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A theory of non-absolutely convergent integrals
in R"” with singularities on a regular boundary

by

W. B. Jurkat and D. J. F. Nonnenmacher (Ulm)

Abstract. Specializing a recently developed axiomatic theory of non-absolutely con-
vergent integrals in R", we are led to an integration process over quite general sets A C R"
with a regular boundary. The integral enjoys all the usual properties and yields the diver-
gence theorem for vector-valued functions with singularities in a most general form.

Introduction. Consider an n-dimensional vector field ¥ which is differ-
entiable everywhere on R™. We seek an integration process which integrates
div ¥ over reasonable sets A (C R") and expresses the integral [, div in
terms of ¢ on the boundary A of A in the expected way. While the classical
Denjoy—Perron integral (1912/14) solves this problem in dimension one, first
solutions in higher dimensions were given for intervals A only in the eighties
by [Maw], [JKS], [Pf 1].

More general sets were first discussed in [Jar-Ku 1], where the authors
treat compact sets A C R? with a smooth boundary, while in general (see
[Jar-Ku 2, 3]) they take A = R™ and allow certain exceptional points where
differentiability is replaced by weaker conditions.

Another approach, involving transfinite induction, is discussed in [Pf 2].
Here BV sets A (e.g., compact sets A with |0A|,—1 < o0) are treated,
and (n — 1)-dimensional sets are allowed where ¢ is only continuous or
bounded.

In [Ju-No 1] we introduced a descriptive, axiomatic theory of non-absolu-
tely convergent integrals in R™ which was specialized in [Ju-No 2] to the rela-
tively simple v -integral over compact intervals. This integral not only enjoys
all the usual properties but yields a very general form of the divergence theo-
rem including exceptional points where the vector field ¥/ is not differentiable
but still bounded, as well as singularities where ¥ is not bounded. At these
singularities we assume ¥ to be of Lipschitz type with a negative exponent
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B > 1—n. Countably many types [ are allowed, and the set of singularities
of type 3 is assumed to have a finite outer (5 + n — 1)-dimensional Haus-
dorff measure. Similar singularities were discussed in [Pf 1] but they were
restricted to lie on hyperplanes. Also [Jar-Ku 3] discussed singularities, but
only at isolated points.

In [Ju-No 3], using the v4-theory, we were able to treat this type of
singularities in a corresponding divergence theorem on sets A € A, i.e.
compact sets A C R™ with |0A|,—1 < oo (cf. also [No 1] where general
BV sets A are discussed). Here we assumed the singularities to lie in the
interior of A since otherwise the integral over A (occurring in the divergence
theorem) might not exist.

Imposing suitable regularity conditions on 0A, balancing the magnitude
of OA against the growth of the vector field, it is possible to relax this as-
sumption. The involved ideas lead to a second specialization of our abstract
theory which is presented in this paper. Here we fix an arbitrary set S C R"”
(the set of potential singularities), and we treat sets A € A which satisfy a
simple (but very general) local regularity condition at each point € SNOA.
In particular, the regularity condition is satisfied by any interval. The re-
sulting v(S)-integral over such sets A again has all the usual properties (as
additivity and extension of Lebesgue’s integral), and in a corresponding di-
vergence theorem, which in particular generalizes our results in [Ju-No 2, 3],
we can now treat on A singularities of the type mentioned above lying in S.

The dependence of our v(S)-theory on S is as follows: if 7 C Sy (C R™)
then the v(S2)-integral extends the v(S;)-integral, and since the v;-integral
extends any v(S)-integral all integrals discussed are compatible.

For S = () and S = R™ we establish a substitution formula for bilip-
schitzian transformation maps by verifying the transformation axiom in our
abstract theory [Ju-No 1].

Finally, we state without proof a directly constructive definition of the
general v(S)-integral in terms of Riemann sums. The proof is provided in
[No 2].

0. Preliminaries. We denote by R (resp. R™) the set of all real (resp. all
positive real) numbers. Throughout this paper n is a fixed positive integer,
and we work in R™ with the usual inner product z -y = > x;y; (x =
(zi),y = (y;) € R™) and the associated norm || - ||. For z € R™ and r > 0 we
set B(z,r) ={y e R": [z —y|| <r}.

If € R" and E C R™ we denote by E°, E, OF, d(E) and dist(z, E) the
interior, closure, boundary, diameter of F and the distance from the point
x to the set E.

By |- |s (0 < s < n) we denote the s-dimensional normalized outer
Hausdorff measure in R™ which coincides for integral s on R* (C R™) with
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the s-dimensional outer Lebesgue measure (| - |o being the counting mea-
sure). Instead of | - |,,—1 we also write H(-), and terms like measurable and
almost everywhere (a.e.) always refer to the Lebesgue measure | - |, unless
the contrary is stated explicitly. A set £ C R"™ is called o,-finite if it can
be expressed as a countable union of sets with finite s-dimensional outer
Hausdorff measure, and E is called an s-null set if |E|; = 0.

An interval I in R"™ is always assumed to be compact and non-degenerate.

1. The v(S)-integral and its basic properties. In this section we spe-
cialize the abstract quadruple v = (B, D, I",I") occurring in our axiomatic
theory ([Ju-No 1]), and obtain a well-behaved n-dimensional integration
process over quite general sets. The specialization will depend on an arbi-
trary set S C R"™, the set of potential singularities (cf. Thm. 2.1). For the
sake of completeness we will restate the basic properties of the associated
v = v(S)-integral.

1a. Definition of v(S) = (B,D,I',T"). By A we denote the system of all
compact sets A C R™ such that |0A[,— is finite.

Given o > 0 we call aset M C R™ p-requlated if | B(x,7)NM|,_1 < or™!
for any x € R™ and any r > 0.

Let S be a subset of R™ and let A(S) consist of those A € A for which
there is a ¢ > 0 such that for any € S N 0A there exists a neighborhood
U of x with U N 0A being p-regulated.

For ¢ > 0 we denote by A}, the system of all A € A whose boundary is o-
regulated, and we let A,(S) consist of all sets A € A(S) with d(A)™ < o|Al,
and |0A[,_1 < pd(A)" L.

Remark 1.1. (i) Note that there exists a positive constant p* (> 2n™),
depending only on n, such that each cube, i.e. an interval whose sides have
equal length, belongs to A,~(S), and each interval belongs to Aj..

(ii) For any ¢ > 0 we have A}, C A(S), and if A € A, then [0A[, 1 <
(1+ o)d(A)" 1,

(iii) Observe that A(0) = A and A(R") =, Aj. For, if A € A(R")
there exists a o > 0 such that we can find for any x € JA a neighborhood
U(z) with U(z) N 0A being p-regulated. Since 0A is compact there are
finitely many points x; € 04, 1 < i < m, with A4 C |J*, U(z;), and if
x € R” and r > 0 we see that

m
|B(z,7) NOAln-1 <Y |B(z, 1) NU(zi) N OAln—1 < mor™™!
i=1
and thus A € A, .
(iv) If A, B € A(S) with corresponding parameters g4, op (according to
the definition of A(S)) then ANB, AUB, A— B° € A(S) with (a possible)
corresponding parameter g4 + 0p.
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In what follows we assume S to be an arbitrary but fixed subset of R".

Obviously (use Remark 1.1) B = A(S) (resp. D(K) = Ag(S) for K > 0)
is a semi-ring (resp. differentiation class) according to [Ju-No 1, Sec. 1].
D associates with each positive K the class D(K).

Let E C R® and § : E — RT be given. Then a finite sequence of pairs
{(IEk,Ak)} with z € Ay € B, A?ﬂA; = (Z #* ]), T € F and d(Ak) < 5(l‘k)
is called (E,d)-fine. If in addition E = |JAx we call {(zx, Ax)} a o-fine
partition of E.

The control conditions we want to use are defined as follows:

For 0 < a < m — 1 the control condition C¢ (resp. C§') associates with
any positive numbers K and A the system of all finite sequences { Ay} with
Ay, € A% such that each x € S is contained in at most K of the Ay and
such that Y d(Ag)® < K (resp. > d(Ax)* < A). By E(CY) (resp. £(CY))
we denote the system of all E C S with |E|, < oo (resp. |E|, = 0).

The condition C7~* (resp. O3~ ') associates with K, A > 0 the sys-
tem of all finite sequences {A} with Ay € B and > [0Ak|n—1 < K (resp.
ST 0Ag|—1 < A), and we let £(CT1) (resp. £(Cy~ 1)) be the system of all
E CR"™ with |E|,—1 < oo (resp. |E|,—1 = 0).

If n — 1 < a < n the control condition C{ (resp. C§') associates with
K, A > 0 the system of all finite sequences {Ax} with Ay € D(K) and
Y d(Ag)® < K (resp. >, d(Ar)* < A). E(CY) (resp. £(CY)) consists of all
E C R™ with |E|, < oo (resp. |E|, =0).

Finally, the condition C"™ associates with any positive K the system of
all finite sequences { Ay} with Ay € D(K), and we let £(C™) = {E C R"™:
|E|n = O}'

Remark 1.2. The requirement that each z € S lies in at most K of the
sets Ay in the definition of Cf* (0 < a < n — 1) will be important when we
give an equivalent constructive definition of our integral in terms of Riemann
sums. Remember that if the Ay are intervals with disjoint interiors then each
x € R™ is contained in at most 2™ of them.

Set I' = {C"}U{C? :n—1<a<n,i=1,2} (the requirements (I")
and (I3) in [Ju-No 1, Sec. 1] then obviously being satisfied) and I" = {C :
0<a<n-—1, i=1,2} (disjoint from I"). We will prove that I" is ordered
by the relation = (see [Ju-No 1, Sec. 1]) and that C* = C}*"' is a minimal
element of I". Analogously one then shows that I" is ordered.

If 0 < 8 < a < n-—1 then 01’8 = C%. For, given K1 > 0 we let
Ky = K; and if Ay > 0 we set Ay = Ay, If x € R™ choose §(z) > 0
such that §(x)* % < Ay /K, (this defines § : R® — R¥), and let {(xy, Ax)}
be any (R",6)-fine sequence with {Ay} € CV(Ky, Ay). Since 3 d(Ap)® <
S 0(xp)*Pd(Ar)P < Ay we have {Ar} € CS (K, Ag).

Furthermore, C{* > C;L_l for 0 <a<n-—1. For, if K1 > 0set Ko = K3
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and if Ay > 0let A; = 1. If x € R™ we find 6(x) > 0 such that §(z)" "1~ <
As/K1(1+ K); this defines 6 : R™ — R*. Given any (R"™,d)-fine sequence
{(zk, Ax)} with {4} € CY (K1, A1) and recalling Remark 1.1(ii) we get

Z |0AK|n—1 < (1+ K4) Zd(Ak)nfl
< (LK) D o(wg)" ™7 d(AR)" < A

and thus {4} € Oy 1 (Ka, As).

Obviously CF = Cf for 0 < aw < n—1, and thus the transitivity property
of the relation > shows that I" is ordered. Since C$ = Cf* = C’;L_l > C{”_l =
C* for 0 < a < n— 1 we furthermore see that C* is a minimal element of I”
which in addition satisfies conditions (I) and (I%) since A € £(C*) and
|Al, < d(A)|0A|,—; for all A € A.

1b. Verification of the decomposition and intersection axioms. Before
we can apply the results of our abstract theory it remains to verify the de-
composition and intersection axioms ([Ju-No 1, Sec. 2]). The decomposition
axiom is a direct consequence of the Decomposition Theorem in [Ju] which
we state here in a slightly more general form.

DECOMPOSITION THEOREM. Suppose that an n-dimensional interval 1
is the disjoint union of countably many sets E,, with |Ey,l|a, < 0o (0 <
am < n) and that positive numbers e,, and a function 6 : I — RT are
given. Then there are finitely many intervals I, similar to I, and points xj
such that {(xk, Ix)} is a 0-fine partition of I and

S () < :(%)n(mmbm +em)

Tk eE?VL

for all m, where c(n) denotes a positive constant (> n™?) and r(I) is the
ratio of the smallest and the largest edges of I.

Recall that a division of a set A C R"™ with |0A|,, = 0 consists of a set
F and a sequence (E;, Cy)ien such that E C A°, |A — E|n =0,C;el"Ur,
E; € £(C;) and A is the disjoint union of all the sets F; and E.

To verify the decomposition axiom let I be any interval in R™ and denote
by E, (Ei, Ci)ien a division of I. Set K* = o* + (y/n/r(I))", where o* is
the constant of Remark 1.1(i), and K} = K* + 2nc(n)|E;|o/r(I)" (resp.
K} = K*) depending on C; = Cf (0 < a < n) (resp. C; = C" or C; = C¢
(0 < a < n)). Then for any A; > 0 and 6 : I — RT, by the Decomposition
Theorem, there is a d-fine partition {(x, Ix)} of I with r(I;) = r(I) and

K*
n C(”21|Ei\a if C; =C0¢ (0<a<n),
> dmyr<q 2 )
L €EE; ! ifCZ»:C’g (0§a<n).

2n
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Since in our situation all I, € D(K*) N A%, and all K} > K* the partition
{(zg, Ix)} meets all requirements of the decomposition axiom.

The following remark will be needed when verifying the intersection ax-
iom.

Remark 1.3. Let E, M C R" with |E|,—1 =0 and |M|,,—1 < co. Then
for any € > 0 there is an open set G containing F such that |[GNM]|,_; < €.
For, as is well known, we can find a set G’ O E with |G’|,,—1 = 0 which is
the countable intersection of a decreasing collection of open sets G;. Since
0=|G'"NM|,—1 =lim;_,o |G; N M|, _1 the result follows.

To verify the intersection axiom fix a control condition Cf € I' (0 < a <
n—1,i=1,2), E€ &(CY) and A € B.

Assume first 0 < a < n — 1, recall that F C S and let ¢ > 0 be a
parameter coming from the condition A € B. Given K1 > 0 set Ko = K1+
and if Ag > 0let Ay = Ag. Set §(x) = dist(z,R"—A°) if x € ENA°, and for
x € ENOA find a neighborhood U (x) of z and a 6(x) > 0 such that U(x)NdA
is p-regulated and B(z,d(x)) C U(x). Then for any (F'N A, d)-fine sequence
{(I’k,Ak)} with {Ak} (S CZQ(Kl, Al) it follows that {AmAk;} S C?(K27A2),
since for x, € £ N 0A we have 0(AN Ay) C (A N0A)UOA, C (U(xk) N
0A) U 0Ay giving AN Ay € A, for all k, and the other conditions to be
checked are obvious.

Now assume a = n — 1 and look first at C{L_lz For given K7 > 0 we set
Ky = Ky + |0A] -1, and if Ay > 0 we let Ay = Ay and §(-) =1 on EN A.
Then for any (ENA, §)-fine sequence {(z, A)} with {4} € O~ 1K, 4y),

S 1AM A1 < Y (1A N OAlu—1 + [0AK 1) < [0A[n—1 + K1 = Ky

and thus {AN Ay} € CP (K, Ay).

Finally, let us look at Cg_l and assume therefore K7 > 0 to be given.
Set Ky = K and for Ay > 0 let Ay = As/2. Since |[E N 0A|,—1 = 0, by
Remark 1.3 we can find an open set G 2 E N 9JA with |G N 0A|,—1 < 44,
and for z € E'N0A we choose a d(x) > 0 such that B(x,d(x)) C G while
for z € EN A° we set 6(z) = dist(z,R" — A°). Thus § : EN A — R is
defined, and if {(xx, Ax)} denotes a (E N A, d)-fine sequence with {Ax} €
Cgil(Kl, Al) then

Y IANA) 1< Y [AZNOAL 1+ Y |0Ak]n1

R, EENDA

<|GNOA|_1 + Ay < Ay

and hence {A N Ay} € CF (Ko, Ay).
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1c. Integrability and properties of the integral. We now define v(S)-
integrability for point functions, and we summarize some of the results of
[Ju-No 1, Sec. 5] for the associated v(S)-integral.

For A C R™ we denote by B(A) the system of all subsets B of A with
B € B. Given a set function F' : B(A) — R (on A) we call F' additive if
F(B) = ) F(By) for any B € B(A) and every finite sequence {Bj} with
By, € B(A) having disjoint interiors and B = | By.

A set function F' : B(A) — R is called differentiable at © € A° if there
exists a real number « such that for any ¢ > 0 and K > 0 there is a
d = 0(z) > 0 with |F(B) — «|B|,| < ¢|B|,, for every B € B(A) satisfying
B e D(K), x € B and d(B) < ¢. In this case « is uniquely determined and
denoted by F(z).

Let ACR", EC A, Cel'UI andlet F:B(A) — R be a set function
on A. We say that F satisfies the null condition corresponding to C on E
(see [Ju-No 1, Sec. 3]), for short F' satisfies N'(C, E), if the following is true:
Ve >0, K >03A > 03§ : E — R such that Y |F(Ag)| < ¢ for any
(E, §)-fine sequence {(xy, Ar)} with Ay € B(A) and {Ax} € C(K, A).

Given A C R™ we call an additive set function F' : B(A) — R a v(S5)-
integral on A if there exists a division E, (Ei, Ci)ien of A such that F
is differentiable on £ and satisfies N(C;, E;) for all i € N, N(C*, E) and
N(C* E)ifC; e

Let A € B and let f be a real-valued function defined on A. We call f
v(S)-integrable on A if there exists a v(S)-integral F on A with F' = f a.e.
on A. In this case F' is uniquely determined, and we write

V(S)f f=F(A) (see [Ju-No 1, Remark 5.1(iii)]).
A

The space of all v(5)-integrable functions on A is denoted by Z,,(g)(A).
If there is no danger of misunderstanding we will often omit the index

v(S).
ProroOSITION 1.1. Let A € B.

(i) Z(A) is a real linear space, and the map f — [, f is a non-negative
linear functional on Z(A).

(ii) If A is the finite union of sets Ay € B with disjoint interiors then
feZ(A) iff f € Z(Ax) for all k, and in that case

[rox fs

(iii) If for a measurable function f : A — R a finite Lebesgue integral
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LfA]f\ exists, then f belongs to T, (s)(A) and
y(S)f f _ Lf f
A A

Remark 1.4. In [Ju-No 2] we defined, also using our axiomatic theory, a
relatively simple integral over n-dimensional compact intervals, the so-called
v1-integral. Since any interval I is contained in B = A(S) it follows imme-
diately that every v(S)-integrable function f : I — R is also v;-integrable
and both integrals coincide.

1d. Discussion. Here we discuss the dependence of the integration the-
ory induced by the quadruple v(S) = (B,D,f,F) on S. First, we extend
the notion of v(.S)-integrability to functions defined on quite arbitrary sets
A CR™

Assume in this subsection A to be a measurable and bounded subset
of R™ and let f be a real-valued function defined at least on A. By fa we
denote the function f4 : R™ — R defined by fa(z) = f(z) if x € A and
fa(x) =0 else.

Then, according to [Ju-No 1, Sec. 5a|, we call f v(S)-integrable on A
if there exists a v(S)-integral F on R with F' = f4 a.e. In this case F is
uniquely determined, and if I denotes any interval containing A the number
F(I) does not depend on I, and we set

Y[ = F(D).
A

Again we denote by T, (g)(A) the set of all v(S)-integrable functions on A.
(Note that in case of A € B = A(S) this definition of integrability coincides
with the one given in Section 1c.)

Now suppose S7 and S5 to be subsets of R™ with .S; C Ss. A glance shows
that A(S2) C A(S7), and any v(S7)-integral on R™ also represents a v/(.S3)-
integral on R™ when restricted to A(S2). Consequently, any f € Z,s,)(A)
also belongs to 7, (s,)(A) and both integrals coincide. Thus all v(.5)-integrals
are compatible and, in particular, Z,wn»)(A) = Ugcpn Zu(s)(4).

Remark 1.5. (i) Of particular interest are the extreme cases S = () and
S = R" yielding A(0) = A and A(R") = [, A, (see Remark 1.1), and
the associated integral will also be called the vs-integral and vo-integral re-
spectively. Furthermore, we set Z,,,(A) = Z,()(A) and Z,,(A) = Z, &) (A).

(ii) By Remark 1.4, 7,,(I) € Z,s)({) € Z,,(I) € Z,,(I) for any interval
I and any S C R™, and all integrals coincide.

2. The divergence theorem. Here we prove the divergence theorem
for our v(S)-integral. The singularities, i.e. the points of unboundedness, of
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the vector-valued function ¢ are assumed to lie in the set .S, and we require
U to satisfy Lipschitz conditions of suitable (negative) order at those points.

2a. Formulation of the theorem. Assume A CR", z € A,(1—-n< <1
and let ¥ : A — R™. Consider the following conditions:

(f1)  there exists a real n x n matrix M such that

i(y) —v(z) = M(y —z) =o(V)|ly —z| (y—=z, yeA),
(lp) (B# 1) @(y) — V(@) =0y -zl  (y—=, y#=z, yeA),
(Lg) 3(y) —(x) =0y — =z’ (y—=, y#z, yeA).

If 2 € A° and ¥ = (v;)1<i<n is (totally) differentiable at x we set div d(z) =

S ggl (z), and at all other points x € A we set divd(xz) = 0.

By [Fed], for each A € A there exists an H-measurable vector function
fig : OA — R™, the so-called exterior normal, with ||7i4]|] < 1. Furthermore,
for any ¢ which is continuously differentiable in a neighborhood of A we
have [, ¥-fiadH = [, div.

THEOREM 2.1 (Divergence Theorem). Suppose A € A(S) and let v :
A — R™. Denote by D the set of all points from the interior of A where U is
differentiable, and write A—D as a disjoint countable union of o, -finite sets
M; and a;-null sets N; with 0 < a;; < n (i € N) such that Uai<n—l(MiUN’i)
lies in S. If U satisfies the condition ({o,4+1—n) (resp. (La,+1-n)) at each
point of M; (resp. N;) then U is continuous on A except for an (n — 1)-null
set, and for each subset B € A(S) of A the integral [,, U-fip dH exists with
a finite value, div ¥ is v(S)-integrable on B and

[ e ipan=""f avy (="[ divd).
OB B B

Remark 2.1. In the formulation of the theorem we have excluded the
situation «; = 0 which in case of n = 1 is of course superfluous since ¥
remains continuous on A. But for n > 2 the integral f 5B U - figp dH can fail
to exist. Anyhow, by redefining the condition (¢;_,,) it is possible to include
the case a; = 0:

We say that ¢ : A — R" satisfies the condition (¢/1_,) (n > 2) at
x € A if there exists a decreasing function g, : R™ — RT which is Lebesgue
integrable on [0, 1] and

i(y) — d(z) = OW)ga(lly — zDlly — >  (y— =, y#a, y € A).
In the following proof of the theorem we will include this situation.

2b. Proof of the theorem. Observe that |A— D|,, = 0 since ¥ satisfies ({1)
on M; with a;; = n and consequently M; C 0A. Furthermore, ¥ is continuous
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on A except for an (n — 1)-null set, and hence the H-measurability of ¥ on
A follows.

Now fix B € B(A), i.e. B C A with B € B = A(S). We first show
the existence of the finite integral [ op U 7ip dH; we closely follow [Ju-No 2,
Sec. 2]. Note that for n = 1 there is nothing to prove since ¢ is continuous on
A, and we therefore assume n > 2. At each x € 0B — Ua¢<n—1(Mi UN;) the
function ¥ is locally bounded, i.e. there is a positive number K (x) and an
open neighborhood U (x) of x such that ||7(y)|| < K(x) for all y € U(x) N A.

We denote by ¢ > 0 a parameter corresponding to B € A(S). If 0 < a; <
n—1and z € M; N OB (resp. € N; N OB) there is an open neighborhood
U(z) of x such that U(x) N IB is p-regulated and

19(y) = F(@)I < lly — 2>+

(resp.

17(y) — 3(2)|| < K(z)|y — z||*+"

with some K(z) > 0) forally e U(x) N A, y # z.

Finally, if o; = 0 (note that N; = 0) and z € M; N OB there is a
decreasing function g, : Rt — RT Lebesgue integrable on [0, 1], a positive
number K (z) and an open neighborhood U(z) of z with d(U(x)) < 1 such
that U(xz) N OB is p-regulated and

19(y) — 5(@)Il < K(2)ga2(lly — 2Dy — >~

forally e U(x) NA, y # x.

Since 0B is compact there are finitely many points z € 0B with 0B C
UJU(zr), and it suffices to prove that fU(zk)ﬂaB ||U]| dH remains finite for
all k. Since this is obvious for zj & | (M; U N;), we first consider an
zr € M; UN; where 0 < o; < n — 1.

We may assume d(B) > 0 since otherwise |0B|,—1 =0 (n > 2), and for
j=0,1,... welet C; = { € R" : d(B)/27T < ||z — x| < d(B)/27}. It
suffices to observe that

a;<n—1

Jolpmmdrttrane) <Y [ gl dr()

U(zk)NOB j=0 C;NU(zx)NOB

00 o;+1—m
< (d(.B)) |B(z5, d(B)/27) N U(2) N OBn_1

2j+1
7=0
00 d(B) aj+1-n d(B) n—1 B Qd(B)a’“ o8] 1 J
< jZO <2j+1 ) 0 27 o 9ai+1—n ]ZO 20 ?
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and so

() [ = mle i ran) < 2wy (< o).
U(x,)NOB
For zj, € M; with o; = 0 the same arguments (use U(zy) N B instead of
B in the definition of the C}) combined with the properties of the function
g = gz, yield the inequality

v

(se) [ glly—ze)lly =zl dH(y) < 0B(n) [g(t)dt (< o0),
U(z,)NOB 0

where 5(n) denotes a positive absolute constant, and v = d(U(zx) N B).

By what has just been proved, we can define an additive set function
Fon Aby F(B) = [,,U-fipdH for B € B(A). We will show that F' is
a v(S)-integral on A with F' = div @ a.e. on A, thus divd € T,(s)(A) and
JoaT-TladH = F(A) = ”(S)fA div @. Of course the equality then also holds
for each B € B(A) (apply the theorem to B in place of A or use Thm. V(2)
of [Ju-No 1J).

Without loss of generality we assume |M;|,, to be finite (i € N), M; = ()
if a; = n (|M;], = 0), and we also assume the O-constant occurring in
(La;+1-n) to be bounded on N; by K; > 0 (i € N). Then a division of
A is given by D, (M;,C7")ien, (Ni, C5")ien with the understanding that
CYi =0 =C"if o =n.

o I is differentiable on D with ' = div . Indeed, take z € D,lete, K > 0
and take a § > 0 such that ||v(y) — v(z) — ' (z) - (y — 2)|| < ¢ljly — =||/K? for
all y € B(x,6) (C A°), where ¥'(z) denotes the derivative of ¥ at . Then
for each B € D(K) with z € B and d(B) < ¢ we have

F(B) = div (@) Blal = | [ (#() = 7(@) = 7'(2) - (y — 2)) - s dH(y)
0B

€ € n
< S d(B)|Blu 1 < Sd(B)" <<[Bl,.

e Similarly one proves that F' satisfies the null conditions NV (C{*, M;)
and NV (C5",N;) if n — 1 < a; < n (cf. [Ju-No 2, proof of Thm. 2.1]). For
example, let us show that F' satisfies N'(C5*, N;) if n — 1 < o; < n.

Let ¢, K > 0. For x € N; find K(z), 6(x) > 0 such that ||t(y) — v(z)|| <
K(z)|ly — z||“*1=" for all y € B(z,d(z)) N A. By assumption, K(z) < K;
for all x € N;, and we set A = ¢/(KK;). Then for any (NN;,d)-fine sequence
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{(zk, Ax)} with Ay € B(A) and {Ax} € C5 (K, A) we get
STIF@A =] [ (@) - ) - ia, dH(y)
0Ay

<KDY d(AR) M0 AR -
S KEK; ) d(A)* < KK;A=e.

e Let us show that F satisfies N(C77, M;) if 0 < a; < n—1. Analogously
one then proves that F' also satisfies N (C5%, N;) for 0 < o; < n — 1.

Given ¢, K > 0 we choose for x € M; a §(z) > 0 such that ||0(y) —
()| < €'lly — 2| (x,0(x)) N A with y # z, where ¢/ =
e2!177(2% — 1)/K?. Now let {(xy, Ax)} be an (M;,§)-fine sequence with
A, € B(A) and {Ax} € CY(K). In particular, 0Ay is K-regulated for
all k, and thus we can use the inequality () with B = Ay, o = K and
U(zy) = B(zg, 0(z)) 2 A yielding

STIFA =] [ (@) - @) - ia, dH()
0Ag
<3 [y -l dH(y)

0Ay
Kon— 1
<822a7_1 Akal_E.

e F satisfies N (CT, M;) if a; = 0. Indeed, given e, K > 0 find for 2 € M;
a function g, : RT — RT and positive numbers K(z) and §(z) such that
15(y) = 5(2)|| < K(2)ga(lly—zl)lly—=|*~" for ally € B(x,d(z))NA, y # .
Without loss of generality we may assume d(z) < 1/2 and [ 5(36) L() dt <
e/(B(n)K(z)K?) by the Lebesgue integrability of g,. Here 3(n) denotes the
absolute constant occurring in (xx*). Now let {(xx, Ax)} be an (M;,d)-fine
sequence with A, € B(A) and {Ax} € C{"(K). Using the inequality (xx)
with B = Ay, o = K and U(zy) = B(zk, d(zr)) we conclude

SIFA =] [ @) - #@n) - fa, dHy)
0AL

<Y K@) [ gellly = zal)lly — ] dH(y)

0Ay
6(zk)
<Y K@)KBm) [ g (t)dt <e.
0

e Finally, the continuity of ¥ directly implies that F satisfies N'(C*, D U
Ua, sn_1(M; U N;)), which completes the proof. m
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Remark 2.2. (i) Since any interval is contained in A(R™) and since
the vq-integral extends the vso-integral, our result contains the divergence
theorem for the v;-integral of [Ju-No 2].

(ii) Furthermore, the divergence theorem of [Ju-No 3] can also be deduced
from the theorem above: set S = Uai<n—1(M7: U N;), and recall that the
vi-integral extends any v/(S)-integral.

3. The transformation formula. In this section we establish a quite
general transformation formula for the vo-integral, i.e. the v(S)-integral with
S = R" (cf. Sec. 1.d), by verifying the transformation axiom in our abstract
theory ([Ju-No 1, Sec. 7]).

Given a measurable subset A of R" and a function ¢ : A — R", we call
¢ a transformation map if it is one-to-one and if ¢ and its inverse ¢~ ! are
Lipschitzian.

LEMMA 3.1. Let A be a measurable subset of R™, assume ¢ : A — R"
to be a transformation map and denote by cq1 (resp. c2) a positive Lipschitz
constant of ¢ (resp. ¢~ 1).

(i) If K > 0 and B C A with B € Ag(0), then ¢(B) € Az (0) with
K =1+ (c1¢0)"(1 + K)2.

(ii) Assume M C A to be p-regulated (0 > 0). Then ¢(M) is o-regulated
with 0 = 0(2c1c2)™ 1.

Proof. (i) Let K > 0 and B C A with B € Ak (0), ie. B A0)=A
and d(B)" < K|B|,, |0B|,-1 < Kd(B)""!. Since ¢(B) is compact and
#(0B) = d¢(B), we have |0¢(B)|,_1 < ¢} 'OB|,_1 and thus ¢(B) € A.
Furthermore, because ¢ and ¢~! are Lipschitzian we have

d(@(B)" < c}d(B)" < K} |Bln < K(c162)"|(B)ln < K|$(B)]n-

It remains to show that |8¢(B)|n_1 < Kd(¢(B))""t. Since this is obvious
if d(¢(B)) = 0, we assume d(¢(B)) > 0, yielding

[06(B)ln—1 < i " |0Bln—1 < Kt d(B)" " < Kc’fdc(l;g;)
2y 1Bl a2 9B,
=K oy =1 aom))

< (erc2)"K2d(¢(B)" "

(ii) To prove the g-regularity of ¢p(M) we first take a y = ¢(x) € ¢(M)
and any r > 0, and we set E = ¢~ 1(B(y,r) N ¢(A)), which is contained in
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B(x,rcy). Consequently,
[B(y,m) N ¢(M)]n—1 = [¢(ENM)|p—1 < 77 EN M|
< Bz, rer) N Mg < ¢ lo(rey)

— Q(C162)n_17'n_1

since M is p-regulated.

If y € R™ is arbitrary and if r > 0 we choose (if possible) a z € B(y,r) N
¢(M), which implies B(y,r) C B(z,2r), and thus

1B(y, 1) N¢(M)]n—1 < |B(z,2r) N ¢(M)|p—1 < or"~". m

To verify the transformation axiom for our vo-integral take a set A €
A(R"™) =, A, and a transformation map ¢ : A — R™.

If B C Awith B € Aj, for some ¢ > 0, Lemma 3.1 implies ¢(B) € A(R")
since 0¢(B) = ¢(0B), and this, combined with Lemma 3.1(i), yields the
invariance of B = A(R"™) and D with respect to ¢. Finally, one has to check
the invariance of the control conditions under ¢ and this again is a simple
consequence of Lemma 3.1. For example, take C' = Cf*, 0 < a <n —1, and
let K > 0. Denote again by c¢; (resp. c2) a Lipschitz constant of ¢ (resp.
¢~1) and set K = K(1+¢§ + (2¢1¢2)"1). For A > 0 let A = 1 and assume
{Ar} € CY(K, A) with Ay, C A. Since 0Ay, is K-regulated Lemma 3.1(ii)
implies that d¢(Ay) is K-regulated, 3 d(¢(Ag))® < ¢ 3 d(AR)* < K, and
since each z € R" is contained in at most K of the A; the same is true
for the sequence {¢(Ag)} and thus {¢(Ax)} € C{(K,A). Furthermore, if
E C A with E € £(Cy) we have |p(E)|a < c{|E|oa < oo and therefore
P(E) € E(CT).

Now we can state the following

THEOREM 3.1 (Transformation Formula). Let A € A(R™), ¢ : A — R"
be a transformation map and let f : p(A) — R. Then f is vo-integrable on
d(A) iff (f o p)|det @'| is va-integrable on A, and in that case

Pr="f(fog)ldetd].

#(A) A

Remark 3.1. (i) Analogously one verifies the transformation axiom for
the vs-integral, i.e. the v(())-integral, and thus the corresponding transfor-
mation formula holds.

(ii) For S = () and S = R™ we have seen the quadruple v(S) to be in-
variant under transformation maps, and therefore a transformation formula
holds within the v(S)-theory.

Of course for general S the semi-ring A(S) will no longer be invariant
with respect to transformations, and thus no transformation formula can be
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stated within the v(S)-theory. Instead one also has to consider the trans-
formed v(¢(S))-theory, and then an analogue of Theorem 3.1 can be proved
in which one of the integrals is a v(S)-integral and the other a v(¢(S5))-
integral.

4. A constructive definition of the v(S)-integral. Here we assume
S C R™ again to be arbitrary but fixed.

The definition of the v(S)-integral for a point function f given in Sec-
tion 1 is of descriptive type, i.e. we associate with f a set function satisfying
certain conditions. In contrast to this a constructive definition in the Rie-
mann sense would associate with f only a single real number. Ideally, this
seems to be the most natural way of defining an integration process, and
our v(S)-integral indeed allows such an equivalent constructive definition.

THEOREM 4.1. Let A € A(S) and f: A — R. Then f is v(S)-integrable
on A iff there exists a real number J and a division E, (E;, C;)ien of A with
the following property: Ve > 0, K > 0, K; >0 34; >0, § : A — RT such
that

7= (it + X i) <
for any 6-fine partition {(zk, Ax)} U {(z}, A})} of A with

(i) z'fa:k S E then Ak S .AK(S), {Ak X € E,} S Cz(Kl,Az) (Z S N),
(i) {4} € C*(K) and x}, € EUUg, ¢ Ei for all k,

and in that case J is uniquely determined and J = ”(S)fAf.

Since the control condition C* = C{l_l does not depend on A one part
of the theorem, assuming the v(S)-integrability of f, is nothing but the
concrete version of Corollary 6.1 of [Ju-No 1]. The other part of the theorem
is much more involved and will be presented in a separate paper [No 2].

Remark4.1. The analogous theorem for the v;-integral (cf. Remark 1.4)
has been proved in [Ju-No 2, Thm. 3.1].
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