbb{R} (resp. \mathbb{R}^+) the set of all real (resp. all positive real) numbers. Throughout this paper n is a fixed positive integer, and we work in \mathbb{R}^n with the usual inner product $x \cdot y = \sum x_i y_i$ ($x = (x_i), y = (y_i) \in \mathbb{R}^n$) and the associated norm $\|\cdot\|$. For $x \in \mathbb{R}^n$ and r > 0 we set $B(x, r) = \{y \in \mathbb{R}^n : \|x - y\| \le r\}$.

If $x \in \mathbb{R}^n$ and $E \subseteq \mathbb{R}^n$ we denote by E° , \overline{E} , ∂E , d(E) and dist(x, E) the interior, closure, boundary, diameter of E and the distance from the point x to the set E.

By $|\cdot|_s (0 \leq s \leq n)$ we denote the s-dimensional normalized outer Hausdorff measure in \mathbb{R}^n which coincides for integral s on $\mathbb{R}^s (\subseteq \mathbb{R}^n)$ with the s-dimensional outer Lebesgue measure $(|\cdot|_0)$ being the counting measure). Instead of $|\cdot|_{n-1}$ we also write $\mathcal{H}(\cdot)$, and terms like measurable and almost everywhere (a.e.) always refer to the Lebesgue measure $|\cdot|_n$ unless the contrary is stated explicitly. A set $E \subseteq \mathbb{R}^n$ is called σ_s -finite if it can be expressed as a countable union of sets with finite s-dimensional outer Hausdorff measure, and E is called an s-null set if $|E|_s = 0$.

An interval I in \mathbb{R}^n is always assumed to be compact and non-degenerate.

1. The $\nu(S)$ -integral and its basic properties. In this section we specialize the abstract quadruple $\nu = (\mathcal{B}, \mathcal{D}, \dot{\Gamma}, \Gamma)$ occurring in our axiomatic theory ([Ju-No 1]), and obtain a well-behaved *n*-dimensional integration process over quite general sets. The specialization will depend on an arbitrary set $S \subseteq \mathbb{R}^n$, the set of potential singularities (cf. Thm. 2.1). For the sake of completeness we will restate the basic properties of the associated $\nu = \nu(S)$ -integral.

1a. Definition of $\nu(S) = (\mathcal{B}, \mathcal{D}, \Gamma, \Gamma)$. By \mathcal{A} we denote the system of all compact sets $A \subseteq \mathbb{R}^n$ such that $|\partial A|_{n-1}$ is finite.

Given $\rho > 0$ we call a set $M \subseteq \mathbb{R}^n \rho$ -regulated if $|B(x,r) \cap M|_{n-1} \leq \rho r^{n-1}$ for any $x \in \mathbb{R}^n$ and any r > 0.

Let S be a subset of \mathbb{R}^n and let $\mathcal{A}(S)$ consist of those $A \in \mathcal{A}$ for which there is a $\rho > 0$ such that for any $x \in S \cap \partial A$ there exists a neighborhood U of x with $U \cap \partial A$ being ρ -regulated.

For $\rho > 0$ we denote by \mathcal{A}'_{ρ} the system of all $A \in \mathcal{A}$ whose boundary is ρ -regulated, and we let $\mathcal{A}_{\rho}(S)$ consist of all sets $A \in \mathcal{A}(S)$ with $d(A)^n \leq \rho |A|_n$ and $|\partial A|_{n-1} \leq \rho d(A)^{n-1}$.

Remark 1.1. (i) Note that there exists a positive constant ϱ^* ($\geq 2n^n$), depending only on n, such that each cube, i.e. an interval whose sides have equal length, belongs to $\mathcal{A}_{\varrho^*}(S)$, and each interval belongs to \mathcal{A}'_{ϱ^*} .

(ii) For any $\rho > 0$ we have $\mathcal{A}'_{\rho} \subseteq \mathcal{A}(S)$, and if $A \in \mathcal{A}'_{\rho}$ then $|\partial A|_{n-1} \leq (1+\rho)d(A)^{n-1}$.

(iii) Observe that $\mathcal{A}(\emptyset) = \mathcal{A}$ and $\mathcal{A}(\mathbb{R}^n) = \bigcup_{\varrho > 0} \mathcal{A}'_{\varrho}$. For, if $A \in \mathcal{A}(\mathbb{R}^n)$ there exists a $\varrho > 0$ such that we can find for any $x \in \partial A$ a neighborhood U(x) with $U(x) \cap \partial A$ being ϱ -regulated. Since ∂A is compact there are finitely many points $x_i \in \partial A$, $1 \leq i \leq m$, with $\partial A \subseteq \bigcup_{i=1}^m U(x_i)$, and if $x \in \mathbb{R}^n$ and r > 0 we see that

$$|B(x,r) \cap \partial A|_{n-1} \le \sum_{i=1}^{m} |B(x,r) \cap U(x_i) \cap \partial A|_{n-1} \le m \varrho r^{n-1}$$

and thus $A \in \mathcal{A}'_{m\rho}$.

(iv) If $A, B \in \mathcal{A}(S)$ with corresponding parameters ϱ_A, ϱ_B (according to the definition of $\mathcal{A}(S)$) then $A \cap B, A \cup B, A - B^{\circ} \in \mathcal{A}(S)$ with (a possible) corresponding parameter $\varrho_A + \varrho_B$.

In what follows we assume S to be an arbitrary but fixed subset of \mathbb{R}^n . Obviously (use Remark 1.1) $\mathcal{B} = \mathcal{A}(S)$ (resp. $\mathcal{D}(K) = \mathcal{A}_K(S)$ for K > 0) is a semi-ring (resp. differentiation class) according to [Ju-No 1, Sec. 1]. \mathcal{D} associates with each positive K the class $\mathcal{D}(K)$.

Let $E \subseteq \mathbb{R}^n$ and $\delta: E \to \mathbb{R}^+$ be given. Then a finite sequence of pairs $\{(x_k, A_k)\}$ with $x_k \in A_k \in \mathcal{B}, A_i^{\circ} \cap A_j^{\circ} = \emptyset \ (i \neq j), x_k \in E \text{ and } d(A_k) < \delta(x_k)$ is called (E, δ) -fine. If in addition $E = \bigcup A_k$ we call $\{(x_k, A_k)\}$ a δ -fine partition of E.

The *control conditions* we want to use are defined as follows:

For $0 \leq \alpha < n-1$ the control condition C_1^{α} (resp. C_2^{α}) associates with any positive numbers K and Δ the system of all finite sequences $\{A_k\}$ with $A_k \in \mathcal{A}'_K$ such that each $x \in S$ is contained in at most K of the A_k and such that $\sum d(A_k)^{\alpha} \leq K$ (resp. $\sum d(A_k)^{\alpha} \leq \Delta$). By $\mathcal{E}(C_1^{\alpha})$ (resp. $\mathcal{E}(C_2^{\alpha})$) we denote the system of all $E \subseteq S$ with $|E|_{\alpha} < \infty$ (resp. $|E|_{\alpha} = 0$).

The condition C_1^{n-1} (resp. C_2^{n-1}) associates with $K, \Delta > 0$ the system of all finite sequences $\{A_k\}$ with $A_k \in \mathcal{B}$ and $\sum_{k \in \mathcal{A}} |\partial A_k|_{n-1} \leq K$ (resp. $\sum_{k \in \mathcal{A}} |\partial A_k|_{n-1} \leq \Delta$), and we let $\mathcal{E}(C_1^{n-1})$ (resp. $\mathcal{E}(C_2^{n-1})$) be the system of all $E \subseteq \mathbb{R}^n$ with $|E|_{n-1} < \infty$ (resp. $|E|_{n-1} = 0$).

If $n-1 < \alpha < n$ the control condition C_1^{α} (resp. C_2^{α}) associates with $K, \Delta > 0$ the system of all finite sequences $\{A_k\}$ with $A_k \in \mathcal{D}(K)$ and $\sum d(A_k)^{\alpha} \leq K$ (resp. $\sum d(A_k)^{\alpha} \leq \Delta$). $\mathcal{E}(C_1^{\alpha})$ (resp. $\mathcal{E}(C_2^{\alpha})$) consists of all $E \subseteq \mathbb{R}^n$ with $|E|_{\alpha} < \infty$ (resp. $|E|_{\alpha} = 0$).

Finally, the condition C^n associates with any positive K the system of all finite sequences $\{A_k\}$ with $A_k \in \mathcal{D}(K)$, and we let $\mathcal{E}(C^n) = \{E \subseteq \mathbb{R}^n :$ $|E|_n = 0$.

Remark 1.2. The requirement that each $x \in S$ lies in at most K of the sets A_k in the definition of C_i^{α} $(0 \leq \alpha < n-1)$ will be important when we give an equivalent constructive definition of our integral in terms of Riemann sums. Remember that if the A_k are intervals with disjoint interiors then each $x \in \mathbb{R}^n$ is contained in at most 2^n of them.

Set $\dot{\Gamma} = \{C^n\} \cup \{C_i^\alpha : n-1 < \alpha < n, i = 1, 2\}$ (the requirements $(\dot{\Gamma}_1)$) and $(\dot{\Gamma}_2)$ in [Ju-No 1, Sec. 1] then obviously being satisfied) and $\Gamma = \{C_i^{\alpha} :$ $0 \leq \alpha \leq n-1, i=1,2$ (disjoint from Γ). We will prove that Γ is ordered by the relation \succeq (see [Ju-No 1, Sec. 1]) and that $C^* = C_1^{n-1}$ is a minimal element of Γ . Analogously one then shows that $\dot{\Gamma}$ is ordered.

If $0 \leq \beta < \alpha < n-1$ then $C_1^{\beta} \succeq C_2^{\alpha}$. For, given $K_1 > 0$ we let $K_2 = K_1$ and if $\Delta_2 > 0$ we set $\Delta_1 = \Delta_2$. If $x \in \mathbb{R}^n$ choose $\delta(x) > 0$ such that $\delta(x)^{\alpha-\beta} \leq \Delta_2/K_1$ (this defines $\delta: \mathbb{R}^n \to \mathbb{R}^+$), and let $\{(x_k, A_k)\}$ be any (\mathbb{R}^n, δ) -fine sequence with $\{A_k\} \in C_1^\beta(K_1, \Delta_1)$. Since $\sum d(A_k)^\alpha \leq$ $\sum_{k=1}^{\infty} \delta(x_k)^{\alpha-\beta} d(A_k)^{\beta} \leq \Delta_2 \text{ we have } \{A_k\} \in C_2^{\alpha}(K_2, \Delta_2).$ Furthermore, $C_1^{\alpha} \succeq C_2^{n-1}$ for $0 \leq \alpha < n-1$. For, if $K_1 > 0$ set $K_2 = K_1$

and if $\Delta_2 > 0$ let $\Delta_1 = 1$. If $x \in \mathbb{R}^n$ we find $\delta(x) > 0$ such that $\delta(x)^{n-1-\alpha} \leq \Delta_2/K_1(1+K_1)$; this defines $\delta : \mathbb{R}^n \to \mathbb{R}^+$. Given any (\mathbb{R}^n, δ) -fine sequence $\{(x_k, A_k)\}$ with $\{A_k\} \in C_1^{\alpha}(K_1, \Delta_1)$ and recalling Remark 1.1(ii) we get

$$\sum |\partial A_k|_{n-1} \le (1+K_1) \sum d(A_k)^{n-1}$$
$$\le (1+K_1) \sum \delta(x_k)^{n-1-\alpha} d(A_k)^{\alpha} \le \Delta_2$$

and thus $\{A_k\} \in C_2^{n-1}(K_2, \Delta_2).$

Obviously $C_2^{\alpha} \succeq C_1^{\alpha}$ for $0 \le \alpha \le n-1$, and thus the transitivity property of the relation \succeq shows that Γ is ordered. Since $C_2^{\alpha} \succeq C_1^{\alpha} \succeq C_2^{n-1} \succeq C_1^{n-1} = C^*$ for $0 \le \alpha < n-1$ we furthermore see that C^* is a minimal element of Γ which in addition satisfies conditions (Γ_1) and (Γ_2) since $\partial A \in \mathcal{E}(C^*)$ and $|A|_n \le d(A)|\partial A|_{n-1}$ for all $A \in \mathcal{A}$.

1b. Verification of the decomposition and intersection axioms. Before we can apply the results of our abstract theory it remains to verify the decomposition and intersection axioms ([Ju-No 1, Sec. 2]). The decomposition axiom is a direct consequence of the Decomposition Theorem in [Ju] which we state here in a slightly more general form.

DECOMPOSITION THEOREM. Suppose that an n-dimensional interval Iis the disjoint union of countably many sets E_m with $|E_m|_{\alpha_m} < \infty$ ($0 \le \alpha_m \le n$) and that positive numbers ε_m and a function $\delta : I \to \mathbb{R}^+$ are given. Then there are finitely many intervals I_k , similar to I, and points x_k such that $\{(x_k, I_k)\}$ is a δ -fine partition of I and

$$\sum_{x_k \in E_m} d(I_k)^{\alpha_m} \le \frac{c(n)}{r(I)^n} (|E_m|_{\alpha_m} + \varepsilon_m)$$

for all m, where c(n) denotes a positive constant $(\geq n^{n/2})$ and r(I) is the ratio of the smallest and the largest edges of I.

Recall that a *division* of a set $A \subseteq \mathbb{R}^n$ with $|\partial A|_n = 0$ consists of a set \dot{E} and a sequence $(E_i, C_i)_{i \in \mathbb{N}}$ such that $\dot{E} \subseteq A^\circ$, $|A - \dot{E}|_n = 0$, $C_i \in \Gamma \cup \dot{\Gamma}$, $E_i \in \mathcal{E}(C_i)$ and A is the disjoint union of all the sets E_i and E.

To verify the decomposition axiom let I be any interval in \mathbb{R}^n and denote by \dot{E} , $(E_i, C_i)_{i \in \mathbb{N}}$ a division of I. Set $K^* = \varrho^* + (\sqrt{n}/r(I))^n$, where ϱ^* is the constant of Remark 1.1(i), and $K_i^* = K^* + 2nc(n)|E_i|_{\alpha}/r(I)^n$ (resp. $K_i^* = K^*$) depending on $C_i = C_1^{\alpha}$ ($0 \le \alpha < n$) (resp. $C_i = C^n$ or $C_i = C_2^{\alpha}$ ($0 \le \alpha < n$)). Then for any $\Delta_i > 0$ and $\delta : I \to \mathbb{R}^+$, by the Decomposition Theorem, there is a δ -fine partition $\{(x_k, I_k)\}$ of I with $r(I_k) = r(I)$ and

$$\sum_{x_k \in E_i} d(I_k)^{\alpha} \le \begin{cases} \frac{K^*}{2n} + \frac{c(n)}{r(I)^n} |E_i|_{\alpha} & \text{if } C_i = C_1^{\alpha} \ (0 \le \alpha < n), \\ \frac{\Delta_i}{2n} & \text{if } C_i = C_2^{\alpha} \ (0 \le \alpha < n). \end{cases}$$

Since in our situation all $I_k \in \mathcal{D}(K^*) \cap \mathcal{A}'_{K^*}$ and all $K_i^* \geq K^*$ the partition $\{(x_k, I_k)\}$ meets all requirements of the decomposition axiom.

The following remark will be needed when verifying the intersection axiom.

Remark 1.3. Let $E, M \subseteq \mathbb{R}^n$ with $|E|_{n-1} = 0$ and $|M|_{n-1} < \infty$. Then for any $\varepsilon > 0$ there is an open set G containing E such that $|G \cap M|_{n-1} < \varepsilon$. For, as is well known, we can find a set $G' \supseteq E$ with $|G'|_{n-1} = 0$ which is the countable intersection of a decreasing collection of open sets G_i . Since $0 = |G' \cap M|_{n-1} = \lim_{i \to \infty} |G_i \cap M|_{n-1}$ the result follows.

To verify the intersection axiom fix a control condition $C_i^{\alpha} \in \Gamma$ $(0 \leq \alpha \leq n-1, i = 1, 2), E \in \mathcal{E}(C_i^{\alpha})$ and $A \in \mathcal{B}$.

Assume first $0 \leq \alpha < n-1$, recall that $E \subseteq S$ and let $\varrho > 0$ be a parameter coming from the condition $A \in \mathcal{B}$. Given $K_1 > 0$ set $K_2 = K_1 + \varrho$ and if $\Delta_2 > 0$ let $\Delta_1 = \Delta_2$. Set $\delta(x) = \operatorname{dist}(x, \mathbb{R}^n - A^\circ)$ if $x \in E \cap A^\circ$, and for $x \in E \cap \partial A$ find a neighborhood U(x) of x and a $\delta(x) > 0$ such that $U(x) \cap \partial A$ is ϱ -regulated and $B(x, \delta(x)) \subseteq U(x)$. Then for any $(E \cap A, \delta)$ -fine sequence $\{(x_k, A_k)\}$ with $\{A_k\} \in C_i^{\alpha}(K_1, \Delta_1)$ it follows that $\{A \cap A_k\} \in C_i^{\alpha}(K_2, \Delta_2)$, since for $x_k \in E \cap \partial A$ we have $\partial(A \cap A_k) \subseteq (A_k^\circ \cap \partial A) \cup \partial A_k \subseteq (U(x_k) \cap$ $\partial A) \cup \partial A_k$ giving $A \cap A_k \in \mathcal{A}'_{K_2}$ for all k, and the other conditions to be checked are obvious.

Now assume $\alpha = n - 1$ and look first at C_1^{n-1} : For given $K_1 > 0$ we set $K_2 = K_1 + |\partial A|_{n-1}$, and if $\Delta_2 > 0$ we let $\Delta_1 = \Delta_2$ and $\delta(\cdot) = 1$ on $E \cap A$. Then for any $(E \cap A, \delta)$ -fine sequence $\{(x_k, A_k)\}$ with $\{A_k\} \in C_1^{n-1}(K_1, \Delta_1)$,

$$\sum |\partial (A \cap A_k)|_{n-1} \le \sum (|A_k^\circ \cap \partial A|_{n-1} + |\partial A_k|_{n-1}) \le |\partial A|_{n-1} + K_1 = K_2$$

and thus $\{A \cap A_k\} \in C_1^{n-1}(K_2, \Delta_2).$

Finally, let us look at C_2^{n-1} and assume therefore $K_1 > 0$ to be given. Set $K_2 = K_1$ and for $\Delta_2 > 0$ let $\Delta_1 = \Delta_2/2$. Since $|E \cap \partial A|_{n-1} = 0$, by Remark 1.3 we can find an open set $G \supseteq E \cap \partial A$ with $|G \cap \partial A|_{n-1} < \Delta_1$, and for $x \in E \cap \partial A$ we choose a $\delta(x) > 0$ such that $B(x, \delta(x)) \subseteq G$ while for $x \in E \cap A^\circ$ we set $\delta(x) = \operatorname{dist}(x, \mathbb{R}^n - A^\circ)$. Thus $\delta : E \cap A \to \mathbb{R}^+$ is defined, and if $\{(x_k, A_k)\}$ denotes a $(E \cap A, \delta)$ -fine sequence with $\{A_k\} \in C_2^{n-1}(K_1, \Delta_1)$ then

$$\sum |\partial (A \cap A_k)|_{n-1} \le \sum_{x_k \in E \cap \partial A} |A_k^{\circ} \cap \partial A|_{n-1} + \sum |\partial A_k|_{n-1}$$
$$\le |G \cap \partial A|_{n-1} + \Delta_1 \le \Delta_2$$

and hence $\{A \cap A_k\} \in C_2^{n-1}(K_2, \Delta_2).$

1c. Integrability and properties of the integral. We now define $\nu(S)$ -integrability for point functions, and we summarize some of the results of [Ju-No 1, Sec. 5] for the associated $\nu(S)$ -integral.

For $A \subseteq \mathbb{R}^n$ we denote by $\mathcal{B}(A)$ the system of all subsets B of A with $B \in \mathcal{B}$. Given a set function $F : \mathcal{B}(A) \to \mathbb{R}$ (on A) we call F additive if $F(B) = \sum F(B_k)$ for any $B \in \mathcal{B}(A)$ and every finite sequence $\{B_k\}$ with $B_k \in \mathcal{B}(A)$ having disjoint interiors and $B = \bigcup B_k$.

A set function $F : \mathcal{B}(A) \to \mathbb{R}$ is called *differentiable* at $x \in A^{\circ}$ if there exists a real number α such that for any $\varepsilon > 0$ and K > 0 there is a $\delta = \delta(x) > 0$ with $|F(B) - \alpha|B|_n| \le \varepsilon |B|_n$ for every $B \in \mathcal{B}(A)$ satisfying $B \in \mathcal{D}(K), x \in B$ and $d(B) < \delta$. In this case α is uniquely determined and denoted by $\dot{F}(x)$.

Let $A \subseteq \mathbb{R}^n$, $E \subseteq A$, $C \in \Gamma \cup \dot{\Gamma}$ and let $F : \mathcal{B}(A) \to \mathbb{R}$ be a set function on A. We say that F satisfies the *null condition corresponding to* C on E(see [Ju-No 1, Sec. 3]), for short F satisfies $\mathcal{N}(C, E)$, if the following is true: $\forall \varepsilon > 0, K > 0 \exists \Delta > 0 \exists \delta : E \to \mathbb{R}^+$ such that $\sum |F(A_k)| \leq \varepsilon$ for any (E, δ) -fine sequence $\{(x_k, A_k)\}$ with $A_k \in \mathcal{B}(A)$ and $\{A_k\} \in C(K, \Delta)$.

Given $A \subseteq \mathbb{R}^n$ we call an additive set function $F : \mathcal{B}(A) \to \mathbb{R}$ a $\nu(S)$ integral on A if there exists a division \dot{E} , $(E_i, C_i)_{i \in \mathbb{N}}$ of A such that Fis differentiable on \dot{E} and satisfies $\mathcal{N}(C_i, E_i)$ for all $i \in \mathbb{N}$, $\mathcal{N}(C^*, \dot{E})$ and $\mathcal{N}(C^*, E_i)$ if $C_i \in \dot{\Gamma}$.

Let $A \in \mathcal{B}$ and let f be a real-valued function defined on A. We call $f \nu(S)$ -integrable on A if there exists a $\nu(S)$ -integral F on A with $\dot{F} = f$ a.e. on A. In this case F is uniquely determined, and we write

$$\sum_{A}^{\nu(S)} \int_{A} f = F(A) \quad (\text{see [Ju-No 1, Remark 5.1(iii)]}).$$

The space of all $\nu(S)$ -integrable functions on A is denoted by $\mathcal{I}_{\nu(S)}(A)$.

If there is no danger of misunderstanding we will often omit the index $\nu(S)$.

PROPOSITION 1.1. Let $A \in \mathcal{B}$.

(i) $\mathcal{I}(A)$ is a real linear space, and the map $f \mapsto \int_A f$ is a non-negative linear functional on $\mathcal{I}(A)$.

(ii) If A is the finite union of sets $A_k \in \mathcal{B}$ with disjoint interiors then $f \in \mathcal{I}(A)$ iff $f \in \mathcal{I}(A_k)$ for all k, and in that case

$$\int\limits_A f = \sum \int\limits_{A_k} f.$$

(iii) If for a measurable function $f : A \to \mathbb{R}$ a finite Lebesgue integral

 $\mathcal{L}_{\int A}|f|$ exists, then f belongs to $\mathcal{I}_{\nu(S)}(A)$ and

$${}^{\nu(S)} \int\limits_A f = {}^{\mathcal{L}} \int\limits_A f.$$

R e m a r k 1.4. In [Ju-No 2] we defined, also using our axiomatic theory, a relatively simple integral over *n*-dimensional compact intervals, the so-called ν_1 -integral. Since any interval *I* is contained in $\mathcal{B} = \mathcal{A}(S)$ it follows immediately that every $\nu(S)$ -integrable function $f: I \to \mathbb{R}$ is also ν_1 -integrable and both integrals coincide.

1d. Discussion. Here we discuss the dependence of the integration theory induced by the quadruple $\nu(S) = (\mathcal{B}, \mathcal{D}, \dot{\Gamma}, \Gamma)$ on S. First, we extend the notion of $\nu(S)$ -integrability to functions defined on quite arbitrary sets $A \subseteq \mathbb{R}^n$.

Assume in this subsection A to be a measurable and bounded subset of \mathbb{R}^n and let f be a real-valued function defined at least on A. By f_A we denote the function $f_A : \mathbb{R}^n \to \mathbb{R}$ defined by $f_A(x) = f(x)$ if $x \in A$ and $f_A(x) = 0$ else.

Then, according to [Ju-No 1, Sec. 5a], we call $f \nu(S)$ -integrable on A if there exists a $\nu(S)$ -integral F on \mathbb{R}^n with $\dot{F} = f_A$ a.e. In this case F is uniquely determined, and if I denotes any interval containing A the number F(I) does not depend on I, and we set

$$\int_{A}^{\nu(S)} f = F(I).$$

Again we denote by $\mathcal{I}_{\nu(S)}(A)$ the set of all $\nu(S)$ -integrable functions on A. (Note that in case of $A \in \mathcal{B} = \mathcal{A}(S)$ this definition of integrability coincides with the one given in Section 1c.)

Now suppose S_1 and S_2 to be subsets of \mathbb{R}^n with $S_1 \subseteq S_2$. A glance shows that $\mathcal{A}(S_2) \subseteq \mathcal{A}(S_1)$, and any $\nu(S_1)$ -integral on \mathbb{R}^n also represents a $\nu(S_2)$ integral on \mathbb{R}^n when restricted to $\mathcal{A}(S_2)$. Consequently, any $f \in \mathcal{I}_{\nu(S_1)}(A)$ also belongs to $\mathcal{I}_{\nu(S_2)}(A)$ and both integrals coincide. Thus all $\nu(S)$ -integrals are compatible and, in particular, $\mathcal{I}_{\nu(\mathbb{R}^n)}(A) = \bigcup_{S \subseteq \mathbb{R}^n} \mathcal{I}_{\nu(S)}(A)$.

Remark 1.5. (i) Of particular interest are the extreme cases $S = \emptyset$ and $S = \mathbb{R}^n$ yielding $\mathcal{A}(\emptyset) = \mathcal{A}$ and $\mathcal{A}(\mathbb{R}^n) = \bigcup_{\varrho > 0} \mathcal{A}'_{\varrho}$ (see Remark 1.1), and the associated integral will also be called the ν_3 -integral and ν_2 -integral respectively. Furthermore, we set $\mathcal{I}_{\nu_3}(A) = \mathcal{I}_{\nu(\emptyset)}(A)$ and $\mathcal{I}_{\nu_2}(A) = \mathcal{I}_{\nu(\mathbb{R}^n)}(A)$.

(ii) By Remark 1.4, $\mathcal{I}_{\nu_3}(I) \subseteq \mathcal{I}_{\nu(S)}(I) \subseteq \mathcal{I}_{\nu_2}(I) \subseteq \mathcal{I}_{\nu_1}(I)$ for any interval I and any $S \subseteq \mathbb{R}^n$, and all integrals coincide.

2. The divergence theorem. Here we prove the divergence theorem for our $\nu(S)$ -integral. The singularities, i.e. the points of unboundedness, of

the vector-valued function \vec{v} are assumed to lie in the set S, and we require \vec{v} to satisfy Lipschitz conditions of suitable (negative) order at those points.

2a. Formulation of the theorem. Assume $A \subseteq \mathbb{R}^n, x \in A, 1 - n \leq \beta \leq 1$ and let $\vec{v} : A \to \mathbb{R}^n$. Consider the following conditions:

 (ℓ_1) there exists a real $n \times n$ matrix M such that

$$\vec{v}(y) - \vec{v}(x) - M(y - x) = o(1) ||y - x|| \quad (y \to x, y \in A),$$

$$(\ell_{\beta}) \ (\beta \neq 1) \quad \vec{v}(y) - \vec{v}(x) = o(1) \|y - x\|^{\beta} \quad (y \to x, \ y \neq x, \ y \in A),$$

$$(L_{\beta}) \vec{v}(y) - \vec{v}(x) = O(1) ||y - x||^{\beta} (y \to x, \ y \neq x, \ y \in A).$$

If $x \in A^{\circ}$ and $\vec{v} = (v_i)_{1 \leq i \leq n}$ is (totally) differentiable at x we set div $\vec{v}(x) = \sum_{i=1}^{n} \frac{\partial v_i}{\partial x_i}(x)$, and at all other points $x \in A$ we set div $\vec{v}(x) = 0$.

By [Fed], for each $A \in \mathcal{A}$ there exists an \mathcal{H} -measurable vector function $\vec{n}_A : \partial A \to \mathbb{R}^n$, the so-called exterior normal, with $\|\vec{n}_A\| \leq 1$. Furthermore, for any \vec{v} which is continuously differentiable in a neighborhood of A we have $\int_{\partial A} \vec{v} \cdot \vec{n}_A \, d\mathcal{H} = {}^{\mathcal{L}} \int_A \operatorname{div} \vec{v}$.

THEOREM 2.1 (Divergence Theorem). Suppose $A \in \mathcal{A}(S)$ and let \vec{v} : $A \to \mathbb{R}^n$. Denote by D the set of all points from the interior of A where \vec{v} is differentiable, and write A-D as a disjoint countable union of σ_{α_i} -finite sets M_i and α_i -null sets N_i with $0 < \alpha_i \le n$ $(i \in \mathbb{N})$ such that $\bigcup_{\alpha_i < n-1} (M_i \cup N_i)$ lies in S. If \vec{v} satisfies the condition (ℓ_{α_i+1-n}) (resp. $(L_{\alpha_i+1-n}))$ at each point of M_i (resp. N_i) then \vec{v} is continuous on A except for an (n-1)-null set, and for each subset $B \in \mathcal{A}(S)$ of A the integral $\int_{\partial B} \vec{v} \cdot \vec{n}_B \, d\mathcal{H}$ exists with a finite value, div \vec{v} is $\nu(S)$ -integrable on B and

$$\int_{\partial B} \vec{v} \cdot \vec{n}_B \, d\mathcal{H} = \frac{\nu(S)}{B} \int_B \operatorname{div} \vec{v} \quad \left(= \frac{\nu_2}{B} \operatorname{div} \vec{v} \right)$$

Remark 2.1. In the formulation of the theorem we have excluded the situation $\alpha_i = 0$ which in case of n = 1 is of course superfluous since \vec{v} remains continuous on A. But for $n \ge 2$ the integral $\int_{\partial B} \vec{v} \cdot \vec{n}_B d\mathcal{H}$ can fail to exist. Anyhow, by redefining the condition (ℓ_{1-n}) it is possible to include the case $\alpha_i = 0$:

We say that $\vec{v} : A \to \mathbb{R}^n$ satisfies the condition (ℓ_{1-n}) $(n \ge 2)$ at $x \in A$ if there exists a decreasing function $g_x : \mathbb{R}^+ \to \mathbb{R}^+$ which is Lebesgue integrable on [0, 1] and

$$\vec{v}(y) - \vec{v}(x) = O(1)g_x(||y - x||)||y - x||^{2-n} \quad (y \to x, \ y \neq x, \ y \in A).$$

In the following proof of the theorem we will include this situation.

2b. Proof of the theorem. Observe that $|A - D|_n = 0$ since \vec{v} satisfies (ℓ_1) on M_i with $\alpha_i = n$ and consequently $M_i \subseteq \partial A$. Furthermore, \vec{v} is continuous

on A except for an (n-1)-null set, and hence the \mathcal{H} -measurability of \vec{v} on A follows.

Now fix $B \in \mathcal{B}(A)$, i.e. $B \subseteq A$ with $B \in \mathcal{B} = \mathcal{A}(S)$. We first show the existence of the finite integral $\int_{\partial B} \vec{v} \cdot \vec{n}_B d\mathcal{H}$; we closely follow [Ju-No 2, Sec. 2]. Note that for n = 1 there is nothing to prove since \vec{v} is continuous on A, and we therefore assume $n \geq 2$. At each $x \in \partial B - \bigcup_{\alpha_i < n-1} (M_i \cup N_i)$ the function \vec{v} is locally bounded, i.e. there is a positive number K(x) and an open neighborhood U(x) of x such that $\|\vec{v}(y)\| \leq K(x)$ for all $y \in U(x) \cap A$.

We denote by $\rho > 0$ a parameter corresponding to $B \in \mathcal{A}(S)$. If $0 < \alpha_i < n-1$ and $x \in M_i \cap \partial B$ (resp. $x \in N_i \cap \partial B$) there is an open neighborhood U(x) of x such that $U(x) \cap \partial B$ is ρ -regulated and

$$\|\vec{v}(y) - \vec{v}(x)\| \le \|y - x\|^{\alpha_i + 1 - r}$$

(resp.

$$\|\vec{v}(y) - \vec{v}(x)\| \le K(x)\|y - x\|^{\alpha_i + 1 - n}$$

with some K(x) > 0 for all $y \in U(x) \cap A$, $y \neq x$.

Finally, if $\alpha_i = 0$ (note that $N_i = \emptyset$) and $x \in M_i \cap \partial B$ there is a decreasing function $g_x : \mathbb{R}^+ \to \mathbb{R}^+$ Lebesgue integrable on [0, 1], a positive number K(x) and an open neighborhood U(x) of x with $d(U(x)) \leq 1$ such that $U(x) \cap \partial B$ is ϱ -regulated and

$$\|\vec{v}(y) - \vec{v}(x)\| \le K(x)g_x(\|y - x\|)\|y - x\|^{2-n}$$

for all $y \in U(x) \cap A$, $y \neq x$.

Since ∂B is compact there are finitely many points $x_k \in \partial B$ with $\partial B \subseteq \bigcup U(x_k)$, and it suffices to prove that $\int_{U(x_k)\cap \partial B} \|\vec{v}\| d\mathcal{H}$ remains finite for all k. Since this is obvious for $x_k \notin \bigcup_{\alpha_i < n-1} (M_i \cup N_i)$, we first consider an $x_k \in M_i \cup N_i$ where $0 < \alpha_i < n-1$.

We may assume d(B) > 0 since otherwise $|\partial B|_{n-1} = 0$ $(n \ge 2)$, and for $j = 0, 1, \ldots$ we let $C_j = \{x \in \mathbb{R}^n : d(B)/2^{j+1} < ||x - x_k|| \le d(B)/2^j\}$. It suffices to observe that

$$\int_{U(x_k)\cap\partial B} \|y-x_k\|^{\alpha_i+1-n} d\mathcal{H}(y) \le \sum_{j=0}^{\infty} \int_{C_j\cap U(x_k)\cap\partial B} \|y-x_k\|^{\alpha_i+1-n} d\mathcal{H}(y)$$
$$\le \sum_{j=0}^{\infty} \left(\frac{d(B)}{2^{j+1}}\right)^{\alpha_i+1-n} |B(x_k, d(B)/2^j) \cap U(x_k) \cap \partial B|_{n-1}$$
$$\le \sum_{j=0}^{\infty} \left(\frac{d(B)}{2^{j+1}}\right)^{\alpha_i+1-n} \varrho\left(\frac{d(B)}{2^j}\right)^{n-1} = \frac{\varrho d(B)^{\alpha_i}}{2^{\alpha_i+1-n}} \sum_{j=0}^{\infty} \left(\frac{1}{2^{\alpha_i}}\right)^j,$$

and so

$$(*) \qquad \int_{U(x_k)\cap\partial B} \|y - x_k\|^{\alpha_i + 1 - n} d\mathcal{H}(y) \le \frac{\varrho^{2^{n-1}}}{2^{\alpha_i} - 1} d(B)^{\alpha_i} \quad (<\infty).$$

For $x_k \in M_i$ with $\alpha_i = 0$ the same arguments (use $U(x_k) \cap B$ instead of B in the definition of the C_j) combined with the properties of the function $g = g_{x_k}$ yield the inequality

$$(**) \quad \int_{U(x_k)\cap\partial B} g(\|y-x_k\|)\|y-x_k\|^{2-n} \, d\mathcal{H}(y) \le \varrho\beta(n) \int_0^\gamma g(t) \, dt \quad (<\infty),$$

where $\beta(n)$ denotes a positive absolute constant, and $\gamma = d(U(x_k) \cap B)$.

By what has just been proved, we can define an additive set function F on A by $F(B) = \int_{\partial B} \vec{v} \cdot \vec{n}_B \, d\mathcal{H}$ for $B \in \mathcal{B}(A)$. We will show that F is a $\nu(S)$ -integral on A with $\dot{F} = \operatorname{div} \vec{v}$ a.e. on A, thus $\operatorname{div} \vec{v} \in \mathcal{I}_{\nu(S)}(A)$ and $\int_{\partial A} \vec{v} \cdot \vec{n}_A \, d\mathcal{H} = F(A) = {}^{\nu(S)} \int_A \operatorname{div} \vec{v}$. Of course the equality then also holds for each $B \in \mathcal{B}(A)$ (apply the theorem to B in place of A or use Thm. V(2) of [Ju-No 1]).

Without loss of generality we assume $|M_i|_{\alpha_i}$ to be finite $(i \in \mathbb{N})$, $M_i = \emptyset$ if $\alpha_i = n$ ($|M_i|_n = 0$), and we also assume the O-constant occurring in (L_{α_i+1-n}) to be bounded on N_i by $K_i > 0$ ($i \in \mathbb{N}$). Then a division of A is given by D, $(M_i, C_1^{\alpha_i})_{i \in \mathbb{N}}$, $(N_i, C_2^{\alpha_i})_{i \in \mathbb{N}}$ with the understanding that $C_1^{\alpha_i} = C_2^{\alpha_i} = C^n$ if $\alpha_i = n$.

• *F* is differentiable on *D* with $\dot{F} = \operatorname{div} \vec{v}$. Indeed, take $x \in D$, let $\varepsilon, K > 0$ and take a $\delta > 0$ such that $\|\vec{v}(y) - \vec{v}(x) - \vec{v}'(x) \cdot (y - x)\| \leq \varepsilon \|y - x\|/K^2$ for all $y \in B(x, \delta) \ (\subseteq A^\circ)$, where $\vec{v}'(x)$ denotes the derivative of \vec{v} at *x*. Then for each $B \in \mathcal{D}(K)$ with $x \in B$ and $d(B) < \delta$ we have

$$|F(B) - \operatorname{div} \vec{v}(x)|B|_n| = \left| \int_{\partial B} (\vec{v}(y) - \vec{v}(x) - \vec{v}'(x) \cdot (y - x)) \cdot \vec{n}_B \, d\mathcal{H}(y) \right|$$
$$\leq \frac{\varepsilon}{K^2} d(B) |\partial B|_{n-1} \leq \frac{\varepsilon}{K} d(B)^n \leq \varepsilon |B|_n.$$

• Similarly one proves that F satisfies the null conditions $\mathcal{N}(C_1^{\alpha_i}, M_i)$ and $\mathcal{N}(C_2^{\alpha_i}, N_i)$ if $n-1 \leq \alpha_i \leq n$ (cf. [Ju-No 2, proof of Thm. 2.1]). For example, let us show that F satisfies $\mathcal{N}(C_2^{\alpha_i}, N_i)$ if $n-1 < \alpha_i < n$.

Let $\varepsilon, K > 0$. For $x \in N_i$ find $K(x), \delta(x) > 0$ such that $\|\vec{v}(y) - \vec{v}(x)\| \le K(x) \|y - x\|^{\alpha_i + 1 - n}$ for all $y \in B(x, \delta(x)) \cap A$. By assumption, $K(x) \le K_i$ for all $x \in N_i$, and we set $\Delta = \varepsilon/(KK_i)$. Then for any (N_i, δ) -fine sequence

 $\{(x_k, A_k)\}$ with $A_k \in \mathcal{B}(A)$ and $\{A_k\} \in C_2^{\alpha_i}(K, \Delta)$ we get

$$\sum |F(A_k)| = \sum \left| \int_{\partial A_k} (\vec{v}(y) - \vec{v}(x_k)) \cdot \vec{n}_{A_k} d\mathcal{H}(y) \right|$$

$$\leq K_i \sum d(A_k)^{\alpha_i + 1 - n} |\partial A_k|_{n - 1}$$

$$\leq KK_i \sum d(A_k)^{\alpha_i} \leq KK_i \Delta = \varepsilon.$$

• Let us show that F satisfies $\mathcal{N}(C_1^{\alpha_i}, M_i)$ if $0 < \alpha_i < n-1$. Analogously one then proves that F also satisfies $\mathcal{N}(C_2^{\alpha_i}, N_i)$ for $0 < \alpha_i < n-1$.

Given $\varepsilon, K > 0$ we choose for $x \in M_i$ a $\delta(x) > 0$ such that $\|\vec{v}(y) - \vec{v}(x)\| \leq \varepsilon' \|y - x\|^{\alpha_i + 1 - n}$ for all $y \in B(x, \delta(x)) \cap A$ with $y \neq x$, where $\varepsilon' = \varepsilon 2^{1 - n} (2^{\alpha_i} - 1)/K^2$. Now let $\{(x_k, A_k)\}$ be an (M_i, δ) -fine sequence with $A_k \in \mathcal{B}(A)$ and $\{A_k\} \in C_1^{\alpha_i}(K)$. In particular, ∂A_k is K-regulated for all k, and thus we can use the inequality (*) with $B = A_k, \ \rho = K$ and $U(x_k) = B(x_k, \delta(x_k)) \supseteq A_k$ yielding

$$\sum |F(A_k)| = \sum \left| \int_{\partial A_k} (\vec{v}(y) - \vec{v}(x_k)) \cdot \vec{n}_{A_k} d\mathcal{H}(y) \right|$$

$$\leq \varepsilon' \sum \int_{\partial A_k} ||y - x_k||^{\alpha_i + 1 - n} d\mathcal{H}(y)$$

$$\leq \varepsilon' \sum \frac{K 2^{n - 1}}{2^{\alpha_i} - 1} d(A_k)^{\alpha_i} \leq \varepsilon.$$

• F satisfies $\mathcal{N}(C_1^{\alpha_i}, M_i)$ if $\alpha_i = 0$. Indeed, given $\varepsilon, K > 0$ find for $x \in M_i$ a function $g_x : \mathbb{R}^+ \to \mathbb{R}^+$ and positive numbers K(x) and $\delta(x)$ such that $\|\vec{v}(y) - \vec{v}(x)\| \leq K(x)g_x(\|y - x\|)\|y - x\|^{2-n}$ for all $y \in B(x, \delta(x)) \cap A, y \neq x$. Without loss of generality we may assume $\delta(x) \leq 1/2$ and $\int_0^{\delta(x)} g_x(t) dt \leq \varepsilon/(\beta(n)K(x)K^2)$ by the Lebesgue integrability of g_x . Here $\beta(n)$ denotes the absolute constant occurring in (**). Now let $\{(x_k, A_k)\}$ be an (M_i, δ) -fine sequence with $A_k \in \mathcal{B}(A)$ and $\{A_k\} \in C_1^{\alpha_i}(K)$. Using the inequality (**) with $B = A_k, \ \varrho = K$ and $U(x_k) = B(x_k, \delta(x_k))$ we conclude

$$\sum |F(A_k)| = \sum \left| \int_{\partial A_k} (\vec{v}(y) - \vec{v}(x_k)) \cdot \vec{n}_{A_k} d\mathcal{H}(y) \right|$$

$$\leq \sum K(x_k) \int_{\partial A_k} g_{x_k} (||y - x_k||) ||y - x_k||^{2-n} d\mathcal{H}(y)$$

$$\leq \sum K(x_k) K\beta(n) \int_{0}^{\delta(x_k)} g_{x_k}(t) dt \leq \varepsilon.$$

• Finally, the continuity of \vec{v} directly implies that F satisfies $\mathcal{N}(C^*, D \cup \bigcup_{\alpha_i > n-1} (M_i \cup N_i))$, which completes the proof.

Remark 2.2. (i) Since any interval is contained in $\mathcal{A}(\mathbb{R}^n)$ and since the ν_1 -integral extends the ν_2 -integral, our result contains the divergence theorem for the ν_1 -integral of [Ju-No 2].

(ii) Furthermore, the divergence theorem of [Ju-No 3] can also be deduced from the theorem above: set $S = \bigcup_{\alpha_i < n-1} (M_i \cup N_i)$, and recall that the ν_1 -integral extends any $\nu(S)$ -integral.

3. The transformation formula. In this section we establish a quite general transformation formula for the ν_2 -integral, i.e. the $\nu(S)$ -integral with $S = \mathbb{R}^n$ (cf. Sec. 1.d), by verifying the transformation axiom in our abstract theory ([Ju-No 1, Sec. 7]).

Given a measurable subset A of \mathbb{R}^n and a function $\phi : A \to \mathbb{R}^n$, we call ϕ a *transformation map* if it is one-to-one and if ϕ and its inverse ϕ^{-1} are Lipschitzian.

LEMMA 3.1. Let A be a measurable subset of \mathbb{R}^n , assume $\phi : A \to \mathbb{R}^n$ to be a transformation map and denote by c_1 (resp. c_2) a positive Lipschitz constant of ϕ (resp. ϕ^{-1}).

(i) If K > 0 and $B \subseteq A$ with $B \in \mathcal{A}_K(\emptyset)$, then $\phi(B) \in \mathcal{A}_{\tilde{K}}(\emptyset)$ with $\tilde{K} = 1 + (c_1 c_2)^n (1 + K)^2$.

(ii) Assume $M \subseteq A$ to be ρ -regulated ($\rho > 0$). Then $\phi(M)$ is $\tilde{\rho}$ -regulated with $\tilde{\rho} = \rho(2c_1c_2)^{n-1}$.

Proof. (i) Let K > 0 and $B \subseteq A$ with $B \in \mathcal{A}_K(\emptyset)$, i.e. $B \in \mathcal{A}(\emptyset) = \mathcal{A}$ and $d(B)^n \leq K|B|_n$, $|\partial B|_{n-1} \leq Kd(B)^{n-1}$. Since $\phi(B)$ is compact and $\phi(\partial B) = \partial \phi(B)$, we have $|\partial \phi(B)|_{n-1} \leq c_1^{n-1} |\partial B|_{n-1}$ and thus $\phi(B) \in \mathcal{A}$. Furthermore, because ϕ and ϕ^{-1} are Lipschitzian we have

$$d(\phi(B))^n \le c_1^n d(B)^n \le K c_1^n |B|_n \le K (c_1 c_2)^n |\phi(B)|_n \le \tilde{K} |\phi(B)|_n.$$

It remains to show that $|\partial \phi(B)|_{n-1} \leq \widetilde{K} d(\phi(B))^{n-1}$. Since this is obvious if $d(\phi(B)) = 0$, we assume $d(\phi(B)) > 0$, yielding

1() ~

$$\begin{aligned} |\partial\phi(B)|_{n-1} &\leq c_1^{n-1} |\partial B|_{n-1} \leq K c_1^{n-1} d(B)^{n-1} \leq K c_1^n \frac{d(B)^n}{d(\phi(B))} \\ &\leq K^2 c_1^n \frac{|B|_n}{d(\phi(B))} \leq (c_1 c_2)^n K^2 \frac{|\phi(B)|_n}{d(\phi(B))} \\ &\leq (c_1 c_2)^n K^2 d(\phi(B))^{n-1}. \end{aligned}$$

(ii) To prove the $\tilde{\rho}$ -regularity of $\phi(M)$ we first take a $y = \phi(x) \in \phi(M)$ and any r > 0, and we set $E = \phi^{-1}(B(y, r) \cap \phi(A))$, which is contained in $B(x, rc_2)$. Consequently,

$$|B(y,r) \cap \phi(M)|_{n-1} = |\phi(E \cap M)|_{n-1} \le c_1^{n-1} |E \cap M|_{n-1}$$
$$\le c_1^{n-1} |B(x,rc_2) \cap M|_{n-1} \le c_1^{n-1} \varrho(rc_2)^{n-1}$$
$$= \varrho(c_1c_2)^{n-1} r^{n-1}$$

since M is ρ -regulated.

If $y \in \mathbb{R}^n$ is arbitrary and if r > 0 we choose (if possible) a $z \in B(y, r) \cap \phi(M)$, which implies $B(y, r) \subseteq B(z, 2r)$, and thus

$$|B(y,r) \cap \phi(M)|_{n-1} \le |B(z,2r) \cap \phi(M)|_{n-1} \le \widetilde{\varrho}r^{n-1}. \blacksquare$$

To verify the transformation axiom for our ν_2 -integral take a set $A \in \mathcal{A}(\mathbb{R}^n) = \bigcup_{\rho>0} \mathcal{A}'_{\rho}$ and a transformation map $\phi : A \to \mathbb{R}^n$.

If $B \subseteq A$ with $B \in \mathcal{A}'_{\varrho}$ for some $\varrho > 0$, Lemma 3.1 implies $\phi(B) \in \mathcal{A}(\mathbb{R}^n)$ since $\partial \phi(B) = \phi(\partial B)$, and this, combined with Lemma 3.1(i), yields the invariance of $\mathcal{B} = \mathcal{A}(\mathbb{R}^n)$ and \mathcal{D} with respect to ϕ . Finally, one has to check the invariance of the control conditions under ϕ and this again is a simple consequence of Lemma 3.1. For example, take $C = C_1^{\alpha}$, $0 \leq \alpha < n - 1$, and let K > 0. Denote again by c_1 (resp. c_2) a Lipschitz constant of ϕ (resp. ϕ^{-1}) and set $\widetilde{K} = K(1 + c_1^{\alpha} + (2c_1c_2)^{n-1})$. For $\widetilde{\Delta} > 0$ let $\Delta = 1$ and assume $\{A_k\} \in C_1^{\alpha}(K, \Delta)$ with $A_k \subseteq A$. Since ∂A_k is K-regulated Lemma 3.1(ii) implies that $\partial \phi(A_k)$ is \widetilde{K} -regulated, $\sum d(\phi(A_k))^{\alpha} \leq c_1^{\alpha} \sum d(A_k)^{\alpha} \leq \widetilde{K}$, and since each $x \in \mathbb{R}^n$ is contained in at most K of the A_k the same is true for the sequence $\{\phi(A_k)\}$ and thus $\{\phi(A_k)\} \in C_1^{\alpha}(\widetilde{K}, \widetilde{\Delta})$. Furthermore, if $E \subseteq A$ with $E \in \mathcal{E}(C_1^{\alpha})$ we have $|\phi(E)|_{\alpha} \leq c_1^{\alpha}|E|_{\alpha} < \infty$ and therefore $\phi(E) \in \mathcal{E}(C_1^{\alpha})$.

Now we can state the following

THEOREM 3.1 (Transformation Formula). Let $A \in \mathcal{A}(\mathbb{R}^n)$, $\phi : A \to \mathbb{R}^n$ be a transformation map and let $f : \phi(A) \to \mathbb{R}$. Then f is ν_2 -integrable on $\phi(A)$ iff $(f \circ \phi) |\det \phi'|$ is ν_2 -integrable on A, and in that case

$$\sum_{\phi(A)}^{\nu_2} \int_A f = \sum_A^{\nu_2} \int_A (f \circ \phi) |\det \phi'|.$$

R e m a r k 3.1. (i) Analogously one verifies the transformation axiom for the ν_3 -integral, i.e. the $\nu(\emptyset)$ -integral, and thus the corresponding transformation formula holds.

(ii) For $S = \emptyset$ and $S = \mathbb{R}^n$ we have seen the quadruple $\nu(S)$ to be invariant under transformation maps, and therefore a transformation formula holds within the $\nu(S)$ -theory.

Of course for general S the semi-ring $\mathcal{A}(S)$ will no longer be invariant with respect to transformations, and thus no transformation formula can be stated within the $\nu(S)$ -theory. Instead one also has to consider the transformed $\nu(\phi(S))$ -theory, and then an analogue of Theorem 3.1 can be proved in which one of the integrals is a $\nu(S)$ -integral and the other a $\nu(\phi(S))$ integral.

4. A constructive definition of the $\nu(S)$ -integral. Here we assume $S \subseteq \mathbb{R}^n$ again to be arbitrary but fixed.

The definition of the $\nu(S)$ -integral for a point function f given in Section 1 is of descriptive type, i.e. we associate with f a set function satisfying certain conditions. In contrast to this a constructive definition in the Riemann sense would associate with f only a single real number. Ideally, this seems to be the most natural way of defining an integration process, and our $\nu(S)$ -integral indeed allows such an equivalent constructive definition.

THEOREM 4.1. Let $A \in \mathcal{A}(S)$ and $f : A \to \mathbb{R}$. Then f is $\nu(S)$ -integrable on A iff there exists a real number J and a division E, $(E_i, C_i)_{i \in \mathbb{N}}$ of A with the following property: $\forall \varepsilon > 0, K > 0, K_i > 0 \exists \Delta_i > 0, \delta : A \to \mathbb{R}^+$ such that

$$\left|J - \left(\sum f(x_k)|A_k|_n + \sum f(x'_k)|A'_k|_n\right)\right| \le \varepsilon$$

for any δ -fine partition $\{(x_k, A_k)\} \cup \{(x'_k, A'_k)\}$ of A with

- (i) if $x_k \in \dot{E}$ then $A_k \in \mathcal{A}_K(S)$, $\{A_k : x_k \in E_i\} \in C_i(K_i, \Delta_i)$ $(i \in \mathbb{N})$, (ii) $\{A'_k\} \in C^*(K)$ and $x'_k \in \dot{E} \cup \bigcup_{C_i \in \dot{\Gamma}} E_i$ for all k,

and in that case J is uniquely determined and $J = {}^{\nu(S)} \int_A f$.

Since the control condition $C^* = C_1^{n-1}$ does not depend on Δ one part of the theorem, assuming the $\nu(S)$ -integrability of f, is nothing but the concrete version of Corollary 6.1 of [Ju-No 1]. The other part of the theorem is much more involved and will be presented in a separate paper [No 2].

R e m a r k 4.1. The analogous theorem for the ν_1 -integral (cf. Remark 1.4) has been proved in [Ju-No 2, Thm. 3.1].

References

[Fed]	H. Federer,	Geometric Measure	Theory, Springer	r, New Yorl	x, 1969.

- J. Jarník and J. Kurzweil, A non-absolutely convergent integral which [Jar-Ku 1] admits C¹-transformations, Časopis Pěst. Mat. 109 (1984), 157–167.
- [Jar-Ku 2] -, -, A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (110) (1985), 116-139.
- [Jar-Ku 3] -, -, A new and more powerful concept of the PU integral, ibid. 38 (113) (1988), 8-48.

- [JKS] J. Jarník, J. Kurzweil and S. Schwabik, On Mawhin's approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat. 108 (1983), 356– 380.
 - [Ju] W. B. Jurkat, The Divergence Theorem and Perron integration with exceptional sets, Czechoslovak Math. J. 43 (118) (1993), 27–45.
- $[\text{Ju-No 1}] \quad \text{W. B. Jurkat and D. J. F. Nonnenmacher, An axiomatic theory of non-absolutely convergent integrals in <math>\mathbb{R}^n$, Fund. Math. 145 (1994), 221–242.
- [Ju-No 2] —, —, A generalized n-dimensional Riemann integral and the Divergence Theorem with singularities, Acta Sci. Math. (Szeged) 59 (1994), 241–256.
- [Ju-No 3] —, —, The Fundamental Theorem for the ν_1 -integral on more general sets and a corresponding Divergence Theorem with singularities, Czechoslovak Math. J., to appear.
 - [Maw] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, ibid. 31 (106) (1981), 614–632.
 - [No 1] D. J. F. Nonnenmacher, Sets of finite perimeter and the Gauss-Green Theorem with singularities, J. London Math. Soc., to appear.
 - [No 2] —, A constructive definition of the n-dimensional $\nu(S)$ -integral in terms of Riemann sums, preprint 1992, to appear.
 - [Pf 1] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665–685.
 - [Pf 2] —, The Gauss-Green Theorem, Adv. in Math. 87 (1991), 93–147.

ABTEILUNG MATHEMATIK II UND V UNIVERSITÄT ULM D-89069 ULM, GERMANY

Received 24 August 1993