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STUDIA MATHEMATICA 108 (1) (1994)

On the Pointwise Ergodic Theorem in L,
by

F. J. MARTIN-REVYES
and A. DE LA TORRE (Médlaga)

Abstract. Let (X, F,p) be a finite measure space, and ¢ an invertible, nonsingular
transformation on {X, F, ). We prove that the Pointwise Ergodic Theorem (P.E.T.) in
Lyp{du) holds for the operator Tf = fo¢ if, and only if, it holds for the formal adjoint of T’
in Lg(dpe) (1/p+1/g = 1}. We also characterize the P.E.T. in terms of the Radon-Nikodym
derivative of the measure p with respect to an invariant measure.

1. Introduction. Let (X, F,m) be a finite measure space, and ¢ an
invertible, measure preserving transformation. Let w be an integrable, posi-
tive function defined on X, and consider the measure p{4) = [, wdm, and
the associated space L,(u).

We say that a linear operator T, defined on L,{u), satisfies the Pointwise
Ergodic Theorem (P.E.T.) in L,(u) if, for every f in Ly(u), the averages
M (D f=({(f+Tf+...+T" 1 f)/n converge a.e. to a function Pf which
belongs to Ly(p).

In [AW], Assani and Wo§ characterized those ¢ for which the P.E.T.
holds in Ly,(p), 1 < p < oo, for the operator Tf = fo ¢, in terms of two
conditions, one on the adjoint of 7', plus another on the averages of the
measures of the pre-images of measurable sets. In that paper they raised
the question of finding a characterization in terms of w. In this note we give
an answer to this question. We show that 7" satisfies the PE.T, in Ly(p) if,
and cnly if, w satisfies the following condition:

There exists ¢ such that the following holds a.e.:

ﬂlEn (Mn(T)w)Up(-z"i[n(T)wl_q)l/q(m) <0, ptg=pg.

We also show that T' satisfies the P.E.T. in L,(g) if, and only if, T*, the
formal adjoint of T, satisfies the P.E.T. in L, (u).
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Throughout this paper the letter C' will denote a positive, finite constant,
not necessarily the same at each-occurrence, p will denote a number bigger
than 1, and ¢ will be its conjugate exponent, i.e. the number p/(p — 1).

2. Main result. Let (X, F,m) and ¢ be as above, and let T be the

linear operator defined on measurable functions by Tf = f o ¢. We observe
that from

J Trodn= [ fea)a(@yw(z)dm= [ f(z)g(6 (=))w(¢~(z))dm,
it follows that the formal adjoint of T' is the operator defined as T*(g) =
w T gw).

THEOREM 1. The following are equivalent:

(1) T satisfies the P.E.T. in Ly(u).

(2) There exists C such that the following holds a.e.:
T (M, (T)w)/# (Mo (1) ~2)1/% < €.

(3) T* satisfies the P.E.T. in Ly(p).

Proof. (1)=>(3). It follows from the definition of T* that (T*)%(g) =
w™ T~ {gw). Therefore M,(T*)g = w™ M,(T")(gw), and the limit of the
right hand side exists for g in L,(u) because then gw € Ly{m).

The operator f — Pf = limy_.oo M,(T)f from Ly(u) into itself, being
linear and positive, is bounded. Now let g be a positive function in L,(u),

and h a positive bounded function. Fatou’s lemma, plus the fact that T is
bounded in I, gives

[ b lim M,(T*)gdp < lim [ ML (T*)g dp
n—ro0 n—roQ
= lim [ oMa(T)hdp= [ g lim M, (T)hdp= [ gPhdp,

which implies (3) because P is bounded in Lp(p).

(3)=+(1). The function 1 that maps every & into 1 is clearly in
Lo{u), and thus lim M, (T*)1 exists and is in Ly(x). But lim M, (T*)1
= w™ lim M, (T"')w = w™'h. Therefore the function h9w~7 is integrable
with respect to the invariant measure dm. Observe also that the function
is invariant and positive.

Our formula for M, (T*) gives that (3) can be written as
i 1y a|eqpl-a 2,14
J i Mo (T2 dm < O [ |giw!~dm,
and, since h is invariant and positive, this is equivalent to

f | HILH;O Mn(T_l)g‘qhqwlwq dm < C f |9thqwl—q dm,
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for all g in L,(h9w'~% dm). This is nothing but statement (1) with 771, g,
and h9w!~7? instead of T, p, and w respectively. Using what we have already
proved, we obtain
[ lim M, (T)g[Ph~Pwdm < C [ |glPh™Pwdm,
T— D0

which implies (1), because & is invariant and positive. .

(1)=>(2). We know from the proof of (3)=>(1) that there exists a function
h, invariant and different from zero a.e. such that h9w*~7% @ Ly(dm). This
means that A%Pw'~? € L,(dp). Tt follows from (1) that for every invariant
set A,

f ( lim M, (TR Pyt~ Purdm < O f hiwP Py dm
n—oQ
A A

= O f hq’wlAq dm,
A

and since the function limy, oo My, (T)(h9/Pw!~9)(z) is invariant, we obtain

[ (lim Mo (T)RYPwi ) lim Mo (T)w dm
T 00 e d
A

<C [ lim Mp(T)(h%w'™%) dm.
N—00
A

Since A is any invariant set, and the integrands are also invariant, we get
(lim M, (T)RY/Pu=)P lim My(T)w < C lim Mo (T)(h9w' ™),
00 ’ n— 00 n—oo

and (2) follows from the fact that & is invariant ancﬁi positive.

(2)=+(1). Observe that limp,_ao{ M, (T)w)(z) exists and is different from
zero a.e. because w is a positive, integrable function with respect to the
invariant measure dm. Therefore (2) implies that img_ce (My (T)w'~?)(z)
exists and is finite a.e., which gives that sup, My (T)w'~%(z) is finite a.e.,
and according to [MT], this implies that P f(z) = limu oo Mn(T)f{2) exists
and is finite a.e., for all f € L,(wdm). -

The only thing left is to prove that Pf € L,(wdm). Let f be a positive
function. Holder’s inequality gives that :

(Mo(T)F Y (2) < (Mo (T)(fP0)) () (Mo (T)0' ~1)?/9(s).
It, follows from (2) that
iy, oo M (T)(FPw)()
(PfF@)=C limg o0 ]\/Efn()’l(")wtgx)

and
limy oo M (TY{fPw)(z) -
[ (PPPE)ule) dm<C | - e (Twle) w(z) dm .
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Finally, the ergodic theorem for measure preserving transformations tells us
that this lagt integral is equal to

[ A Mo

= f lim M (T)(fPw)(z)d

f fPx)w(z) dm.

3. Remarks. 1) If ¢ is not invertible (1) and (2) in Theorem 1 are still
equivalent. To see this one just observes that the proof of (2)=»(1) does
not make use of the invertibility assumption, so it is enough to show that
(1)=>(2). But if (1) holds, then, using again the result of [MT] we conclude
that w* = limsup,_, . M, (T)w' ™7 is finite a.e. This means that X can be
decomposed as the union of invariant sets Xy, where X; = {x : 281 <
w*(x) < 2%}. But for each k the function w'~9 is in L,(Xy, dm) and then
the same argurmnent as in Theorem 1 proves (2) a.e. in X,

2) If ¢ is nonsingular and the operator T maps L,(u) into itself then the
assumption that our measure g is of the form p(A) = | awdmin Theorem 1
is not arestriction, because if (1) holds, i.e., if T" satisfies the P.E.T. in L,(u),
then there exists an invariant measure m equivalent to u [AW]. If (3) holds
then the measure dm = lim M, (T*}1 dy is a finite invariant measure.
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Unique continuation for elliptic equations and an abstract
differential inequality

by

K. SENATOR (Warszawa)

Abstract. We consider a class of elliptic equations whose leading part is the Laplacian
and for which the singularitics of the coefficients of lower order terms are described by a
mixed LP-norm. We prove that the zeros of the solutions are of at most finite order in the
senge of & spherical L%-mean.

1. Introduction. Unique continuation properties of solutions of second
order elliptic equations with bounded coefficients can be studied in detail
with the aid of Carleman type inequalities and besides them the use of
L*-vorms is sufficient (see e.g. [5]). For the case of unbounded coeflicients
the situation is different in general. Strong uniqueness for the Schrédinger
equation with potential whose integrability exponent is minimal (i.e. equal
to »/2 where n > 3 is the dimension of the space) can be proved by this
method [8]. One also gets uniqueness theorems for elliptic equations with
variable coefficients of the leading part and with coefficients of first order
terms in L™, py < oo {see e.g. [6], [10]). However, it appeared that the
optimal value of the exponent, p1 = n, cannot be attained via Carleman
type inequalities: it is possible to get p; > (3n — 2)/2 at most [7], [2]. In
fact, the estimates giving uniqueness for such values of the exponent have
been found [2], [11]. T. H. Wolff has obtained uniqueness results for a case
when p; < (3n ~ 2)/2 using some modified Carleman type inequalities;
namely, he proved strong uniqueness for p1 = max(n, (3n - 4}/2) [19], and
unique continonation from an open set for p1 = n [20] (the assumptions on
all eoefficients are minimal in this case). _

There are other methods giving unigueness theorems for various classes
of second order elliptic equations. Using a geometric approach N. Garofalo
with F. H. Lin [3], [4] and J. L. Kazdan [9] have got strong uniqueness
results for equations with coefficients of first order terms having isolated
singularities of a maximal rate of growth: they may belong to LT, without
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