A theory of non-absolutely convergent integrals in \mathbb{R}^{n} with singularities on a regular boundary

by

W.B. Jurkat and D. J.F.Nonnenmacher (Ulm)

Abstract

Specializing a recently developed axiomatic theory of non-absolutely convergent integrals in \mathbb{R}^{n}, we are led to an integration process over quite general sets $A \subseteq \mathbb{R}^{n}$ with a regular boundary. The integral enjoys all the usual properties and yields the divergence theorem for vector-valued functions with singularities in a most general form.

Introduction. Consider an n-dimensional vector field \vec{v} which is differentiable everywhere on \mathbb{R}^{n}. We seek an integration process which integrates $\operatorname{div} \vec{v}$ over reasonable sets $A\left(\subseteq \mathbb{R}^{n}\right)$ and expresses the integral $\int_{A} \operatorname{div} \vec{v}$ in terms of \vec{v} on the boundary ∂A of A in the expected way. While the classical Denjoy-Perron integral (1912/14) solves this problem in dimension one, first solutions in higher dimensions were given for intervals A only in the eighties by [Maw], [JKS], [Pf 1].

More general sets were first discussed in [Jar-Ku 1], where the authors treat compact sets $A \subseteq \mathbb{R}^{2}$ with a smooth boundary, while in general (see [Jar-Ku 2, 3]) they take $A=\mathbb{R}^{n}$ and allow certain exceptional points where differentiability is replaced by weaker conditions.

Another approach, involving transfinite induction, is discussed in [Pf 2]. Here $B V$ sets A (e.g., compact sets A with $|\partial A|_{n-1}<\infty$) are treated, and ($n-1$)-dimensional sets are allowed where \vec{v} is only continuous or bounded.

In [Ju-No 1] we introduced a descriptive, axiomatic theory of non-absolutely convergent integrals in \mathbb{R}^{n} which was specialized in [Ju-No 2] to the relatively simple ν_{1}-integral over compact intervals. This integral not only enjoys all the usual properties but yields a very general form of the divergence theorem including exceptional points where the vector field \vec{v} is not differentiable but still bounded, as well as singularities where \vec{v} is not bounded. At these singularities we assume \vec{v} to be of Lipschitz type with a negative exponent

[^0]$\beta>1-n$. Countably many types β are allowed, and the set of singularities of type β is assumed to have a finite outer ($\beta+n-1$)-dimensional Hausdorff measure. Similar singularities were discussed in [Pf 1] but they were restricted to lie on hyperplanes. Also [Jar-Ku 3] discussed singularities, but only at isolated points.

In [Ju-No 3], using the ν_{1}-theory, we were able to treat this type of singularities in a corresponding divergence theorem on sets $A \in \mathcal{A}$, i.e. compact sets $A \subseteq \mathbb{R}^{n}$ with $|\partial A|_{n-1}<\infty$ (cf. also [No 1] where general $B V$ sets A are discussed). Here we assumed the singularities to lie in the interior of A since otherwise the integral over ∂A (occurring in the divergence theorem) might not exist.

Imposing suitable regularity conditions on ∂A, balancing the magnitude of ∂A against the growth of the vector field, it is possible to relax this assumption. The involved ideas lead to a second specialization of our abstract theory which is presented in this paper. Here we fix an arbitrary set $S \subseteq \mathbb{R}^{n}$ (the set of potential singularities), and we treat sets $A \in \mathcal{A}$ which satisfy a simple (but very general) local regularity condition at each point $x \in S \cap \partial A$. In particular, the regularity condition is satisfied by any interval. The resulting $\nu(S)$-integral over such sets A again has all the usual properties (as additivity and extension of Lebesgue's integral), and in a corresponding divergence theorem, which in particular generalizes our results in [Ju-No 2, 3], we can now treat on A singularities of the type mentioned above lying in S.

The dependence of our $\nu(S)$-theory on S is as follows: if $S_{1} \subseteq S_{2}\left(\subseteq \mathbb{R}^{n}\right)$ then the $\nu\left(S_{2}\right)$-integral extends the $\nu\left(S_{1}\right)$-integral, and since the ν_{1}-integral extends any $\nu(S)$-integral all integrals discussed are compatible.

For $S=\emptyset$ and $S=\mathbb{R}^{n}$ we establish a substitution formula for bilipschitzian transformation maps by verifying the transformation axiom in our abstract theory [Ju-No 1].

Finally, we state without proof a directly constructive definition of the general $\nu(S)$-integral in terms of Riemann sums. The proof is provided in [No 2].
0. Preliminaries. We denote by $\mathbb{R}\left(\right.$ resp. $\left.\mathbb{R}^{+}\right)$the set of all real (resp. all positive real) numbers. Throughout this paper n is a fixed positive integer, and we work in \mathbb{R}^{n} with the usual inner product $x \cdot y=\sum x_{i} y_{i}(x=$ $\left.\left(x_{i}\right), y=\left(y_{i}\right) \in \mathbb{R}^{n}\right)$ and the associated norm $\|\cdot\|$. For $x \in \mathbb{R}^{n}$ and $r>0$ we set $B(x, r)=\left\{y \in \mathbb{R}^{n}:\|x-y\| \leq r\right\}$.

If $x \in \mathbb{R}^{n}$ and $E \subseteq \mathbb{R}^{n}$ we denote by $E^{\circ}, \bar{E}, \partial E, d(E)$ and $\operatorname{dist}(x, E)$ the interior, closure, boundary, diameter of E and the distance from the point x to the set E.

By $|\cdot|_{s}(0 \leq s \leq n)$ we denote the s-dimensional normalized outer Hausdorff measure in \mathbb{R}^{n} which coincides for integral s on $\mathbb{R}^{s}\left(\subseteq \mathbb{R}^{n}\right)$ with
the s-dimensional outer Lebesgue measure $\left(|\cdot|_{0}\right.$ being the counting measure). Instead of $|\cdot|_{n-1}$ we also write $\mathcal{H}(\cdot)$, and terms like measurable and almost everywhere (a.e.) always refer to the Lebesgue measure $|\cdot|_{n}$ unless the contrary is stated explicitly. A set $E \subseteq \mathbb{R}^{n}$ is called σ_{s}-finite if it can be expressed as a countable union of sets with finite s-dimensional outer Hausdorff measure, and E is called an s-null set if $|E|_{s}=0$.

An interval I in \mathbb{R}^{n} is always assumed to be compact and non-degenerate.

1. The $\nu(S)$-integral and its basic properties. In this section we specialize the abstract quadruple $\nu=(\mathcal{B}, \mathcal{D}, \dot{\Gamma}, \Gamma)$ occurring in our axiomatic theory ([Ju-No 1]), and obtain a well-behaved n-dimensional integration process over quite general sets. The specialization will depend on an arbitrary set $S \subseteq \mathbb{R}^{n}$, the set of potential singularities (cf. Thm. 2.1). For the sake of completeness we will restate the basic properties of the associated $\nu=\nu(S)$-integral.

1a. Definition of $\nu(S)=(\mathcal{B}, \mathcal{D}, \dot{\Gamma}, \Gamma)$. By \mathcal{A} we denote the system of all compact sets $A \subseteq \mathbb{R}^{n}$ such that $|\partial A|_{n-1}$ is finite.

Given $\varrho>0$ we call a set $M \subseteq \mathbb{R}^{n} \varrho$-regulated if $|B(x, r) \cap M|_{n-1} \leq \varrho r^{n-1}$ for any $x \in \mathbb{R}^{n}$ and any $r>0$.

Let S be a subset of \mathbb{R}^{n} and let $\mathcal{A}(S)$ consist of those $A \in \mathcal{A}$ for which there is a $\varrho>0$ such that for any $x \in S \cap \partial A$ there exists a neighborhood U of x with $U \cap \partial A$ being ϱ-regulated.

For $\varrho>0$ we denote by $\mathcal{A}_{\varrho}^{\prime}$ the system of all $A \in \mathcal{A}$ whose boundary is ϱ regulated, and we let $\mathcal{A}_{\varrho}(S)$ consist of all sets $A \in \mathcal{A}(S)$ with $d(A)^{n} \leq \varrho|A|_{n}$ and $|\partial A|_{n-1} \leq \varrho d(A)^{n-1}$.

Remark 1.1. (i) Note that there exists a positive constant $\varrho^{*}\left(\geq 2 n^{n}\right)$, depending only on n, such that each cube, i.e. an interval whose sides have equal length, belongs to $\mathcal{A}_{\varrho^{*}}(S)$, and each interval belongs to $\mathcal{A}_{\varrho^{*}}^{\prime}$.
(ii) For any $\varrho>0$ we have $\mathcal{A}_{\varrho}^{\prime} \subseteq \mathcal{A}(S)$, and if $A \in \mathcal{A}_{\varrho}^{\prime}$ then $|\partial A|_{n-1} \leq$ $(1+\varrho) d(A)^{n-1}$.
(iii) Observe that $\mathcal{A}(\emptyset)=\mathcal{A}$ and $\mathcal{A}\left(\mathbb{R}^{n}\right)=\bigcup_{\varrho>0} \mathcal{A}_{\varrho}^{\prime}$. For, if $A \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ there exists a $\varrho>0$ such that we can find for any $x \in \partial A$ a neighborhood $U(x)$ with $U(x) \cap \partial A$ being ϱ-regulated. Since ∂A is compact there are finitely many points $x_{i} \in \partial A, 1 \leq i \leq m$, with $\partial A \subseteq \bigcup_{i=1}^{m} U\left(x_{i}\right)$, and if $x \in \mathbb{R}^{n}$ and $r>0$ we see that

$$
|B(x, r) \cap \partial A|_{n-1} \leq \sum_{i=1}^{m}\left|B(x, r) \cap U\left(x_{i}\right) \cap \partial A\right|_{n-1} \leq m \varrho r^{n-1}
$$

and thus $A \in \mathcal{A}_{m \varrho}^{\prime}$.
(iv) If $A, B \in \mathcal{A}(S)$ with corresponding parameters ϱ_{A}, ϱ_{B} (according to the definition of $\mathcal{A}(S))$ then $A \cap B, A \cup B, A-B^{\circ} \in \mathcal{A}(S)$ with (a possible) corresponding parameter $\varrho_{A}+\varrho_{B}$.

In what follows we assume S to be an arbitrary but fixed subset of \mathbb{R}^{n}.
Obviously (use Remark 1.1) $\mathcal{B}=\mathcal{A}(S)\left(\right.$ resp. $\mathcal{D}(K)=\mathcal{A}_{K}(S)$ for $\left.K>0\right)$ is a semi-ring (resp. differentiation class) according to [Ju-No 1, Sec. 1]. \mathcal{D} associates with each positive K the class $\mathcal{D}(K)$.

Let $E \subseteq \mathbb{R}^{n}$ and $\delta: E \rightarrow \mathbb{R}^{+}$be given. Then a finite sequence of pairs $\left\{\left(x_{k}, A_{k}\right)\right\}$ with $x_{k} \in A_{k} \in \mathcal{B}, A_{i}^{\circ} \cap A_{j}^{\circ}=\emptyset(i \neq j), x_{k} \in E$ and $d\left(A_{k}\right)<\delta\left(x_{k}\right)$ is called (E, δ)-fine. If in addition $E=\bigcup A_{k}$ we call $\left\{\left(x_{k}, A_{k}\right)\right\}$ a δ-fine partition of E.

The control conditions we want to use are defined as follows:
For $0 \leq \alpha<n-1$ the control condition C_{1}^{α} (resp. C_{2}^{α}) associates with any positive numbers K and Δ the system of all finite sequences $\left\{A_{k}\right\}$ with $A_{k} \in \mathcal{A}_{K}^{\prime}$ such that each $x \in S$ is contained in at most K of the A_{k} and such that $\sum d\left(A_{k}\right)^{\alpha} \leq K\left(\right.$ resp. $\left.\sum d\left(A_{k}\right)^{\alpha} \leq \Delta\right)$. By $\mathcal{E}\left(C_{1}^{\alpha}\right)$ (resp. $\left.\mathcal{E}\left(C_{2}^{\alpha}\right)\right)$ we denote the system of all $E \subseteq S$ with $|E|_{\alpha}<\infty$ (resp. $|E|_{\alpha}=0$).

The condition C_{1}^{n-1} (resp. C_{2}^{n-1}) associates with $K, \Delta>0$ the system of all finite sequences $\left\{A_{k}\right\}$ with $A_{k} \in \mathcal{B}$ and $\sum\left|\partial A_{k}\right|_{n-1} \leq K$ (resp. $\sum\left|\partial A_{k}\right|_{n-1} \leq \Delta$), and we let $\mathcal{E}\left(C_{1}^{n-1}\right)$ (resp. $\mathcal{E}\left(C_{2}^{n-1}\right)$) be the system of all $E \subseteq \mathbb{R}^{n}$ with $|E|_{n-1}<\infty$ (resp. $|E|_{n-1}=0$).

If $n-1<\alpha<n$ the control condition C_{1}^{α} (resp. C_{2}^{α}) associates with $K, \Delta>0$ the system of all finite sequences $\left\{A_{k}\right\}$ with $A_{k} \in \mathcal{D}(K)$ and $\sum d\left(A_{k}\right)^{\alpha} \leq K\left(\right.$ resp. $\left.\sum d\left(A_{k}\right)^{\alpha} \leq \Delta\right) . \mathcal{E}\left(C_{1}^{\alpha}\right)$ (resp. $\left.\mathcal{E}\left(C_{2}^{\alpha}\right)\right)$ consists of all $E \subseteq \mathbb{R}^{n}$ with $|E|_{\alpha}<\infty$ (resp. $|E|_{\alpha}=0$).

Finally, the condition C^{n} associates with any positive K the system of all finite sequences $\left\{A_{k}\right\}$ with $A_{k} \in \mathcal{D}(K)$, and we let $\mathcal{E}\left(C^{n}\right)=\left\{E \subseteq \mathbb{R}^{n}\right.$: $\left.|E|_{n}=0\right\}$.

Remark 1.2. The requirement that each $x \in S$ lies in at most K of the sets A_{k} in the definition of $C_{i}^{\alpha}(0 \leq \alpha<n-1)$ will be important when we give an equivalent constructive definition of our integral in terms of Riemann sums. Remember that if the A_{k} are intervals with disjoint interiors then each $x \in \mathbb{R}^{n}$ is contained in at most 2^{n} of them.

Set $\dot{\Gamma}=\left\{C^{n}\right\} \cup\left\{C_{i}^{\alpha}: n-1<\alpha<n, i=1,2\right\}$ (the requirements $\left(\dot{\Gamma}_{1}\right)$ and $\left(\dot{\Gamma}_{2}\right)$ in [Ju-No 1, Sec. 1] then obviously being satisfied) and $\Gamma=\left\{C_{i}^{\alpha}\right.$: $0 \leq \alpha \leq n-1, i=1,2\}$ (disjoint from $\dot{\Gamma}$). We will prove that Γ is ordered by the relation \succeq (see [Ju-No 1, Sec. 1]) and that $C^{*}=C_{1}^{n-1}$ is a minimal element of Γ. Analogously one then shows that $\dot{\Gamma}$ is ordered.

If $0 \leq \beta<\alpha<n-1$ then $C_{1}^{\beta} \succeq C_{2}^{\alpha}$. For, given $K_{1}>0$ we let $K_{2}=K_{1}$ and if $\Delta_{2}>0$ we set $\Delta_{1}=\Delta_{2}$. If $x \in \mathbb{R}^{n}$ choose $\delta(x)>0$ such that $\delta(x)^{\alpha-\beta} \leq \Delta_{2} / K_{1}$ (this defines $\delta: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$), and let $\left\{\left(x_{k}, A_{k}\right)\right\}$ be any $\left(\mathbb{R}^{n}, \delta\right)$-fine sequence with $\left\{A_{k}\right\} \in C_{1}^{\beta}\left(K_{1}, \Delta_{1}\right)$. Since $\sum d\left(A_{k}\right)^{\alpha} \leq$ $\sum \delta\left(x_{k}\right)^{\alpha-\beta} d\left(A_{k}\right)^{\beta} \leq \Delta_{2}$ we have $\left\{A_{k}\right\} \in C_{2}^{\alpha}\left(K_{2}, \Delta_{2}\right)$.

Furthermore, $C_{1}^{\alpha} \succeq C_{2}^{n-1}$ for $0 \leq \alpha<n-1$. For, if $K_{1}>0$ set $K_{2}=K_{1}$
and if $\Delta_{2}>0$ let $\Delta_{1}=1$. If $x \in \mathbb{R}^{n}$ we find $\delta(x)>0$ such that $\delta(x)^{n-1-\alpha} \leq$ $\Delta_{2} / K_{1}\left(1+K_{1}\right)$; this defines $\delta: \mathbb{R}^{n} \rightarrow \mathbb{R}^{+}$. Given any $\left(\mathbb{R}^{n}, \delta\right)$-fine sequence $\left\{\left(x_{k}, A_{k}\right)\right\}$ with $\left\{A_{k}\right\} \in C_{1}^{\alpha}\left(K_{1}, \Delta_{1}\right)$ and recalling Remark 1.1(ii) we get

$$
\begin{aligned}
\sum\left|\partial A_{k}\right|_{n-1} & \leq\left(1+K_{1}\right) \sum d\left(A_{k}\right)^{n-1} \\
& \leq\left(1+K_{1}\right) \sum \delta\left(x_{k}\right)^{n-1-\alpha} d\left(A_{k}\right)^{\alpha} \leq \Delta_{2}
\end{aligned}
$$

and thus $\left\{A_{k}\right\} \in C_{2}^{n-1}\left(K_{2}, \Delta_{2}\right)$.
Obviously $C_{2}^{\alpha} \succeq C_{1}^{\alpha}$ for $0 \leq \alpha \leq n-1$, and thus the transitivity property of the relation \succeq shows that Γ is ordered. Since $C_{2}^{\alpha} \succeq C_{1}^{\alpha} \succeq C_{2}^{n-1} \succeq C_{1}^{n-1}=$ C^{*} for $0 \leq \alpha<n-1$ we furthermore see that C^{*} is a minimal element of Γ which in addition satisfies conditions $\left(\Gamma_{1}\right)$ and $\left(\Gamma_{2}\right)$ since $\partial A \in \mathcal{E}\left(C^{*}\right)$ and $|A|_{n} \leq d(A)|\partial A|_{n-1}$ for all $A \in \mathcal{A}$.

1b. Verification of the decomposition and intersection axioms. Before we can apply the results of our abstract theory it remains to verify the decomposition and intersection axioms ([Ju-No 1, Sec. 2]). The decomposition axiom is a direct consequence of the Decomposition Theorem in [Ju] which we state here in a slightly more general form.

Decomposition Theorem. Suppose that an n-dimensional interval I is the disjoint union of countably many sets E_{m} with $\left|E_{m}\right|_{\alpha_{m}}<\infty(0 \leq$ $\left.\alpha_{m} \leq n\right)$ and that positive numbers ε_{m} and a function $\delta: I \rightarrow \mathbb{R}^{+}$are given. Then there are finitely many intervals I_{k}, similar to I, and points x_{k} such that $\left\{\left(x_{k}, I_{k}\right)\right\}$ is a δ-fine partition of I and

$$
\sum_{x_{k} \in E_{m}} d\left(I_{k}\right)^{\alpha_{m}} \leq \frac{c(n)}{r(I)^{n}}\left(\left|E_{m}\right|_{\alpha_{m}}+\varepsilon_{m}\right)
$$

for all m, where $c(n)$ denotes a positive constant $\left(\geq n^{n / 2}\right)$ and $r(I)$ is the ratio of the smallest and the largest edges of I.

Recall that a division of a set $A \subseteq \mathbb{R}^{n}$ with $|\partial A|_{n}=0$ consists of a set \dot{E} and a sequence $\left(E_{i}, C_{i}\right)_{i \in \mathbb{N}}$ such that $\dot{E} \subseteq A^{\circ},|A-\dot{E}|_{n}=0, C_{i} \in \Gamma \cup \dot{\Gamma}$, $E_{i} \in \mathcal{E}\left(C_{i}\right)$ and A is the disjoint union of all the sets E_{i} and \dot{E}.

To verify the decomposition axiom let I be any interval in \mathbb{R}^{n} and denote by $\dot{E},\left(E_{i}, C_{i}\right)_{i \in \mathbb{N}}$ a division of I. Set $K^{*}=\varrho^{*}+(\sqrt{n} / r(I))^{n}$, where ϱ^{*} is the constant of Remark 1.1(i), and $K_{i}^{*}=K^{*}+2 n c(n)\left|E_{i}\right|_{\alpha} / r(I)^{n}$ (resp. $\left.K_{i}^{*}=K^{*}\right)$ depending on $C_{i}=C_{1}^{\alpha}(0 \leq \alpha<n)\left(\right.$ resp. $C_{i}=C^{n}$ or $C_{i}=C_{2}^{\alpha}$ $(0 \leq \alpha<n))$. Then for any $\Delta_{i}>0$ and $\delta: I \rightarrow \mathbb{R}^{+}$, by the Decomposition Theorem, there is a δ-fine partition $\left\{\left(x_{k}, I_{k}\right)\right\}$ of I with $r\left(I_{k}\right)=r(I)$ and

$$
\sum_{x_{k} \in E_{i}} d\left(I_{k}\right)^{\alpha} \leq \begin{cases}\frac{K^{*}}{2 n}+\frac{c(n)}{r(I)^{n}}\left|E_{i}\right|_{\alpha} & \text { if } C_{i}=C_{1}^{\alpha}(0 \leq \alpha<n) \\ \frac{\Delta_{i}}{2 n} & \text { if } C_{i}=C_{2}^{\alpha}(0 \leq \alpha<n)\end{cases}
$$

Since in our situation all $I_{k} \in \mathcal{D}\left(K^{*}\right) \cap \mathcal{A}_{K^{*}}^{\prime}$ and all $K_{i}^{*} \geq K^{*}$ the partition $\left\{\left(x_{k}, I_{k}\right)\right\}$ meets all requirements of the decomposition axiom.

The following remark will be needed when verifying the intersection axiom.

Remark 1.3. Let $E, M \subseteq \mathbb{R}^{n}$ with $|E|_{n-1}=0$ and $|M|_{n-1}<\infty$. Then for any $\varepsilon>0$ there is an open set G containing E such that $|G \cap M|_{n-1}<\varepsilon$. For, as is well known, we can find a set $G^{\prime} \supseteq E$ with $\left|G^{\prime}\right|_{n-1}=0$ which is the countable intersection of a decreasing collection of open sets G_{i}. Since $0=\left|G^{\prime} \cap M\right|_{n-1}=\lim _{i \rightarrow \infty}\left|G_{i} \cap M\right|_{n-1}$ the result follows.

To verify the intersection axiom fix a control condition $C_{i}^{\alpha} \in \Gamma(0 \leq \alpha \leq$ $n-1, i=1,2), E \in \mathcal{E}\left(C_{i}^{\alpha}\right)$ and $A \in \mathcal{B}$.

Assume first $0 \leq \alpha<n-1$, recall that $E \subseteq S$ and let $\varrho>0$ be a parameter coming from the condition $A \in \mathcal{B}$. Given $K_{1}>0$ set $K_{2}=K_{1}+\varrho$ and if $\Delta_{2}>0$ let $\Delta_{1}=\Delta_{2}$. Set $\delta(x)=\operatorname{dist}\left(x, \mathbb{R}^{n}-A^{\circ}\right)$ if $x \in E \cap A^{\circ}$, and for $x \in E \cap \partial A$ find a neighborhood $U(x)$ of x and a $\delta(x)>0$ such that $U(x) \cap \partial A$ is ϱ-regulated and $B(x, \delta(x)) \subseteq U(x)$. Then for any $(E \cap A, \delta)$-fine sequence $\left\{\left(x_{k}, A_{k}\right)\right\}$ with $\left\{A_{k}\right\} \in C_{i}^{\alpha}\left(K_{1}, \Delta_{1}\right)$ it follows that $\left\{A \cap A_{k}\right\} \in C_{i}^{\alpha}\left(K_{2}, \Delta_{2}\right)$, since for $x_{k} \in E \cap \partial A$ we have $\partial\left(A \cap A_{k}\right) \subseteq\left(A_{k}^{\circ} \cap \partial A\right) \cup \partial A_{k} \subseteq\left(U\left(x_{k}\right) \cap\right.$ $\partial A) \cup \partial A_{k}$ giving $A \cap A_{k} \in \mathcal{A}_{K_{2}}^{\prime}$ for all k, and the other conditions to be checked are obvious.

Now assume $\alpha=n-1$ and look first at C_{1}^{n-1} : For given $K_{1}>0$ we set $K_{2}=K_{1}+|\partial A|_{n-1}$, and if $\Delta_{2}>0$ we let $\Delta_{1}=\Delta_{2}$ and $\delta(\cdot)=1$ on $E \cap A$. Then for any $(E \cap A, \delta)$-fine sequence $\left\{\left(x_{k}, A_{k}\right)\right\}$ with $\left\{A_{k}\right\} \in C_{1}^{n-1}\left(K_{1}, \Delta_{1}\right)$,
$\sum\left|\partial\left(A \cap A_{k}\right)\right|_{n-1} \leq \sum\left(\left|A_{k}^{\circ} \cap \partial A\right|_{n-1}+\left|\partial A_{k}\right|_{n-1}\right) \leq|\partial A|_{n-1}+K_{1}=K_{2}$ and thus $\left\{A \cap A_{k}\right\} \in C_{1}^{n-1}\left(K_{2}, \Delta_{2}\right)$.

Finally, let us look at C_{2}^{n-1} and assume therefore $K_{1}>0$ to be given. Set $K_{2}=K_{1}$ and for $\Delta_{2}>0$ let $\Delta_{1}=\Delta_{2} / 2$. Since $|E \cap \partial A|_{n-1}=0$, by Remark 1.3 we can find an open set $G \supseteq E \cap \partial A$ with $|G \cap \partial A|_{n-1}<\Delta_{1}$, and for $x \in E \cap \partial A$ we choose a $\delta(x)>0$ such that $B(x, \delta(x)) \subseteq G$ while for $x \in E \cap A^{\circ}$ we set $\delta(x)=\operatorname{dist}\left(x, \mathbb{R}^{n}-A^{\circ}\right)$. Thus $\delta: E \cap A \rightarrow \mathbb{R}^{+}$is defined, and if $\left\{\left(x_{k}, A_{k}\right)\right\}$ denotes a $(E \cap A, \delta)$-fine sequence with $\left\{A_{k}\right\} \in$ $C_{2}^{n-1}\left(K_{1}, \Delta_{1}\right)$ then

$$
\begin{aligned}
\sum\left|\partial\left(A \cap A_{k}\right)\right|_{n-1} & \leq \sum_{x_{k} \in E \cap \partial A}\left|A_{k}^{\circ} \cap \partial A\right|_{n-1}+\sum\left|\partial A_{k}\right|_{n-1} \\
& \leq|G \cap \partial A|_{n-1}+\Delta_{1} \leq \Delta_{2}
\end{aligned}
$$

and hence $\left\{A \cap A_{k}\right\} \in C_{2}^{n-1}\left(K_{2}, \Delta_{2}\right)$.

1c. Integrability and properties of the integral. We now define $\nu(S)$ integrability for point functions, and we summarize some of the results of [Ju-No 1, Sec. 5] for the associated $\nu(S)$-integral.

For $A \subseteq \mathbb{R}^{n}$ we denote by $\mathcal{B}(A)$ the system of all subsets B of A with $B \in \mathcal{B}$. Given a set function $F: \mathcal{B}(A) \rightarrow \mathbb{R}$ (on A) we call F additive if $F(B)=\sum F\left(B_{k}\right)$ for any $B \in \mathcal{B}(A)$ and every finite sequence $\left\{B_{k}\right\}$ with $B_{k} \in \mathcal{B}(A)$ having disjoint interiors and $B=\bigcup B_{k}$.

A set function $F: \mathcal{B}(A) \rightarrow \mathbb{R}$ is called differentiable at $x \in A^{\circ}$ if there exists a real number α such that for any $\varepsilon>0$ and $K>0$ there is a $\delta=\delta(x)>0$ with $\left.\left.|F(B)-\alpha| B\right|_{n}|\leq \varepsilon| B\right|_{n}$ for every $B \in \mathcal{B}(A)$ satisfying $B \in \mathcal{D}(K), x \in B$ and $d(B)<\delta$. In this case α is uniquely determined and denoted by $\dot{F}(x)$.

Let $A \subseteq \mathbb{R}^{n}, E \subseteq A, C \in \Gamma \cup \dot{\Gamma}$ and let $F: \mathcal{B}(A) \rightarrow \mathbb{R}$ be a set function on A. We say that F satisfies the null condition corresponding to C on E (see [Ju-No 1, Sec. 3]), for short F satisfies $\mathcal{N}(C, E)$, if the following is true: $\forall \varepsilon>0, K>0 \exists \Delta>0 \exists \delta: E \rightarrow \mathbb{R}^{+}$such that $\sum\left|F\left(A_{k}\right)\right| \leq \varepsilon$ for any (E, δ)-fine sequence $\left\{\left(x_{k}, A_{k}\right)\right\}$ with $A_{k} \in \mathcal{B}(A)$ and $\left\{A_{k}\right\} \in C(K, \Delta)$.

Given $A \subseteq \mathbb{R}^{n}$ we call an additive set function $F: \mathcal{B}(A) \rightarrow \mathbb{R}$ a $\nu(S)$ integral on A if there exists a division $\dot{E},\left(E_{i}, C_{i}\right)_{i \in \mathbb{N}}$ of A such that F is differentiable on \dot{E} and satisfies $\mathcal{N}\left(C_{i}, E_{i}\right)$ for all $i \in \mathbb{N}, \mathcal{N}\left(C^{*}, \dot{E}\right)$ and $\mathcal{N}\left(C^{*}, E_{i}\right)$ if $C_{i} \in \dot{\Gamma}$.

Let $A \in \mathcal{B}$ and let f be a real-valued function defined on A. We call f $\nu(S)$-integrable on A if there exists a $\nu(S)$-integral F on A with $\dot{F}=f$ a.e. on A. In this case F is uniquely determined, and we write

$$
\int_{A}^{\nu(S)} f=F(A) \quad \text { (see [Ju-No 1, Remark 5.1(iii)]). }
$$

The space of all $\nu(S)$-integrable functions on A is denoted by $\mathcal{I}_{\nu(S)}(A)$.
If there is no danger of misunderstanding we will often omit the index $\nu(S)$.

Proposition 1.1. Let $A \in \mathcal{B}$.
(i) $\mathcal{I}(A)$ is a real linear space, and the map $f \mapsto \int_{A} f$ is a non-negative linear functional on $\mathcal{I}(A)$.
(ii) If A is the finite union of sets $A_{k} \in \mathcal{B}$ with disjoint interiors then $f \in \mathcal{I}(A)$ iff $f \in \mathcal{I}\left(A_{k}\right)$ for all k, and in that case

$$
\int_{A} f=\sum \int_{A_{k}} f .
$$

(iii) If for a measurable function $f: A \rightarrow \mathbb{R}$ a finite Lebesgue integral
${ }^{\mathcal{L}} \int_{A}|f|$ exists, then f belongs to $\mathcal{I}_{\nu(S)}(A)$ and

$$
\int_{A}^{\nu(S)} f={ }_{A}^{\mathcal{L}} f .
$$

Remark 1.4. In [Ju-No 2] we defined, also using our axiomatic theory, a relatively simple integral over n-dimensional compact intervals, the so-called ν_{1}-integral. Since any interval I is contained in $\mathcal{B}=\mathcal{A}(S)$ it follows immediately that every $\nu(S)$-integrable function $f: I \rightarrow \mathbb{R}$ is also ν_{1}-integrable and both integrals coincide.

1d. Discussion. Here we discuss the dependence of the integration theory induced by the quadruple $\nu(S)=(\mathcal{B}, \mathcal{D}, \dot{\Gamma}, \Gamma)$ on S. First, we extend the notion of $\nu(S)$-integrability to functions defined on quite arbitrary sets $A \subseteq \mathbb{R}^{n}$.

Assume in this subsection A to be a measurable and bounded subset of \mathbb{R}^{n} and let f be a real-valued function defined at least on A. By f_{A} we denote the function $f_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $f_{A}(x)=f(x)$ if $x \in A$ and $f_{A}(x)=0$ else.

Then, according to [Ju-No 1, Sec. 5a], we call $f \nu(S)$-integrable on A if there exists a $\nu(S)$-integral F on \mathbb{R}^{n} with $\dot{F}=f_{A}$ a.e. In this case F is uniquely determined, and if I denotes any interval containing A the number $F(I)$ does not depend on I, and we set

$$
{ }^{\nu(S)} \int_{A} f=F(I) .
$$

Again we denote by $\mathcal{I}_{\nu(S)}(A)$ the set of all $\nu(S)$-integrable functions on A. (Note that in case of $A \in \mathcal{B}=\mathcal{A}(S)$ this definition of integrability coincides with the one given in Section 1c.)

Now suppose S_{1} and S_{2} to be subsets of \mathbb{R}^{n} with $S_{1} \subseteq S_{2}$. A glance shows that $\mathcal{A}\left(S_{2}\right) \subseteq \mathcal{A}\left(S_{1}\right)$, and any $\nu\left(S_{1}\right)$-integral on \mathbb{R}^{n} also represents a $\nu\left(S_{2}\right)$ integral on \mathbb{R}^{n} when restricted to $\mathcal{A}\left(S_{2}\right)$. Consequently, any $f \in \mathcal{I}_{\nu\left(S_{1}\right)}(A)$ also belongs to $\mathcal{I}_{\nu\left(S_{2}\right)}(A)$ and both integrals coincide. Thus all $\nu(S)$-integrals are compatible and, in particular, $\mathcal{I}_{\nu\left(\mathbb{R}^{n}\right)}(A)=\bigcup_{S \subseteq \mathbb{R}^{n}} \mathcal{I}_{\nu(S)}(A)$.

Remark 1.5. (i) Of particular interest are the extreme cases $S=\emptyset$ and $S=\mathbb{R}^{n}$ yielding $\mathcal{A}(\emptyset)=\mathcal{A}$ and $\mathcal{A}\left(\mathbb{R}^{n}\right)=\bigcup_{\varrho>0} \mathcal{A}_{\varrho}^{\prime}$ (see Remark 1.1), and the associated integral will also be called the ν_{3}-integral and ν_{2}-integral respectively. Furthermore, we set $\mathcal{I}_{\nu_{3}}(A)=\mathcal{I}_{\nu(\emptyset)}(A)$ and $\mathcal{I}_{\nu_{2}}(A)=\mathcal{I}_{\nu\left(\mathbb{R}^{n}\right)}(A)$.
(ii) By Remark 1.4, $\mathcal{I}_{\nu_{3}}(I) \subseteq \mathcal{I}_{\nu(S)}(I) \subseteq \mathcal{I}_{\nu_{2}}(I) \subseteq \mathcal{I}_{\nu_{1}}(I)$ for any interval I and any $S \subseteq \mathbb{R}^{n}$, and all integrals coincide.
2. The divergence theorem. Here we prove the divergence theorem for our $\nu(S)$-integral. The singularities, i.e. the points of unboundedness, of
the vector-valued function \vec{v} are assumed to lie in the set S, and we require \vec{v} to satisfy Lipschitz conditions of suitable (negative) order at those points.

2a. Formulation of the theorem. Assume $A \subseteq \mathbb{R}^{n}, x \in A, 1-n \leq \beta \leq 1$ and let $\vec{v}: A \rightarrow \mathbb{R}^{n}$. Consider the following conditions:
$\left(\ell_{1}\right) \quad$ there exists a real $n \times n$ matrix M such that

$$
\vec{v}(y)-\vec{v}(x)-M(y-x)=o(1)\|y-x\| \quad(y \rightarrow x, y \in A)
$$

$\left(\ell_{\beta}\right)(\beta \neq 1) \quad \vec{v}(y)-\vec{v}(x)=o(1)\|y-x\|^{\beta} \quad(y \rightarrow x, y \neq x, y \in A)$,
$\left(L_{\beta}\right) \quad \vec{v}(y)-\vec{v}(x)=O(1)\|y-x\|^{\beta} \quad(y \rightarrow x, y \neq x, y \in A)$.
If $x \in A^{\circ}$ and $\vec{v}=\left(v_{i}\right)_{1 \leq i \leq n}$ is (totally) differentiable at x we set $\operatorname{div} \vec{v}(x)=$ $\sum_{i=1}^{n} \frac{\partial v_{i}}{\partial x_{i}}(x)$, and at all other points $x \in A$ we set $\operatorname{div} \vec{v}(x)=0$.

By [Fed], for each $A \in \mathcal{A}$ there exists an \mathcal{H}-measurable vector function $\vec{n}_{A}: \partial A \rightarrow \mathbb{R}^{n}$, the so-called exterior normal, with $\left\|\vec{n}_{A}\right\| \leq 1$. Furthermore, for any \vec{v} which is continuously differentiable in a neighborhood of A we have $\int_{\partial A} \vec{v} \cdot \vec{n}_{A} d \mathcal{H}={ }^{\mathcal{L}} \int_{A} \operatorname{div} \vec{v}$.

Theorem 2.1 (Divergence Theorem). Suppose $A \in \mathcal{A}(S)$ and let \vec{v} : $A \rightarrow \mathbb{R}^{n}$. Denote by D the set of all points from the interior of A where \vec{v} is differentiable, and write $A-D$ as a disjoint countable union of $\sigma_{\alpha_{i}}$-finite sets M_{i} and α_{i}-null sets N_{i} with $0<\alpha_{i} \leq n(i \in \mathbb{N})$ such that $\bigcup_{\alpha_{i}<n-1}\left(M_{i} \cup N_{i}\right)$ lies in S. If \vec{v} satisfies the condition $\left(\ell_{\alpha_{i}+1-n}\right)$ (resp. $\left(L_{\alpha_{i}+1-n}\right)$) at each point of $M_{i}\left(\right.$ resp. $\left.N_{i}\right)$ then \vec{v} is continuous on A except for an $(n-1)$-null set, and for each subset $B \in \mathcal{A}(S)$ of A the integral $\int_{\partial B} \vec{v} \cdot \vec{n}_{B} d \mathcal{H}$ exists with a finite value, $\operatorname{div} \vec{v}$ is $\nu(S)$-integrable on B and

$$
\int_{\partial B} \vec{v} \cdot \vec{n}_{B} d \mathcal{H}={ }^{\nu(S)} \int_{B} \operatorname{div} \vec{v} \quad\left(={ }^{\nu_{2}} \int_{B} \operatorname{div} \vec{v}\right) .
$$

Remark 2.1. In the formulation of the theorem we have excluded the situation $\alpha_{i}=0$ which in case of $n=1$ is of course superfluous since \vec{v} remains continuous on A. But for $n \geq 2$ the integral $\int_{\partial B} \vec{v} \cdot \vec{n}_{B} d \mathcal{H}$ can fail to exist. Anyhow, by redefining the condition $\left(\ell_{1-n}\right)$ it is possible to include the case $\alpha_{i}=0$:

We say that $\vec{v}: A \rightarrow \mathbb{R}^{n}$ satisfies the condition $\left(\ell_{1-n}\right)(n \geq 2)$ at $x \in A$ if there exists a decreasing function $g_{x}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$which is Lebesgue integrable on $[0,1]$ and

$$
\vec{v}(y)-\vec{v}(x)=O(1) g_{x}(\|y-x\|)\|y-x\|^{2-n} \quad(y \rightarrow x, y \neq x, y \in A)
$$

In the following proof of the theorem we will include this situation.
2b. Proof of the theorem. Observe that $|A-D|_{n}=0$ since \vec{v} satisfies $\left(\ell_{1}\right)$ on M_{i} with $\alpha_{i}=n$ and consequently $M_{i} \subseteq \partial A$. Furthermore, \vec{v} is continuous
on A except for an $(n-1)$-null set, and hence the \mathcal{H}-measurability of \vec{v} on A follows.

Now fix $B \in \mathcal{B}(A)$, i.e. $B \subseteq A$ with $B \in \mathcal{B}=\mathcal{A}(S)$. We first show the existence of the finite integral $\int_{\partial B} \vec{v} \cdot \vec{n}_{B} d \mathcal{H}$; we closely follow [Ju-No 2 , Sec. 2]. Note that for $n=1$ there is nothing to prove since \vec{v} is continuous on A, and we therefore assume $n \geq 2$. At each $x \in \partial B-\bigcup_{\alpha_{i}<n-1}\left(M_{i} \cup N_{i}\right)$ the function \vec{v} is locally bounded, i.e. there is a positive number $K(x)$ and an open neighborhood $U(x)$ of x such that $\|\vec{v}(y)\| \leq K(x)$ for all $y \in U(x) \cap A$.

We denote by $\varrho>0$ a parameter corresponding to $B \in \mathcal{A}(S)$. If $0<\alpha_{i}<$ $n-1$ and $x \in M_{i} \cap \partial B$ (resp. $x \in N_{i} \cap \partial B$) there is an open neighborhood $U(x)$ of x such that $U(x) \cap \partial B$ is ϱ-regulated and

$$
\|\vec{v}(y)-\vec{v}(x)\| \leq\|y-x\|^{\alpha_{i}+1-n}
$$

(resp.

$$
\|\vec{v}(y)-\vec{v}(x)\| \leq K(x)\|y-x\|^{\alpha_{i}+1-n}
$$

with some $K(x)>0$) for all $y \in U(x) \cap A, y \neq x$.
Finally, if $\alpha_{i}=0$ (note that $N_{i}=\emptyset$) and $x \in M_{i} \cap \partial B$ there is a decreasing function $g_{x}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$Lebesgue integrable on $[0,1]$, a positive number $K(x)$ and an open neighborhood $U(x)$ of x with $d(U(x)) \leq 1$ such that $U(x) \cap \partial B$ is ϱ-regulated and

$$
\|\vec{v}(y)-\vec{v}(x)\| \leq K(x) g_{x}(\|y-x\|)\|y-x\|^{2-n}
$$

for all $y \in U(x) \cap A, y \neq x$.
Since ∂B is compact there are finitely many points $x_{k} \in \partial B$ with $\partial B \subseteq$ $\bigcup U\left(x_{k}\right)$, and it suffices to prove that $\int_{U\left(x_{k}\right) \cap \partial B}\|\vec{v}\| d \mathcal{H}$ remains finite for all k. Since this is obvious for $x_{k} \notin \bigcup_{\alpha_{i}<n-1}\left(M_{i} \cup N_{i}\right)$, we first consider an $x_{k} \in M_{i} \cup N_{i}$ where $0<\alpha_{i}<n-1$.

We may assume $d(B)>0$ since otherwise $|\partial B|_{n-1}=0(n \geq 2)$, and for $j=0,1, \ldots$ we let $C_{j}=\left\{x \in \mathbb{R}^{n}: d(B) / 2^{j+1}<\left\|x-x_{k}\right\| \leq d(B) / 2^{j}\right\}$. It suffices to observe that

$$
\begin{array}{r}
\int_{U\left(x_{k}\right) \cap \partial B}\left\|y-x_{k}\right\|^{\alpha_{i}+1-n} d \mathcal{H}(y) \leq \sum_{j=0}^{\infty} \int_{C_{j} \cap U\left(x_{k}\right) \cap \partial B}\left\|y-x_{k}\right\|^{\alpha_{i}+1-n} d \mathcal{H}(y) \\
\leq \sum_{j=0}^{\infty}\left(\frac{d(B)}{2^{j+1}}\right)^{\alpha_{i}+1-n}\left|B\left(x_{k}, d(B) / 2^{j}\right) \cap U\left(x_{k}\right) \cap \partial B\right|_{n-1} \\
\leq \sum_{j=0}^{\infty}\left(\frac{d(B)}{2^{j+1}}\right)^{\alpha_{i}+1-n} \varrho\left(\frac{d(B)}{2^{j}}\right)^{n-1}=\frac{\varrho d(B)^{\alpha_{i}}}{2^{\alpha_{i}+1-n}} \sum_{j=0}^{\infty}\left(\frac{1}{2^{\alpha_{i}}}\right)^{j},
\end{array}
$$

and so

$$
\begin{equation*}
\int_{U\left(x_{k}\right) \cap \partial B}\left\|y-x_{k}\right\|^{\alpha_{i}+1-n} d \mathcal{H}(y) \leq \frac{\varrho 2^{n-1}}{2^{\alpha_{i}}-1} d(B)^{\alpha_{i}} \quad(<\infty) . \tag{*}
\end{equation*}
$$

For $x_{k} \in M_{i}$ with $\alpha_{i}=0$ the same arguments (use $U\left(x_{k}\right) \cap B$ instead of B in the definition of the C_{j}) combined with the properties of the function $g=g_{x_{k}}$ yield the inequality

$$
(* *) \quad \int_{U\left(x_{k}\right) \cap \partial B} g\left(\left\|y-x_{k}\right\|\right)\left\|y-x_{k}\right\|^{2-n} d \mathcal{H}(y) \leq \varrho \beta(n) \int_{0}^{\gamma} g(t) d t \quad(<\infty),
$$

where $\beta(n)$ denotes a positive absolute constant, and $\gamma=d\left(U\left(x_{k}\right) \cap B\right)$.
By what has just been proved, we can define an additive set function F on A by $F(B)=\int_{\partial B} \vec{v} \cdot \vec{n}_{B} d \mathcal{H}$ for $B \in \mathcal{B}(A)$. We will show that F is a $\nu(S)$-integral on A with $\dot{F}=\operatorname{div} \vec{v}$ a.e. on A, thus $\operatorname{div} \vec{v} \in \mathcal{I}_{\nu(S)}(A)$ and $\int_{\partial A} \vec{v} \cdot \vec{n}_{A} d \mathcal{H}=F(A)={ }^{\nu(S)} \int_{A} \operatorname{div} \vec{v}$. Of course the equality then also holds for each $B \in \mathcal{B}(A)$ (apply the theorem to B in place of A or use Thm. $\mathrm{V}(2)$ of [Ju-No 1]).

Without loss of generality we assume $\left|M_{i}\right|_{\alpha_{i}}$ to be finite $(i \in \mathbb{N}), M_{i}=\emptyset$ if $\alpha_{i}=n\left(\left|M_{i}\right|_{n}=0\right)$, and we also assume the O-constant occurring in $\left(L_{\alpha_{i}+1-n}\right)$ to be bounded on N_{i} by $K_{i}>0(i \in \mathbb{N})$. Then a division of A is given by $D,\left(M_{i}, C_{1}^{\alpha_{i}}\right)_{i \in \mathbb{N}},\left(N_{i}, C_{2}^{\alpha_{i}}\right)_{i \in \mathbb{N}}$ with the understanding that $C_{1}^{\alpha_{i}}=C_{2}^{\alpha_{i}}=C^{n}$ if $\alpha_{i}=n$.

- F is differentiable on D with $\dot{F}=\operatorname{div} \vec{v}$. Indeed, take $x \in D$, let $\varepsilon, K>0$ and take a $\delta>0$ such that $\left\|\vec{v}(y)-\vec{v}(x)-\vec{v}^{\prime}(x) \cdot(y-x)\right\| \leq \varepsilon\|y-x\| / K^{2}$ for all $y \in B(x, \delta)\left(\subseteq A^{\circ}\right)$, where $\vec{v}^{\prime}(x)$ denotes the derivative of \vec{v} at x. Then for each $B \in \mathcal{D}(K)$ with $x \in B$ and $d(B)<\delta$ we have

$$
\begin{aligned}
\left.|F(B)-\operatorname{div} \vec{v}(x)| B\right|_{n} \mid & =\left|\int_{\partial B}\left(\vec{v}(y)-\vec{v}(x)-\vec{v}^{\prime}(x) \cdot(y-x)\right) \cdot \vec{n}_{B} d \mathcal{H}(y)\right| \\
& \leq \frac{\varepsilon}{K^{2}} d(B)|\partial B|_{n-1} \leq \frac{\varepsilon}{K} d(B)^{n} \leq \varepsilon|B|_{n} .
\end{aligned}
$$

- Similarly one proves that F satisfies the null conditions $\mathcal{N}\left(C_{1}^{\alpha_{i}}, M_{i}\right)$ and $\mathcal{N}\left(C_{2}^{\alpha_{i}}, N_{i}\right)$ if $n-1 \leq \alpha_{i} \leq n$ (cf. [Ju-No 2, proof of Thm. 2.1]). For example, let us show that F satisfies $\mathcal{N}\left(C_{2}^{\alpha_{i}}, N_{i}\right)$ if $n-1<\alpha_{i}<n$.

Let $\varepsilon, K>0$. For $x \in N_{i}$ find $K(x), \delta(x)>0$ such that $\|\vec{v}(y)-\vec{v}(x)\| \leq$ $K(x)\|y-x\|^{\alpha_{i}+1-n}$ for all $y \in B(x, \delta(x)) \cap A$. By assumption, $K(x) \leq K_{i}$ for all $x \in N_{i}$, and we set $\Delta=\varepsilon /\left(K K_{i}\right)$. Then for any $\left(N_{i}, \delta\right)$-fine sequence
$\left\{\left(x_{k}, A_{k}\right)\right\}$ with $A_{k} \in \mathcal{B}(A)$ and $\left\{A_{k}\right\} \in C_{2}^{\alpha_{i}}(K, \Delta)$ we get

$$
\begin{aligned}
\sum\left|F\left(A_{k}\right)\right| & =\sum\left|\int_{\partial A_{k}}\left(\vec{v}(y)-\vec{v}\left(x_{k}\right)\right) \cdot \vec{n}_{A_{k}} d \mathcal{H}(y)\right| \\
& \leq K_{i} \sum d\left(A_{k}\right)^{\alpha_{i}+1-n}\left|\partial A_{k}\right|_{n-1} \\
& \leq K K_{i} \sum d\left(A_{k}\right)^{\alpha_{i}} \leq K K_{i} \Delta=\varepsilon .
\end{aligned}
$$

- Let us show that F satisfies $\mathcal{N}\left(C_{1}^{\alpha_{i}}, M_{i}\right)$ if $0<\alpha_{i}<n-1$. Analogously one then proves that F also satisfies $\mathcal{N}\left(C_{2}^{\alpha_{i}}, N_{i}\right)$ for $0<\alpha_{i}<n-1$.

Given $\varepsilon, K>0$ we choose for $x \in M_{i}$ a $\delta(x)>0$ such that $\| \vec{v}(y)-$ $\vec{v}(x)\left\|\leq \varepsilon^{\prime}\right\| y-x \|^{\alpha_{i}+1-n}$ for all $y \in B(x, \delta(x)) \cap A$ with $y \neq x$, where $\varepsilon^{\prime}=$ $\varepsilon 2^{1-n}\left(2^{\alpha_{i}}-1\right) / K^{2}$. Now let $\left\{\left(x_{k}, A_{k}\right)\right\}$ be an $\left(M_{i}, \delta\right)$-fine sequence with $A_{k} \in \mathcal{B}(A)$ and $\left\{A_{k}\right\} \in C_{1}^{\alpha_{i}}(K)$. In particular, ∂A_{k} is K-regulated for all k, and thus we can use the inequality $(*)$ with $B=A_{k}, \varrho=K$ and $U\left(x_{k}\right)=B\left(x_{k}, \delta\left(x_{k}\right)\right) \supseteq A_{k}$ yielding

$$
\begin{aligned}
\sum\left|F\left(A_{k}\right)\right| & =\sum\left|\int_{\partial A_{k}}\left(\vec{v}(y)-\vec{v}\left(x_{k}\right)\right) \cdot \vec{n}_{A_{k}} d \mathcal{H}(y)\right| \\
& \leq \varepsilon^{\prime} \sum \int_{\partial A_{k}}\left\|y-x_{k}\right\|^{\alpha_{i}+1-n} d \mathcal{H}(y) \\
& \leq \varepsilon^{\prime} \sum \frac{K 2^{n-1}}{2^{\alpha_{i}}-1} d\left(A_{k}\right)^{\alpha_{i}} \leq \varepsilon .
\end{aligned}
$$

- F satisfies $\mathcal{N}\left(C_{1}^{\alpha_{i}}, M_{i}\right)$ if $\alpha_{i}=0$. Indeed, given $\varepsilon, K>0$ find for $x \in M_{i}$ a function $g_{x}: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$and positive numbers $K(x)$ and $\delta(x)$ such that $\|\vec{v}(y)-\vec{v}(x)\| \leq K(x) g_{x}(\|y-x\|)\|y-x\|^{2-n}$ for all $y \in B(x, \delta(x)) \cap A, y \neq x$. Without loss of generality we may assume $\delta(x) \leq 1 / 2$ and $\int_{0}^{\delta(x)} g_{x}(t) d t \leq$ $\varepsilon /\left(\beta(n) K(x) K^{2}\right)$ by the Lebesgue integrability of g_{x}. Here $\beta(n)$ denotes the absolute constant occurring in (**). Now let $\left\{\left(x_{k}, A_{k}\right)\right\}$ be an ($\left.M_{i}, \delta\right)$-fine sequence with $A_{k} \in \mathcal{B}(A)$ and $\left\{A_{k}\right\} \in C_{1}^{\alpha_{i}}(K)$. Using the inequality ($* *$) with $B=A_{k}, \varrho=K$ and $U\left(x_{k}\right)=B\left(x_{k}, \delta\left(x_{k}\right)\right)$ we conclude

$$
\begin{aligned}
\sum\left|F\left(A_{k}\right)\right| & =\sum\left|\int_{\partial A_{k}}\left(\vec{v}(y)-\vec{v}\left(x_{k}\right)\right) \cdot \vec{n}_{A_{k}} d \mathcal{H}(y)\right| \\
& \leq \sum K\left(x_{k}\right) \int_{\partial A_{k}} g_{x_{k}}\left(\left\|y-x_{k}\right\|\right)\left\|y-x_{k}\right\|^{2-n} d \mathcal{H}(y) \\
& \leq \sum K\left(x_{k}\right) K \beta(n) \int_{0}^{\delta\left(x_{k}\right)} g_{x_{k}}(t) d t \leq \varepsilon .
\end{aligned}
$$

- Finally, the continuity of \vec{v} directly implies that F satisfies $\mathcal{N}\left(C^{*}, D \cup\right.$ $\left.\bigcup_{\alpha_{i}>n-1}\left(M_{i} \cup N_{i}\right)\right)$, which completes the proof.

Remark 2.2. (i) Since any interval is contained in $\mathcal{A}\left(\mathbb{R}^{n}\right)$ and since the ν_{1}-integral extends the ν_{2}-integral, our result contains the divergence theorem for the ν_{1}-integral of [Ju-No 2].
(ii) Furthermore, the divergence theorem of [Ju-No 3] can also be deduced from the theorem above: set $S=\bigcup_{\alpha_{i}<n-1}\left(M_{i} \cup N_{i}\right)$, and recall that the ν_{1}-integral extends any $\nu(S)$-integral.
3. The transformation formula. In this section we establish a quite general transformation formula for the ν_{2}-integral, i.e. the $\nu(S)$-integral with $S=\mathbb{R}^{n}$ (cf. Sec. 1.d), by verifying the transformation axiom in our abstract theory ([Ju-No 1, Sec. 7]).

Given a measurable subset A of \mathbb{R}^{n} and a function $\phi: A \rightarrow \mathbb{R}^{n}$, we call ϕ a transformation map if it is one-to-one and if ϕ and its inverse ϕ^{-1} are Lipschitzian.

Lemma 3.1. Let A be a measurable subset of \mathbb{R}^{n}, assume $\phi: A \rightarrow \mathbb{R}^{n}$ to be a transformation map and denote by c_{1} (resp. c_{2}) a positive Lipschitz constant of ϕ (resp. ϕ^{-1}).
(i) If $K>0$ and $B \subseteq A$ with $B \in \mathcal{A}_{K}(\emptyset)$, then $\phi(B) \in \mathcal{A}_{\tilde{K}}(\emptyset)$ with $\widetilde{K}=1+\left(c_{1} c_{2}\right)^{n}(1+K)^{2}$.
(ii) Assume $M \subseteq A$ to be ϱ-regulated $(\varrho>0)$. Then $\phi(M)$ is $\widetilde{\varrho}$-regulated with $\widetilde{\varrho}=\varrho\left(2 c_{1} c_{2}\right)^{n-1}$.

Proof. (i) Let $K>0$ and $B \subseteq A$ with $B \in \mathcal{A}_{K}(\emptyset)$, i.e. $B \in \mathcal{A}(\emptyset)=\mathcal{A}$ and $d(B)^{n} \leq K|B|_{n},|\partial B|_{n-1} \leq K d(B)^{n-1}$. Since $\phi(B)$ is compact and $\phi(\partial B)=\partial \phi(B)$, we have $|\partial \phi(B)|_{n-1} \leq c_{1}^{n-1}|\partial B|_{n-1}$ and thus $\phi(B) \in \mathcal{A}$. Furthermore, because ϕ and ϕ^{-1} are Lipschitzian we have

$$
d(\phi(B))^{n} \leq c_{1}^{n} d(B)^{n} \leq K c_{1}^{n}|B|_{n} \leq K\left(c_{1} c_{2}\right)^{n}|\phi(B)|_{n} \leq \widetilde{K}|\phi(B)|_{n} .
$$

It remains to show that $|\partial \phi(B)|_{n-1} \leq \widetilde{K} d(\phi(B))^{n-1}$. Since this is obvious if $d(\phi(B))=0$, we assume $d(\phi(B))>0$, yielding

$$
\begin{aligned}
|\partial \phi(B)|_{n-1} & \leq c_{1}^{n-1}|\partial B|_{n-1} \leq K c_{1}^{n-1} d(B)^{n-1} \leq K c_{1}^{n} \frac{d(B)^{n}}{d(\phi(B))} \\
& \leq K^{2} c_{1}^{n} \frac{|B|_{n}}{d(\phi(B))} \leq\left(c_{1} c_{2}\right)^{n} K^{2} \frac{|\phi(B)|_{n}}{d(\phi(B))} \\
& \leq\left(c_{1} c_{2}\right)^{n} K^{2} d(\phi(B))^{n-1} .
\end{aligned}
$$

(ii) To prove the $\widetilde{\varrho}$-regularity of $\phi(M)$ we first take a $y=\phi(x) \in \phi(M)$ and any $r>0$, and we set $E=\phi^{-1}(B(y, r) \cap \phi(A))$, which is contained in
$B\left(x, r c_{2}\right)$. Consequently,

$$
\begin{aligned}
|B(y, r) \cap \phi(M)|_{n-1} & =|\phi(E \cap M)|_{n-1} \leq c_{1}^{n-1}|E \cap M|_{n-1} \\
& \leq c_{1}^{n-1}\left|B\left(x, r c_{2}\right) \cap M\right|_{n-1} \leq c_{1}^{n-1} \varrho\left(r c_{2}\right)^{n-1} \\
& =\varrho\left(c_{1} c_{2}\right)^{n-1} r^{n-1}
\end{aligned}
$$

since M is ϱ-regulated.
If $y \in \mathbb{R}^{n}$ is arbitrary and if $r>0$ we choose (if possible) a $z \in B(y, r) \cap$ $\phi(M)$, which implies $B(y, r) \subseteq B(z, 2 r)$, and thus

$$
|B(y, r) \cap \phi(M)|_{n-1} \leq|B(z, 2 r) \cap \phi(M)|_{n-1} \leq \widetilde{\varrho} r^{n-1}
$$

To verify the transformation axiom for our ν_{2}-integral take a set $A \in$ $\mathcal{A}\left(\mathbb{R}^{n}\right)=\bigcup_{\varrho>0} \mathcal{A}_{\varrho}^{\prime}$ and a transformation map $\phi: A \rightarrow \mathbb{R}^{n}$.

If $B \subseteq A$ with $B \in \mathcal{A}_{\varrho}^{\prime}$ for some $\varrho>0$, Lemma 3.1 implies $\phi(B) \in \mathcal{A}\left(\mathbb{R}^{n}\right)$ since $\partial \phi(B)=\phi(\partial B)$, and this, combined with Lemma 3.1(i), yields the invariance of $\mathcal{B}=\mathcal{A}\left(\mathbb{R}^{n}\right)$ and \mathcal{D} with respect to ϕ. Finally, one has to check the invariance of the control conditions under ϕ and this again is a simple consequence of Lemma 3.1. For example, take $C=C_{1}^{\alpha}, 0 \leq \alpha<n-1$, and let $K>0$. Denote again by c_{1} (resp. c_{2}) a Lipschitz constant of ϕ (resp. $\left.\phi^{-1}\right)$ and set $\widetilde{K}=K\left(1+c_{1}^{\alpha}+\left(2 c_{1} c_{2}\right)^{n-1}\right)$. For $\widetilde{\Delta}>0$ let $\Delta=1$ and assume $\left\{A_{k}\right\} \in C_{1}^{\alpha}(K, \Delta)$ with $A_{k} \subseteq A$. Since ∂A_{k} is K-regulated Lemma 3.1(ii) implies that $\partial \phi\left(A_{k}\right)$ is \widetilde{K}-regulated, $\sum d\left(\phi\left(A_{k}\right)\right)^{\alpha} \leq c_{1}^{\alpha} \sum d\left(A_{k}\right)^{\alpha} \leq \widetilde{K}$, and since each $x \in \mathbb{R}^{n}$ is contained in at most K of the A_{k} the same is true for the sequence $\left\{\phi\left(A_{k}\right)\right\}$ and thus $\left\{\phi\left(A_{k}\right)\right\} \in C_{1}^{\alpha}(\widetilde{K}, \widetilde{\Delta})$. Furthermore, if $E \subseteq A$ with $E \in \mathcal{E}\left(C_{1}^{\alpha}\right)$ we have $|\phi(E)|_{\alpha} \leq c_{1}^{\alpha}|E|_{\alpha}<\infty$ and therefore $\phi(E) \in \mathcal{E}\left(C_{1}^{\alpha}\right)$.

Now we can state the following

Theorem 3.1 (Transformation Formula). Let $A \in \mathcal{A}\left(\mathbb{R}^{n}\right), \phi: A \rightarrow \mathbb{R}^{n}$ be a transformation map and let $f: \phi(A) \rightarrow \mathbb{R}$. Then f is ν_{2}-integrable on $\phi(A)$ iff $(f \circ \phi)\left|\operatorname{det} \phi^{\prime}\right|$ is ν_{2}-integrable on A, and in that case

$$
\int_{\phi(A)}^{\nu_{2}} f={ }^{\nu_{2}} \int_{A}(f \circ \phi)\left|\operatorname{det} \phi^{\prime}\right|
$$

Remark 3.1. (i) Analogously one verifies the transformation axiom for the ν_{3}-integral, i.e. the $\nu(\emptyset)$-integral, and thus the corresponding transformation formula holds.
(ii) For $S=\emptyset$ and $S=\mathbb{R}^{n}$ we have seen the quadruple $\nu(S)$ to be invariant under transformation maps, and therefore a transformation formula holds within the $\nu(S)$-theory.

Of course for general S the semi-ring $\mathcal{A}(S)$ will no longer be invariant with respect to transformations, and thus no transformation formula can be
stated within the $\nu(S)$-theory. Instead one also has to consider the transformed $\nu(\phi(S)$)-theory, and then an analogue of Theorem 3.1 can be proved in which one of the integrals is a $\nu(S)$-integral and the other a $\nu(\phi(S))$ integral.
4. A constructive definition of the $\nu(S)$-integral. Here we assume $S \subseteq \mathbb{R}^{n}$ again to be arbitrary but fixed.

The definition of the $\nu(S)$-integral for a point function f given in Section 1 is of descriptive type, i.e. we associate with f a set function satisfying certain conditions. In contrast to this a constructive definition in the Riemann sense would associate with f only a single real number. Ideally, this seems to be the most natural way of defining an integration process, and our $\nu(S)$-integral indeed allows such an equivalent constructive definition.

Theorem 4.1. Let $A \in \mathcal{A}(S)$ and $f: A \rightarrow \mathbb{R}$. Then f is $\nu(S)$-integrable on A iff there exists a real number J and a division $\dot{E},\left(E_{i}, C_{i}\right)_{i \in \mathbb{N}}$ of A with the following property: $\forall \varepsilon>0, K>0, K_{i}>0 \exists \Delta_{i}>0, \delta: A \rightarrow \mathbb{R}^{+}$such that

$$
\left|J-\left(\sum f\left(x_{k}\right)\left|A_{k}\right|_{n}+\sum f\left(x_{k}^{\prime}\right)\left|A_{k}^{\prime}\right|_{n}\right)\right| \leq \varepsilon
$$

for any δ-fine partition $\left\{\left(x_{k}, A_{k}\right)\right\} \cup\left\{\left(x_{k}^{\prime}, A_{k}^{\prime}\right)\right\}$ of A with
(i) if $x_{k} \in \dot{E}$ then $A_{k} \in \mathcal{A}_{K}(S),\left\{A_{k}: x_{k} \in E_{i}\right\} \in C_{i}\left(K_{i}, \Delta_{i}\right)(i \in \mathbb{N})$,
(ii) $\left\{A_{k}^{\prime}\right\} \in C^{*}(K)$ and $x_{k}^{\prime} \in \dot{E} \cup \bigcup_{C_{i} \in \dot{\Gamma}} E_{i}$ for all k,
and in that case J is uniquely determined and $J={ }^{\nu(S)} \int_{A} f$.
Since the control condition $C^{*}=C_{1}^{n-1}$ does not depend on Δ one part of the theorem, assuming the $\nu(S)$-integrability of f, is nothing but the concrete version of Corollary 6.1 of [Ju-No 1]. The other part of the theorem is much more involved and will be presented in a separate paper [No 2].

Remark 4.1. The analogous theorem for the ν_{1}-integral (cf. Remark 1.4) has been proved in [Ju-No 2, Thm. 3.1].

References

[Fed] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[Jar-Ku 1] J. Jarník and J. Kurzweil, A non-absolutely convergent integral which admits C^{1}-transformations, Časopis Pěst. Mat. 109 (1984), 157-167.
[Jar-Ku 2] —, —, A non-absolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (110) (1985), 116-139.
[Jar-Ku 3] -, 一, A new and more powerful concept of the PU integral, ibid. 38 (113) (1988), 8-48.
[JKS] J. Jarník, J. Kurzweil and S. Schwabik, On Mawhin's approach to multiple nonabsolutely convergent integral, Časopis Pěst. Mat. 108 (1983), 356380.
[Ju] W. B. Jurkat, The Divergence Theorem and Perron integration with exceptional sets, Czechoslovak Math. J. 43 (118) (1993), 27-45.
[Ju-No 1] W. B. Jurkat and D. J. F. Nonnenmacher, An axiomatic theory of nonabsolutely convergent integrals in \mathbb{R}^{n}, Fund. Math. 145 (1994), 221-242.
[Ju-No 2] -, —, A generalized n-dimensional Riemann integral and the Divergence Theorem with singularities, Acta Sci. Math. (Szeged) 59 (1994), 241-256.
[Ju-No 3] -, -, The Fundamental Theorem for the ν_{1}-integral on more general sets and a corresponding Divergence Theorem with singularities, Czechoslovak Math. J., to appear.
[Maw] J. Mawhin, Generalized multiple Perron integrals and the Green-Goursat theorem for differentiable vector fields, ibid. 31 (106) (1981), 614-632.
[No 1] D. J. F. Nonnenmacher, Sets of finite perimeter and the Gauss-Green Theorem with singularities, J. London Math. Soc., to appear.
[No 2] -, A constructive definition of the n-dimensional $\nu(S)$-integral in terms of Riemann sums, preprint 1992, to appear.
[Pf 1] W. F. Pfeffer, The divergence theorem, Trans. Amer. Math. Soc. 295 (1986), 665-685.
[Pf 2] -, The Gauss-Green Theorem, Adv. in Math. 87 (1991), 93-147.

ABTEILUNG MATHEMATIK II UND V
UNIVERSITÄT ULM
D-89069 ULM, GERMANY

[^0]: 1991 Mathematics Subject Classification: 26A39, 26B20.

