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Abstract. By following an idea of Nicodemi we study certain sequences of exten-
sion operators for multilinear mappings on Banach spaces starting from any given ex-
tension operator for linear mappings. In this way we obtain several new properties of
the extension operators previously studied by Aron, Berner, Cole, Davie and Gamelin.
As an application of our methods we show the existence of plenty of unbounded scalar-
valued homomorphisms on the locally convex algebra of all continuous polynomials on
each infinite-dimensional Banach space. This improves a result of Dixon.

Introduction. The problem of extending holomorphic functions from a
Banach space E to a larger Banach space F was first studied by Aron and
Berner [3]. They showed that the holomorphic functions of bounded type on
E extend in a natural way to B, yielding an extension operator from Hy(E)
into Hy (E"). To achieve their goal they constructed extension operators for
the spaces of multilinear forms and then used Taylor series expansions to
extend holomorphic functions.

It is in general possible to extend multilinear forms on E to £ in many
different ways. Davie and Gamelin [6], and Aron, Cole and Gamelin [4],
have established important properties of the extension operators of Aron
and Berner, and have given a different, much simpler, description of those
operators. Very recently Lindstrdm and Ryan [13] have constructed other
extension operators for multilinear forms by using ultrapowers of Banach
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spaces. Dineen and Timoney [7] have also used ultrapowers of Banach spaces
to show that the bounded holomorphic functions on the open unit ball of E
extend in a natural way to the open unit ball of E”.

In this paper we follow an idea of Nicodemi [15] to define a sequence
of extension operators R, : L{™E) — L(™F) starting from any given ex-
tension operator Ry : B/ — F'. If we start, for instance, from the natural
embedding Ry : B’ «» ', then we recover the extension operators of Aron
and Berner. The main advantage of our approach is that the sequence (fiy,)
is defined inductively by means of an explicit algebraic formula. This allows
us to establish many properties of the sequence (Ry) by straightforward
induction.

This paper is organized as follows. In Section 0 we fix our notation and
terminology. Sections 1 through 3 contain the preliminary material on the
Nicodemi extension operators for multilinear mappings, polynomials and
holomorphic mappings. In Section 4 we show how a given sequence of ex-
tension operators for multilinear forms yields in a natural way a sequence
of extension operators for vector-valued multilinear mappings. In Section 5
we establish certain continuity properties of the sequence (H.,,) that begins
with the natural embedding R, : E' « E". In Section 6 we give neces-
sary and sufficient conditions for the extension operators for vector-valued
multilinear mappings to be independent of the range space. The results in
Section 7 on change of order of the variables are slight variations of results
of Aron, Cole and Gamelin [4], and have been included to stress their rela-
tion to the results in the preceding section. In Section 8 we give examples
of pairs of spaces E and G such that, for every A € L(™E;G"), the ex-
tension R, A € L{M™E";G") is separately compact or separately integral.
Tn Section 9 we give necessary and sufficient conditions for the coincidence
of certain extensions to the fourth dual, thus answering questions raised
by Aleksander Petczyniski and Richard Aron. Finally, in Section 10 we use
an algebraic version of the Nicodemi extension operators to find many un-
bounded scalar-valued homomorphisms on the locally convex algebra P(E)
of all continuous polynomials on each infinite-dimensional Banach space F.
This improves a result of Dixon [8],

This paper was written when the fourth author was vigiting the De-
partment of Mathematical Analysis of the University of Valencia, whose
hospitality is gratefully acknowledged.

0. Notation and terminology. The letters ¥, F', G always represent
Banach spaces over the same field K, where K is R or C. E* denotes the
algebraic dual of F, whereas B denotes the topological dual of . N denotes
the set of all strictly positive integers.
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We shall denote by £,(™E; ) the vector space of all m-linear mappings
from E™ into G, whereas L{™F; G} denotes the subspace of all continuous
members of £,(™E; G). L(™E; @) is a Banach space under its natural norm.
The isomorphim

I i Lal™ B G) = Lo(™E; La("E; G))
defined by I, A(z){y) = Alz,y) for all A € L, (" E,G), x € E™, y € B,

induces an isometry between £(™t"E;G) and L(™F; L("E;G)). Likewise
the isomorphism .
Lo(TE; L ("F,3)) 3 A— A' € Ly("F; L (" E; G))
defined by A*(y)(z) = A(z)(y) for all A € L.(mE; L("F;G)}, x € E™, y €
F™. induces an isometry between L(™E; L("F;G)) and L{"F; L(™E; ).
We shall denote by P,(™E; ) the vector space of all m-homogeneous
polynomials from E into G, whereas P(™E; G) denotes the subspace of all

continuous members of P,(™E;G). P(™E;G) is a Banach space under its

natural norm. The natural surjective mapping
Lo("E;G) 2 A— A€ Pu("E;C)

maps £(™E; G) onto P(™E; G). Let also Po(E;G) = Do Pa{"E; G) and

P(B; G) = Brea P(E; G).

In the case of complex Banach spaces, H({U; G} denotes the vector space
of all holomorphic mappings from an open subset U of F into &, whereas
Hp{U; &) denotes the Fréchet space of all holomorphic mappings of bounded
type from I/ into G (i.e. bounded on bounded subsets B of U satisfying
dist(B, E\U) > 0). If f € H(U;G) and « € U, then P f{z) e P("E; )
denotes the mth term in the Taylor series expansion of f at z.

As is customary we will write £,(™E) instead of Lo(™F; K), Pu("E)
instead of Pa(™E; K), ete.

We refer to [14] for the properties of multilinear mappings, polynomials
and holomorphic mappings on Banach spaces.

1. Nicodemi sequences. Given a continuous linear operator
Ry : L(E; G) —~ L(F;G),
let
Ry L(ME;G) — L(TF; G)
be inductively defined by
(1.1 RorA = I R 0 (B 0 I A)']'

for all A € L(™ E;G) and m € N. Though it is not obvious at a first
glance, the sequence of operators R, thus defined is precisely the sequence of
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operators constructed by Nicodemi in [15, pp. 536-537], and will henceforth
be referred to as the Nicodemi sequence beginning with By.

11. Exampri. Let w € L(F; E), let m : L(E;G) — L{F;G) be de-
fined by m1 A(y) = A(wy) for all A € L{E;0) and y € F, and let (7y,) be
the Nicodemi sequence beginning with 7y, Then we can readily prove by
induction that

ﬂ'mA(yl: o 1ym) = A(Wyl: s :Wym)
forall A € L(™E;G) and y1,...,ym € F. Note that when G = K, then my
coincides with the dual mapping =’ of =.

1.2. ExaMpLE, Let By L(™E) — L(™E") be the Nicodemi sequence
beginning with the natural embedding Ry : E' — E'". Though it is far from
obvious, this sequence is precisely the sequence of operators conatructed by
Aron and Berner in [3, Proposition 2.1].

1.3. Remark. When F = E” and G = K, then the Nicodemi sequences
in the preceding two examples are always different, unless F is reflexive.
Indeed, as Nicodemi has pointed out in [15, p. 539], the natural embedding
E' — E'" cannot be a dual mapping, unless E is reflexive.

1.4. ExamMPLE. Let By : ' — E" and 8; : B < E®) be the natural
embeddings, let Ty := Sy o Ry : B/ — E®), and let T}, : L(™E) — L(™E®)
be the Nicodemi sequence beginning with 7y. In a similar manner we may
define a Nicodemi sequence of operators from L{™E) into L(™E@K)) for
each k € N.

L5. Remark. Let (R.) and (S,,) be the Nicodemi sequences begin-
ning with the natural embeddings By : & «+ E" and §, : B < E®),
respectively. We will see in Section 9 that the sequence (T,) from Exam-

ple 1.4 is in general different from the sequence (S, o R,,,). This will answer
a question raised by Aleksander Pelczyriski.

L6. LEMMA. Let Ry, : L(™E; G) — L(™F; G) be o Nicodemi sequence.
Then for all A € L(™"E;G) and m,n € N we have

(1.2) RopinA = IT;ll [Ry 0 (R0 ImA)t]t.

Proof. By definition of (Ry,), (1.2) is true for n = 1 and every m € N.
Assuming (1.2) true for certain m and n, we will prove it for m and n + 1.
For Ae L™ HEG), v e F™ ve F" and w € F we have

Btrnt1 A, 0,0) = Rinyn (R © Ly n A)H(w)] (1, v) .

Set By = (B1 0 Inynd)t(w) € L(™"E;@). Then by using the induction
hypothesis we get

(1.3)  Bmgng1d(u,v,w) = Ryyn By (u,v) = R[( R 0 LnBuy) ()] () .
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On the other hand,
(1.4)  [Rimo (Baty o InA)T(4)(v,w) = R [(Brgr 0 In A)' (v, 0) | (w) -
By (1.3) and (1.4}, to complete the proof it suffices to show that

(1.5) (R 0 I;nBy ) () = (Rpyy 0 ImA) (v, w).
Both sides of {1.5) belong to £(™E; G). Now for € E™ we have
(1.6) (Rp o ImBm)t(U)(m) = Ry [Im Bu(z)(v) -

On the other hand,
17) (Russ 0 InA)(0,0)(2) = RusalTn A@)](2, )

= Ral(Ry 0 Ln{InA(2) 1) (w)](v) .
By (1.6) and (1.7), to prove (1.5) it suffices to show that
(1.8) InBul(e) = (By 0 L{ImAlz)})i(w) .
Both sides of (1.8) belong to £(™F; ). Now for y € E™ we have
(L9)  TnBu(@)) = (R1 0 LnpnAd) (0)(@,4) = Rallnin Al 9)](w) -
On the other hand,
(1.10) (Ry o In{Ind(2) ) (w)() = Ralln{ImA(e}}(y)](w) -
Since

Lypn A, y)(2) = Az, 4, 2) = In{In A(=)} () (2)

for every z € B, {1.8) follows from (1.9) and (1.10). This proves (1.5) and
the lemma. =

1.7. PROPOSITION. Let Ry, @ L{™E) — L(™F) be a Nicodemi sequence.
Then for all A € L(™E) and B € L("E) we have

(1.11) Ryin(A®B)=R,A® R,B.
Proof. Let w & F™ and v € F™, By using Lemma 1.6 we get
(1.12) Rprn(A @ B)(1,v) = Rn[(Bno I.{A® B} )] (u).

Note that (R, o L, {4 ® B})!(v) € L(™E). Now for z € E™ we have
(Rn 0 In{A® B})'(v)(z) = Bn[Im{A ® B}z)/(v)
= Ro[A(z)B](v) = A(z)RnB(v).
Thus by substituting into (1.12) we get
Boin(A® B)(u,v) = Ren[RnB(v)Al(u) = RnB(u)RmA(u) ,

as we wanted. » -
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2. Nicodemi sequences of extension operators. The most interest-
ing Nicodemi sequences are the Nicodems sequences of extension operators,
that is, those that satisfy the hypothesis in the following proposition.

2.1. PrOPOSITION. Let Ry, @ L(ME;G) — L(™F;G) be a Nicodemdi
sequence. If there ezists J &€ L(E;F) such that R1A(Jz) = A(z) for all
A e LE; Q) and z € E, then

(2.1) B A(Jay, oo, Jog) = Aloy, ..., 2)
forall Ae L(™E;,G) and z1,...,%m € E.

Proof. For convenience define J™ € L{(E™; F™) by J™g = (Ja,...
oo Jem) for every 2 = (21,...,3,) € E™. By hypothesis, (2.1) is true
for m = 1. Assuming it true for some m, we will prove it for v + 1. Let
A€ L™ E;Q), z € E™ and y € E. By wsing the induction hypothesis
and the case m = 1 we get

R 1 A(T™ 2, Jy) = Rul(Ry e InA) (Jy)](J™z)
= (Rl o _ImA)t(Jy)(x) = RlII'mA(m)M‘]‘y)
= mA(m)(y) = A(m) y),

as we wanted. m

Under the conditions of Proposition 2.1 we will say that (R,,) is a
Nicodemi sequence of extension operators forJ.

With the notation of Example 1.1, Proposition 2.1 says that J,, 0 Ry, (A)
= Afor every A € L{(™E; (). In particular, L(™E; Q) is topologically iso-
morphic to a complemented subspace of L(™F,G).

Observe that the sequence (R,,) from Example 1.2 is & Nicodemi so-
quence of extension operators for the natural embedding J : E < E", In-
deed, if Ry : B’ — E' ig the natural embedding, then (Ry2/, J2) = («, z)
forall 2 € B and z € E.

We will need the following refinement of Proposition 2.1.

2.2. LEMMA. Let Ry, : L(™E; Q) — L(MF;G) be o Nicodemi sequence
of extension operators for some J L{E;F}. Then

(2.2) Run AT ¥, y) = Ry [Lp A(2)) (3)

for all A€ L{(ME;G), x € B™* y € F* and 0 < k < m, with the obuious
interpretations when k=0 or k = m.

Proof By Proposition 2.1, (2.2) is true for k = 0 and every m € N,
and it is obviously true whenever k = m € N. In particular, (2.2) is true for
m=1and 0 <k <1 Assuming (2.2) true for some m € N and 0<j<m,
we will prove it for m+ 1 and 0 < k < m + 1. Let 4 < L(m1E; Q)

b
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z € EMHk oy = (u,v) € F*~1 x F. By the induction hypothesis we have
(2.3)  Rep1 A(J™M 7R3 0 0) = Ry [(Ry 0 I A) ()] (T g, )

= Ryt [Tng1-1{(By 0 LnA) () }(2)] () -
On the other hand,
(24)  Billms1-nA(@)]|(w,v) = R [(Ry 0 Lipwy { Ty - A(2) 1) (0] (w) -
By (2.3) and (2.4), to complete the proof it suffices to show that
(2.5) Lngi-k{(R1o0 Ivn‘A)t(U)_}(”:) = (Ry o [k-1{.ITJ'L#-L*WGA(m)})t(v) .

* Both sides of (2.5) belong to L{*"1E;G). Now for s € E*~! we have

(Ry 0 Lt {dmmar- A(2) 1) (0)(8) = BalTpr{ L1 -6 A() }(5)] ()
= Rl Az, 8)](v) = (Ry o I, A) (v} (2, 8) .

This proves (2.5) and the lemma. =

2.3. LEMMA. Assume there are J € L(E;F) and Ry € L(L(E; @),
L{F; @) such that RaA(J2) = A(z) for oll A € L(E,G) and z € B
Then x| < [|Ry] || 72| fer every @ € E. In porticular, J has a continuous
inverse.

Proof. Fix ¢ € G, {|¢] = 1, so that ||#’ & ¢|| = [|&']| and Ri(z' & ¢)(Jz)
= {2’ z)c for all 2’ € B' and x € E. Then

lall = sup [(@’, )] = sup ||Ri(z’®c)(J2)| < || R |T2]l. =

el 51 lla* (| <1

3. Extension of holomorphic mappings. Given a Nicodemi sequence
Ry LME; @) — L(MF, &) we define

Row: PO G) = P(VF; G)
by fl’lﬁpru?lh = 2?:;4 for every syminetric A e ﬁ(mE; G) Note th&t, when

(31) ﬁm»lﬂn(PQ) W ﬁvm-P ’ ﬁn@
for all 2 & P{™E) and ¢ € P(™F), This result is due to Nicodemi [15,
Lemma 4]. R
We can readily see that [, ]| € | Ry ||™ and ||Re || £ e™ (| R;||™ for every
m & N. Hence in the complex case we may also define
R HW (B G — Hy(F; @)

by Rf = 3206 o B (P™F(0)) for every f &€ My(E;@). The operator R

e . . . .
is linear and continuous. In the case @ = C the multiplicativity (3.1} on

polynomials implies that 5 : Hip(E) — My (F) is an algebra homomorphism.
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3.1. EXAMPLE. Let © € £L(F; E) and let mn, : L("E;G) — L{"F;G)
be the Nicodemi sequence of Example 1.1. Then we can readily see that
TmP = Pow forevery P € P(ME;G) and 7 f = foo'r for every f € Hyp(E;G).
Moreover, given an open set U in B, let V = #~1(U) and let

7 H(U, Q) — H(V;G)

be defined by 7f = f o for every f € H{U;G). Then we can readily see
that P™(7f)(y) = T (P™ f(ry)) for every f € H(U;G),y € V andm e N.

3.2. EXAMPLE. Let Ry, ¢ L(™E; G} — L(™F;G) be a Nicodemi sequence
of extension operators for some J € L(F; F). Then we can roadlly see that
R, P(Jz) = P(z) for every P € P(™E; @) and z ¢ E, and Rf(Jz) = fz)
for every f € Hy(E;G) and z € E. Moreover, we have the following theorem.

3.3. THEOREM. Let Ry, @ L(™E; G) — L(™F; ) be a Nicodemi sequence
of extension operators for some J € L(E; F). Then for each open set U in
E and each mapping f € H(U;G), there are an open set V in F containing
J(U) and o mapping f € H(V;G) such that f(Jz) = f(x) for everyz € U.
We can take V = |Jyey B(Jz;rof(2)/(e|Rall)), where vy f(z) denotes the
radius of boundedness of f at z.

This theorem generalizes a result of Aron and Berner [3, Corollary 2.1],
and their proof also works in our case. We should remark that their proof is
slightly incorrect, since they claim that the extension R, A of each symmet-
ric A € £(™E; G) is again symmetric, and this is not true in general (see Re-
mark 7.2(b)). However, the extension R, A of each symmetric A € L(™E; &)
is “sufficiently symmetric” to make the proof work. This is the content of
Lemma 3.4. We should remark that Lemmas 2.2 and 2.3 play also a key role
in the proof of Theorem 3.3.

Given A € L(™E;G) and a permutation ¢ of {1,..
L(™E; G) be defined by

AU(iL‘l, - ,:Em) = A(CE,(J‘), Ce ,L’Co-(m))
\Em € B With this notation we have the following lemma.

3.4. LeMMA. Let Ry, + L(ME; G) — L(™F; ) be o Nicodemi sequence
of extension operators for some J € L(B; F'). Then

(BmA)”(u) = RmA”(u)

for every A € L(™E; @), every transposition of the form ¢ = (7 j + 1), and
every u € F™ such that u; € J(E).

Proof We first consider the case m = 2. Let 4 € L(PE,G), let u =
(Jz,y) € J(E) x F, and let ¢ = (1 2). Then

(R A) (Jz,y) = Ra Ay, J2) = Ri[(Ry o I A (J2)](y) -

m}, let A7 g

for all z4,. ..
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Now for s € E we have
(Rl Q IlA)f(JCL')(S) = R]_[IlA(S)](JIE) —_ IlA(S)(Z‘) = IlAg(SE)(S) .
Thus
(RaA)7(J,y) = Ri[[LA7(2)](y) = (R1 0 A7) (y)(2)
= R[(Ry o LA™Y ()](J2) = RoA? (Jz,y) .
Assuming the conclusion true for some e 2> 2, we will prove it for m-+1. Let
A L(ME; @), let u € ™ withu; € ](]J) let v = (us(1),.
and let o = (§ 7 -+ 1). Then either j+1 <mor j > 2.
If 7--1 < m, then we can write u = (v, Um41), v = (V) Upp1) € F™ % F.
Yince o leaves m + 1 fixed, we get
(R7n+iA)a(7'Lln um+l) = Rm—l'-lA(vl u'm-l—l) = Rm[(Rl o ImA)t(um-l-l)](Ul)
= Rm[(Rl S ImA (um+L) (U‘ )
= Rm[(Rl o I?'n,AJ) (M7,1+1)](u ) - an-l-lAU(ufa um—}-l) -
Finally, it 7 > 2 then we can write u = (uq,u’),v = (u),v') € F x F™,
Then
( ernlA)d(Ula' r) = Rm-l-lA(u.L,'Ul) m= [(Rm ¢ IlA)ﬁ('U’)](ul)
Now (B, 0 1A) (W) € L(F; G). Since o leaves 1 fixed, for s € E we get
(R o LAY (V)(8) = Ron[LLA(8)](0") = R [T A(8)]7 ()
= Rm[IlA{T(S)](uI) - (Rm o Ileg)t(u’)(S) .

fey u’cr(’m—l—l))

Thus
(Rm-{-lA)o‘(”l; 'Uv,) = Rl[(R

and the proof is complete. m

. @ IlAg)t(uf)](ul) = Rm+1AU(U1:u,)

4, Scalar-valued and vector-valued Nicodemi sequences. Thus
far we have considered Nicodemi sequences for multilinear mappings with
values in a fixed Banach space. In this section we will see how each Nicodemi
sequence for multilinear forms yields in a natural way a Nicodemi sequence
for multilinear mappings with valnes in a dual Banach space.

From now on, §, will denote the evaluation at = defined in the vsual way.

4.1. PROPOSITION. Given Ry € L(E; F'), let Ry € L(L(B; G); L(F; G))
be defined by

BiA(y)(z) = Ry (62 0 A)(y)
Jorall Ae L(E,G),y e F andz € G If (Ry) and (R m) are the corre-
gponding Nicodemt sequences, then

(4.1) ﬁ.mA(y)(z) = Bm(6: o A){y)
forall Ae L(ME;G'), y& F™ and z € G,
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Proof. By hypothesis, (4.1) is true for m = 1. Assuming it true for a
certain m, we will prove it for m -+ 1. Now let Ae LM E G, we FT
v € F and z € G. By using the induction hypothesis we get

(4.2) Brms1 A(u,v)(2) = Rml(R1 0 Ind)' (0)](w)(2)
= Ry {6, 0 [(ﬁl o I A ()] Hu) .
On the other hand,

(4.3) Runi1(6z 0 A)(u,v) = Rm{[Fy 0 In(8s 0 AN (v) Hw) .
By (4.2) and {4.3), to complete the proof it suffices to show that
(4.4) 8. 0 [(Ry 0 InAY (v)] = [R1 0 [n(65 0 A))(v).

Both sides of (4.4) belong to £{™E). Now for z € E™ we have

5. 0 ((Br o ImA)*(0))() = (B 0 InA)"(v)(2)(2) = Ra{InA{)](v)(2)

= Ri{8: 0 [InA(z)]H?)

= By {In(6, 0 A)(@)}) = [Ry 0 I (62 0 A)]*(v)(z).
This shows (4.4) and the proposition. =

4.2. COROLLARY. Let Ry, : L{™E) — L(™F) be a Nicoderni sequence for
maudtilinear forms, and let Ry, : L(ME; G') — L(™F;G") be the correspond-
ing sequence for vector-valued multilinear mappings. Then:

(a) For every A € L(™E,; G') we have
(4.5) _ Ry A = (B o A%,

(b) For every A € L(™ 1 E) we have
(4.6) . Bmpid= I3 Rn(Rro InA) = [T Ry o Ru(hA)) .

Proof. (4.5) follows directly from (4.1). The first equality in (4.6) follows
from (1.1) and {4.5), whereas the second one follows from (1.2) and (4.5). =

Formulas (4.6) are very useful to establish properties of the sequences
(Rm) and (Rm) by an inductive procedure. It is often easy to derive a
property of R, from the corresponding property of ... These formulas
are also often useful to derive a property of Rpm4q from the corresponding
property of R,

We omit the straightforward proof of the following proposition.

4.3. PROPOSITION. Let Ry, : L(M™E) — L(™F) be a Nicodemi sequence of
extension operators for some J € L{E; F). Then the corresponding sequence
Ry @ LIME;G) = L(™F; @) is also a Nicodemi sequence of emtension
operators for the same J.
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4.4. Remark. We point out that the mappings in £L(™E; @) may be
regarded as mappings with values in G" and thus be subject to the methods
in this section. In general it is not possible to extend the mappings in £{ F; G)
to E” in such a way that the extensions still take their values in G. The
most natural counterexample is the identity mapping [ : ¢g — ¢p. Indeed,
if J:cp e 1™ is the natural embedding, then, by a result of Phillips [18],
there is no P € L{I*;cq) such that P o J = [. This justifies our choice of
setting in this section.

5. Extensions to the bidual. Throughout this section let J : E — B
and Ry : B < £ be the natural embeddings, let Ry, : L("E) — L(E")
be the Nicodemi sequence beginning with R, and let R, : L(™E; G') —
L(™E"; G') be the corresponding Nicodemi sequence for vector-valued map-
pings.

ProprosITION 5.1, If A € L(ME), then the linear functional

E" 32 — RpA(Jey, ... Jeg 2,2y, 2n) € K
is o(E", B')-continuous for fived 2y,..., 251 € B ond &lf,,,..., 27, € E".

P roof. The conclusion is obviously true for m = 1. Assuming the conclo-
sion true for some m € N, we will prove it for m+ 1. Now for 4 € L(m ML E),
2 (BN and ¥ ¢ E" we have

B A(KI!”, '.UH) = R~r;r,[(R1 o I'rrz,A)t(yﬁ)} (:’E”} .
Then it follows from the induction hypothesis that the linear functional
E" 32! — Ry A2y, Jejo,a), 2, e, y") € K
is o(E", E")-continuous for fixed 21,..., 251 € Eand o), ... 2],y €
E", when 1 € j < m. Finally, if z € E™, then by Lemma 2.2 or by direct
computation we have
R -I--l‘l‘l(Jm"E:y”) s Iy [I?'rr-A(m)l(y”) ’
whence the linear functional
& ) y” s I{TILM‘HLA(JWQE,y”) e K
v also o (B, B )-contimious, =
5.2, CoroLLary. If A ¢ L(E, (7Y, then the Hnear functionol

atf a3 F "o !
E" 3 &l = Ry A(dwy, . Jegen o], @i e

3 M
is a(B", B -0 (G, () -continuous for fived x4, .., 251 € E and 24, ..
ol e B _
Proposition 5.1 tells us that the Nicodemi sequence beginning with the
natural embedding By : B = E' is precisely the sequence of extension
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operators considered by Davie and Gamelin in {6] and by Aron, Cole and
Gamelin in [4].

Let L: G — G" denote the natural embedding. In the case of a bilinear
mapping A € L(2E; @), our extension Ro(Lo A) € LEZE";G") coincides
with the extension considered by Arens [2], who seers to be the first to have
studied the extension of bilinear mappings to the bidual. Corollary 5.2, for
this case, is also due to Arens [2, Theorem 3.2].

6. Independence of the range space. Throughout this section let
J i E e B and R, : F' «— E'" be the natural embeddings, let (K.} be the
Nicodemi sequence beginning with R;, and let (Rm) be the corresponding
Nicodemi sequence for vector-valued mappings.

Since every A € L(™E;G" may also be regarded as a mapping with
values in G/, we may ask whether the two extensions coincide. In other
words, we ask whether R, (T 0 4) = T4 o R, A, where T : (¢ — G" is the
natural embedding. The answer to this question is given by Theorem 6.3.
But first we need some preparatory results.

6.1. LEMMa. Let A € L(E;G"). Then:
(a) A’ = (T} 0 A)*.

(b) A" = (R; 0 AY) = Ry A.

(c) A" = [Ry o (Ty o A)']' = Ry (T o 4).

Proof. (a) is immediate, whereas (b) and (¢) follow from (a) and Corol-
lary 4.2. w

With the aid of Corollary 5.2 we can generalize this result as follows.

6.2. PROPOSITION. Let A € L(™E; ("), and let A; € L(E; (), B; €
L(E", @), and C; € L(E";G") be defined by
1

Ay(25) = RnAJs, .
(6.1)  By(z) = EmA(J:al, Jei_,zfwly,a),
Ci () = Ren(Th 0 A)(Jwn, .. Jagoy, 2], 2y, alh),
for each choice of the points z1,..., 251 € F and T i1s o 2, € B Then:
(a) By = A4} = RiA; for every j=1,...,m
(b) Cp, = A, = R1(Ty 0 Ar).

. i H alt
cJrjonJos e, a),

Proof. Since BjoJ = A; = A}'oJ, and both B; and A%’ are o(E", F')-
oG, G)- contmuous, (a) follows And gince O o = T} oAm == Al o.J, and
both Cy, and Ay, are o(E"”, E'}-0c(G", ')~ continuous, (b) follows. =
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6.3. THEOREM. Let A € L(ME;G"), and let A; € L(E;G'), and B; €
L{E"; G") be defined by
N

Aj(mj) :RmA(-];El,..., ",
z!! € E". Then

’ﬂ’l

1
JCC‘.f_l,JIEj,:L'j+l,..,,:E

for cach choice of the points xy,.... 251 € B andzll,,. ..
the following conditions are equivalent:

() B (T5 0 A)(( ‘«‘”)”ﬂ)ﬂ,c ().

(b) R'm(ll o0 A) =T 0 R, A.

(c) Bach Bj is o(F "’, Y- { G Q') -continaious,

(d) Bach By is weakly compact.

(e) Each Aj is weakly compact.

Proof. As in Proposition 6.2, let C; € L{E";G"') be defined by

Siley) = By (Ty 0 A)(Ji1,.. LTy g, ,:z:” )
for each choice of the points xv,...,z;-1 € F and 2/ ,,..., 2}, € E.

(a)=+(b). By (a) J:"m' each 2" & (B there exists z’ e G’ such that
Rm(l’LoA) ") = Ty2'. We claim that 2’ = ]ﬁé,,,‘/-l(:r”). Indeed, if L : G — G
is the natural embedding, then for every z € G we have

(&, 2) = (Thz s, L) = (R m( o A)(a"), L)
= Ry (615 0 Ty 0 A)(z ") = B (82 A)( ) = (RmAlz "), 2)

(h)=+(c). By (b) wo have (33 = Ty o By for each choice of the points
Ty, 21 € B oand afy, € B Smce Cyis o(B", B'Y-a(G", G"}-
continuous, it follows bhat By is cr(L‘” EN-c (G, G")-continuous.

The implication (¢)=-{d) follows from the Alaoglu theorem, and (d)=>(e)
is obvious.

{e}=(a). Since C,, = A, by Proposition 6.2(b), a theorem of Gant-
macher (see [9, p. 482, Theorem 2]) implies that Cy,(E") C (G for
each choice of Lho points 21,...,Zp.1 in E. Then the proof of (a)=+(b)
shows that O, = T) o B, rLIld hence it follows easily that Chpep 0 J =
Ty o Ap A’,’H o.f, As in the proof of Proposition 6.2(b) we conclude
that - A’,’“” ¢, aud 1101100 ag hefore (e = Ty 0 Byt Proceeding
induc l.wvlv we conclude thal ¢ =Ty o By, in pn,rmular (a) holds. =

6.4. COROLLARY, For each A € L(E;G") the following conditions are
equivalent:

(a) Ry(Th 0 A)(E") C TUG"):

(b) Ba(Ty 0 A) = Ty 0 Ry A.
(c) RlA is o( B, E')-oc(G', G")-continuous.
(Q) B A is wcakly compact.

(e) A 18 weakly compact.
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6.5. Remark. The equivalent conditions of Theorem 6.3 are clearly
satisfied by every A € L{™E; G') if every B € L(E;G’) is weakly compact.

6.6. Remark Tt follows from Lemma 6.1 that Iy (Rad) = (I, A)" for
every A € L(*E). Then a tedious proof by induction shows that the sequence
(R.,) coincides with the sequence of extension operators constructed by
Aron and Berner in [3, Proposition 2.1]. We refrain from giving the details.

7. Change of order of the variables. Throughout this section let
J:E < E'" and Ry : B =+ E" be the natural embeddings, let (R,,) be the
Nicodemi sequence beginning with Ry, and let (Rm) be the corresponding
Nicodemi sequence for vector-valued mappings.

The results in this section are slight variations of results of Aron, Cole
and Gamelin {see [4, Theorem 8.3]). We include them here to stress their

relation to the results in the preceding section.
7.1. LEMMA. For 4 ¢ £L(*E) the following conditions are equivalent:
(a) (RaA)® = Ry A” if o is the transposition (1 2).

(b) RoA is separately o(E", F')-continuous.
(¢) 1A € L(E; E') is weakly compact.

Proof. (a)(c). By Corollary 4.2,
N(RA)” = [By(Rio LAY,  L(RA”) = [Ryo Ri(IA)).

Thus (RaA)® = RaA” if and only if Ry(R) o [ A) = Ry o Ry (L1 A). By
Corollary 6.4 this occurs if and only if 1; A is weakly compact.

(b)<(c). By Proposition 5.1, Ra A(z", ") is always a o(E”, E")-continu-
ous function of z”. On the other hand, by Corollary 4.2,

RpAle” ") = (Ry(Ry o LANZ"), y"S .
Thus RaA(zY, y) is a o(E", E')-continnous function of y” if and only if

R1(Ry0 I A)(E") C Ry(E"). By Corollary 6.4 this occurs if and only if [; 4
is weakly compact. =

7.2. Remarks. (a) Lemma 7.1 is well-known. The implications (¢)=>{g)
and (c)=>(b) were already noticed by Grothendieck [11, p. 26].

(b) Let L : G« G" be the natural embedding. According to Arens [2],
a mapping A € L(*E; @) is said to be regular if [.ﬁz (Lo A)]7 = Ry(L o A
where o is the transposition (1 2). Arens [2, Theorem 4.4] proved that every
element of £(*cg; @) is regular and gave an example of a symmetric form
A € L{*I') which is not regular (see [2, pp. 847-848]). Likewise Aron, Cole
and Gamelin [4, p. 83| gave an example of a symmetric form B € £(*1%)
such that ;B € L(I*;1°) is not weakly compact. Thus neither R4 nor
Ry B is syrmometric.
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7.3. THEOREM. Assume that every B € L(E;E') is weakly compact.
Then:

(a) (ﬁ,,,,/—l)“’ = R AT Jor every A € L{ME;G") and every permutation
o of {1,...,m}.

(b) BumA is separately o(E" E')-a(C', G)-continuous for every A €
LOME G,

Proof. (a) To begin with observe that if (R, A} = R, A" for every
A e L(ME), then (1, A)7 = R, A7 for every A € L{(™E; G"). Thus (a) is
true for m == 2 by Lemina 7.1, and we shall prove (a) for m + 1 whenever it
is true for some m 2> 2. Let A € C("ME) and let 2" € (B”Y™ and y" € E".
By Corollary 4.2,

Rt A(‘B”: y”) = Rm(Rl o In‘zA) ("E”)(y”) .

If o is a permutation of {1,...,m -+ 1} that leaves m + 1 fixed, then it
follows at once from the induction hypothesis that (Em_H_A)" = I~2m+1A”.
If o does not leave m -+ 1 fixed, then by the preceding case we ray restrict
our attention to the transposition ¢ = {1 7+ 1). Then by Corollary 4.2 and
Theorem 6.3 we have

(7.1) Roppt AQy" 2"} == [Ry o Ry (LAY (=" (v")
= Ry [Ry 0 (LLA))(2")(y") = By B2, y")

where B{x,y) = A(y,z) for all 2 € E™ and y € E. Hence B = 47, where
r(1)=m-+1and r(j) =j—1for 2<j <m- 1 Thus (7.1} tells us that
(Rt A)" = Rppp1 A7 Let p= o0 771 Then o = gor and ¢ leaves m + 1
fixed. Since (a) i true for p and for 7, it is also true for o. This proves (a).
(b) To prove that &, A is separately o{E", E')-o{G", G)-continaous for
every A € L{M™E;G"), it certainly suffices to prove that R, A is sepa-
rately o E", EN)-continuous for every A & L("™E). Now by Proposition 5.1,
Ry Al . 22 is a o(B”, EN-continuous function of @7 for every 4 €
LOME). I o is the transposition (1 7), then by using {a) we see that

: N N N @p, 0t "] o
R Ay a), 0wy, = R A2y, oy, i)

is a (B, B')-continuous function of . This proves (b). m

We end this section with some examples of nonreflexive Banach spaces

E with the property that every B € L(F; F') is weakly compact.

7.4, Toxampig. Aron, Cole and Gamelin [4, p. 83] have observed that
if X is a compact, Hausdoril space, then every continuous linear operator
from C(X) into C'(X)' is weakly compact.

7.5. ExAMPLE. More generally, if £ is a ("*-algebra, then every B €
L(E; B is weakly compact. Indeed, Akemann [1, Corollary I1.9] has shown
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that every continuous linear operator from a C*-algebra to the predual of
a W*-algebra is weakly compact. Since the bidual of a C*-algebra is a W*-
algebra (see [20, p. 43, Theorem 1.17.2]), the desired conclusion follows.

7.6. ExAMPLE. In [16] Pelczyriski introduced the properties (V) and
(V*). He proved that C'(X) has property (V) for each compact, Hausdorff
space X, and proved that if E has property (V), then E’ has property
(V*). In [10] Godefroy and Iochum proved that if £’ has property {(V*) (and
hence if E has property (V)), then every B & L(E; E') is weakly compact.
Godefroy and Tochum also proved that the dual of every C*-algebra, as well
as the dual of the disc algebra A{A), have property (V*). Very recently
Pfitzner [17] proved that every C*-algebra has property (V).

8. Separate compactness of multilinear mappings. Throughout
this section let J : B «— E" and Ry : B — E" be the natural embeddings,
let (Ry,) be the Nicodemi sequence beginning with Ry, and let (R,,) be the
corresponding Nicodemi sequence for vector-valued mappings.

Theorems 6.3 and 7.3 yield the following corollary.

8.1. COROLLARY. Assume that every B € L(E;E') as well as every
C € L{E; G") are weakly compact. Then for every A € L(™E; (') the exlen-
ston R A € L(ME"; ') is separately o(E", E')-0(G', G")-continuous, and
hence separately weakly compact.

Proof. By Theorem 6.3, RmA(xY,...,z") is a o(E", B')-o(G',G")-
continuous function of z{. If ¢ is the transposition (1 7), then by using
Theorem 7.3 we see that

BnAl!, ... 2"

L, ai) = R do(al, 2, 2l

s MLy
is a o(E", B')-¢{G’, G")-continuous function of z§. m

8.2. PROPOSITION. Let A € L(™E; G, and let Ay € L(E; ') and B; €
L(E"; G} be defined by

Aj(mj) = R.,,LA(le, e ’Jm.'.""lﬂfm.f’mg—kl’ e .,’L“ ),

LI‘P’F?;
M D o N
BJ(CUJ) = RmA(J-'I:j_, ey ij._]',wj 3 $3+L3 caey ﬂ;m) '
for each choice of the points =1,..., %1 € E and 2f,,..., 2y, € E". Then

A; is compact (resp. integral) if and only if the corresponding B, is compact
(resp. integral).

Proof. By Proposition 6.2, B; = A;’. Note that Aj- = A} o L, where
L : G — G" is the natural embedding. Thus in the case of compact operators
it suffices to apply Schander’s Theorem, and in the case of integral operators,
a result of Grothendieck (see [12, p. 313]). =
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8.3. COROLLARY. Assume that every B € L(E; E') is weakly compact
and every C € L(E;G") is compact (resp. integral). Then for every A €
L{ME;G"), the extension Ry, A € L{ME"; ') is separately compact (resp.
separately integral).

Proof. The proot of Corollary 8.1 applies, but using Proposition 8.2
instead of Theorem 6.3, =

8.4, ExamprLi. Every weakly compact linear operator from ¢ into a
Banach space is compact (see [12, p. 208]}. Hence the spaces F = G = ¢p,
as well as I = ¢y, G a reflexive Banach space, satisly the hypotheses of
Corollary 8.3 in the compact case.

8.5, ExampLy, Pisier [19, Theorem 3.2] has constructed a separable,
infinite-dimensional Banach space P such that P@, P = P&, P. By duality
every B € L(P; P} is integral and in particular weakly compact. Thus the
spaces B = (7 = P satisfy the hypotheses of Corollary 8.3 in the integral
case.

9. Extensions to the fourth dual. Let Ry, : L{"™E) — L(™E") be the
Nicodemi sequence beginning with the natural embedding By : B < B,
let Sy L(ME") — LM EM®) be the Nicodemi sequence beginning with the
natural embedding 8y : B — E®) andlet Ty, : L(™E) — L{™E®) be the
Nicodemi sequence beginning with the composite mapping T4 1= 51 0 Ry ¢
E' — EU . Aleksander Pelezyfiski asked us whether T = Sp o Ry, for
every m & N,

Since the mapping 7 = R} : B — E" is a projection, there are two
natural Nicodemi sequences on E”. One is the sequence (Sy,) and the other
is the Nicodemi sequence mp @ L(ME") — L(MEW) beginning with the
mapping my = 7 = Ry : E" — E5, We already know from Remark 1.3
that &1 o my unless E is reflexive, but we may still ask whether Sp, o Ry, =
T © B, for every m & N This question, in the case of symmetric multilinear
forms, wos raised by Richard Aron in an attempt to find different types of
nontrivial homomorphisms on My, (£).

Theorem 9.3 and Proposition 9.4 will answer Pelezyfiski’s question and
Aron’s guestion at the same time.

We begin with the following auxiliary lemna.

0.1. LEMMA. Lel Ry, @ L(™E) — L(™F) be o Nicodemi sequence for
maultilinear forms, and let (ﬁm) be the corresponding Nicodemi sequence for
vector-valued multilinear mappings. If m € LG, @), then Rp(n' o A) =
7 o R A for every A € L(™E; GY). : :
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Proof. For ally € F™ and 2" € G" we have
B (' o ANy)(2") = Rin (b0 0 o A)y).
On the other hand,
(7 0 FonA)(y)(2") = B Aly)(72") = Run(Brer 0 A)(y)
Since we can readily see that 8, o 0 A = 8 0 A, the desired conclusion
follows. =

In the statements of Theorems 9.2 and 9.3, and Proposition 9.4, (R,
(Sm), (Th) and (7 ) are the Nicodemi sequences defined at the beginning
of this section.

0.2. THEOREM, Tm(A) = T 0 R (A) for every A € L(™E; ().

Proof. We use induction on m. To begin with we show that T (z') =
w10 Ry(z') for all @’ € BY. Indeed, for all y¥ € E™) we have

{my 0 By, y™) = (R} o Rua’,y®) = (Ruz’, Riy™) = (Riy'™), o'y
= (y(4): Ryz') = {S10 lelzy(4)> = (T{mlny((ﬂ)'

We can readily see that if Tp,(A) = 7y 0 R (A) for all A € L(M D), then
Ten(A) = 0 Rin(A) for all A € L(™F;G'). Thus the key step in the proof
is deriving the desired result for (m+1)-linear forms fror the corresponding
result for vector-valued m-linear mappings.

Now let A € £(™H1E), so that I, A € L(™E; E'). By Corollary 4.2, the
induction hypothesis and the case m = 1 we have

Im(Tri 1 A) = Ton(Ty 0 I A) = T 0 Ry (w1 0 Ry 0 I, A).
Oun the other hand, by Corollary 4.2 again,
Im[ﬂ'mﬂml(R’m-&-lA)] = %m[ﬂ'l = Im(Rm+lA)] = Tm [771 o Rm(Rl ol Aﬂ .

By Lemma 6.1, Rm(qfrl o Ry olpA)=mo }Aim(Rl o I, A) and the proof is
complete. m

9.3. THEOREM. Assume that every B € L(E; E") is weakly compaet,
Then
S © Bon(A) = To(A) = Fon © Rn(A)
for every A€ L(ME; ).

Proof. By Theorem 9.2 it suffices to prove the first equality. We proceed
by induction on m. By definition Ty (') = 51 o Ri(2') for all 2’ € E'. We
can readily see that if Tr(A4) = Sp o Rp(A) for all A € L(™E), then
TnlA) = 8o Ry (A) for all A € L(™E; G'). Thus the key step in the proof
is deriving the desired result for (m+1)-linear forms from the corresponding
result for vector-valued m-linear mappings.
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Now let A € £(™TE). By Corollary 4.2, the induction hypothesis and
the case m = 1 we have
(91) Im.(TTrL-HA) = CIﬁ:frn‘(Tl © ImA) = gm o -ﬁm(sl ° Rl o Im,A) .

On the other hand, by Corollary 4.2 again,

(92) Jl‘rm[*c"'n'n,q-l(-.l[?f'nn.-ﬂ»-lA)] = gm[slOIm(R'nH-lA)] = gm[SLORm(RIOImA)] .
We claim that

(9.3) Ry (Ry 0 LpA) = R 0 Bun(InA),

(94) Rn(S1oRolyA) =510 Ry (Ryolpnd).

Yince every B & L{I5; E') is weakly compact, (9.3) follows directly from
Theorem 6.3. But then (9.4) also follows from Theorem 6.3 since, by (9.3),
the mapping Ry o I, A satisfes condition (e) in that theorem. It follows from
(9.1), (9.2) and (9.4) that Ty A = St 1(Rmy14), as we wanted. =

Our next result tells us that the hypothesis in Theorem 9.3 is indeed
NECESEALY.

0.4, PROPOSITION. For A € L(3E) the following conditions are equiva-
lent:

(a) 820 Ra(A) = Ty(A).

(b) Sg =] R;;(A) =Ty O Rg (./l)

(c) 1A € L(F; E') is weakly compact.

Proof. By Theorem 9.2 it suffices to prove that (a)«<(c). On the one
hand, by Corellary 4.2 we have

L [Sa(Rad)] = 51[S1 ¢ I (Re A)] = 51[S1 0 Ry(Ra 0 14)].
On the other hand, by using Corollary 4.2 again, and the fact that the
squality Ty == §1 o I; is always true, we have
TL(TyA) = Ty (T o [LA) = 81 0 Ry(S1 0 By o [1A).

Since 5 is an extension operator, it Is injective. Hence Sa(RaA) = ThA
if and only if § 0 By(Rio [HA) = RS0 R0 I A). By Corollary 6.4 this
holds if and only if the operator Ry o [ A is weakly compact, And clearly
this holds if and only if the operator I1 A is weakly compact. »

0.5 Remark Theorem 9.2 tells us, in particular, that {(mm o Ry,) is
alwayy a Nicodemi sequence. On the other hand, Theorem 9,8 and Proposi-
tion 9.4 tell us, in particular, that (Sw o Ry,) is a Nicodemi sequence if and
only if every B € L(F; E') is weakly corpact.

9.6, Remark. By following an entirely different apptoach, Aron et al.,
[5] have proved that Sy, 0 Hy(A) = Tm © R (A) for every symmetric A €
LY if and only if every symmetric B € L(FE; B') is weakly compact. Here,
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according to Aron, Cole and Gamelin [4, p. 81], an operator B € L{E;E")

is called symmetric if the corresponding bilinear form [ 'B € L(*E) is
symmetric,

10. Unbounded homomorphisms on algebras of polynomials.
Dixon [8, Theorem 4.2} has given an example of a complete, comimutative,
locally convex algebra, with jointly continuous multiplication, on which not
every scalar-valued homomorphism is bounded. His example is a suitable
algebra of polynomials of infinitely many variables. In this section we use
an algebraic version of Nicodemi sequences to show that whenever E is
an infinite-dimensional Banach space, then there are plenty of unbounded
scalar-valued homomorphisms on the algebra P(E) = @.._, P(™E), with
the locally convex direct sum topology. This is an immediate consequence of
Theorem 10.1. It follows from another result of Dixon [8, Lemma 4.1] that
P(F), with the locally convex direct sum topology, is always a complete,
commutative, locally convex algebra, with jointly continuous multiplication.

To begin with we present an algebraic version of Nicodemi sequences.
Given a linear mapping Ry : L.(F; G) — Lo(F; @), let Ry, : Lo[™E; &) —
L.[™F; @) be inductively defined by

Rm+1A = I,r;'l [Rm Q (Rl o] ImA)’]t
for all A € Lo(™E;G) and m € N. As in Section 1 we will refer to (R,)
as the Nicodems sequence beginning with R1. Many of the results established
in this paper for the case of continuous multilinear mappings, apply equally
well, with the obvious changes, for the case of arbitrary multilinear map-
pings.
Now let

Ry i Lo(™E) — L (M E™)
be the Nicodemi sequence beginning with the natural embedding Ry : F* =
E*** As we did in Section 3 for the case of continuous mappings, let

I’%m : Pa(mE) _ rpa(mE**)
be defined by RmA = R’;;A for every symmetric 4 € L£,(™F). Since the
conclusion of Proposition 1.7 is true in our new situation, it follows that
(10.1) Bmin(PQ) = Ry P R.Q
for all P € P,(™E) and @ ¢ P,("E}. Finally, let

R :Py(EB) — Pu(E™)

be defined by B(Y .}y Pe) = Som , Ru Py if Py € Po(PE) fork = 0,1,...,m.

It follows from (10.1) that R is an algebra homomorphism. Now we can prove
the following theorem:
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10.1. THEOREM. For each linear functional w, : B! — K, there is an
algebra homomorphism w : P(E) — K such that w(z) = wi(z’) for all
¢ e E.

Proof. Let 2** : B* — K be any linear functional that extends w; from
E' to £* Then the composite mapping

w: P(E) — Pu(F) LY Po(B™) buns g

is the required homomorphism, w
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Spectrum of multidimensional dynamical systems
with positive entropy

by

B. KAMINSKI (Torud) sad P. LIARDET (Marsellle)

Abstract. Applying methods of harmonic analysis we give a simple proof of the
multuhmemmmﬂ version of the Rokhlin-Sinal theorem which states that a Kolmogorov
Z-aciion on a Lehesgue space has a countable Lehesgue spectrum. At the same time
we extend hiy theorem to E™-actions. Next, using its relative version, we extend to
E™-actions some other general results connecting spectrum and entropy.

1. Introduction. One of the important results in classical ergodic theory
18 the Rokhlin Sinal theorem which states that every Kolmogorov automor-
phisim (Z-action) of a Lebesgne space has a countable Lebesgue spectrum
(¢f. [RS]). This theorem has been extended to measure-preserving Z%-actions
in [Ka]. The main tool used in the proofs of these theorems are perfect o-
algebras, The proof of their existence is complicated and it seems that it is
very difficult to extend it to measure-preserving actions of general groups.
It is worth mentioniug that it is still an open question, asked by Thou-
venot, whether Kolmogorov actions of any countable abelian group have a
countable Haar spectrum.,

In this paper we give a simple proof of the above mentioned multidi-
mensional version of the Rokhlin -Sinal theoram by a coucstrnction of two
groups of unitary operators satisfying a commutation relation of the Weyl
type. This mothod allows us also to extend this theorem to the case d = oo,

Our method {9 gimilar to that wsed by Helson in the investigation of
invartant subspaces (ef. [H]) and by Mandrekar and Nadkarni (cf. [MN]) to
sinplify the proof of the generalized . and M. Riesz theoram concerning
the quagi-invariance of analytic meagsures on compach groups.

The idea of our proof may be used without major changes to prove
the following relative version of the result mentioned above. Every ergodic
and relatively Kolmogoroy Z%-action 7' (1 € d < oc) on a Lebesgue space
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