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Convolution algebras with weighted
rearrangement-invariant norm

by

R. K ERMAN (St. Catharines, Ont.) and E. S AWYER (Hamilton, Ont.)

Abstract. Let X be a rearrangement-invariant space of Lebesgue-measurable func-
tions on Rn, such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative,
measurable (weight) function on Rn, define X(w) = {F : Rn → C : ∞ > ‖F‖X(w) :=
‖Fw‖X}. We investigate conditions on such a weight w that guarantee X(w) is an algebra
under the convolution product F∗G defined at x ∈ Rn by (F∗G)(x) =

∫
Rn F (x−y)G(y) dy;

more precisely, when ‖F ∗G‖X(w) ≤ ‖F‖X(w)‖G‖X(w) for all F,G ∈ X(w).

1. Introduction. A weight function on Rn is a Lebesgue-measurable
function w for which 0 < w < ∞ a.e. with respect to Lebesgue measure.
Given 1 ≤ p ≤ ∞, define

Lp(w) =
{

F : Rn → C : ∞ > ‖F‖Lp(w) =
[ ∫

Rn

|F (x)w(x)|p dx
]1/p}

.

When w ≡ 1 we use the abbreviated notations Lp and ‖ ‖p. As usual,
p′ = p/(p− 1).

This paper was motivated by the problem of determining when Lp(w) is
an algebra under the convolution product F ∗G defined at x ∈ Rn by

(F ∗G)(x) =
∫

Rn

F (x− y)G(y) dy ;

more precisely, when

(1) ‖F ∗G‖Lp(w) ≤ ‖F‖Lp(w)‖G‖Lp(w) for F,G ∈ Lp(w) .

The problem was solved in the case p = 1 by Beurling [2] who showed (1)
holds if and only if

(2) w(x + y) ≤ w(x)w(y) for x, y ∈ Rn ,
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or, equivalently, setting w(x) = eΦ(x),

(3) Φ(x + y) ≤ Φ(x) + Φ(y) for x, y ∈ Rn .

We observe that a natural class of weights for which (2) holds is the class
C consisting of those w = eΦ, where Φ(x) = Φ(|x|) is radial and, considered
as a function on R+ = (0,∞), Φ is increasing and concave with Φ(0+) = 0.
Examples of such weights are (1 + |x|)α, α ≥ 0, and e|x|

β

, 0 ≤ β ≤ 1. Here
|x| can be any norm on Rn. However, for n ≥ 2, the methods used below
require the norm |x| = |x1| + . . . + |xn| for x = (x1, . . . , xn) in Rn, which
we adopt from now on. Given x0 ∈ Rn, r > 0, we denote by Br(x0) the set
{x ∈ Rn : |x− x0| < r}.

Another case readily dealt with is p = ∞. The weights w satisfying (1)
are those for which w(w−1 ∗ w−1) ≤ 1; that is,∫

Rn

w(x)
w(x− y)w(y)

dy ≤ 1 for x ∈ Rn .

This, together with (2) written in the form

w(x)
w(x− y)w(y)

≤ 1 for x ∈ Rn ,

suggests, for 1 < p < ∞, the condition

(4)
[ ∫

Rn

(
w(x)

w(x− y)w(y)

)p′

dy

]1/p′

≤ 1 for x ∈ Rn .

Nikol’skĭı [12] showed (4) is sufficient for (1) in the context of sequence
spaces. See also Grabiner [7]. The short proof, which it will be convenient for
us to reproduce here, is a clever application of Hölder’s inequality. Observe
first that, writing F = f/w, G = g/w, (1) becomes∥∥∥∥w

(
f

w
∗ g

w

)∥∥∥∥
p

≤ ‖f‖p‖g‖p .

Now,

(5)
[ ∫

Rn

∣∣∣∣w(
f

w
∗ g

w

)∣∣∣∣p dx

]1/p

≤
[ ∫

Rn

[ ∫
Rn

w(x)
w(x− y)w(y)

|f(x− y)||g(y)| dy

]p

dx

]1/p
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≤
[ ∫

Rn

[ ∫
Rn

(
w(x)

w(x− y)w(y)

)p′

dy

]p−1[ ∫
Rn

|f(x− y)g(y)|p dy
]
dx

]1/p

≤ ess sup
x∈Rn

[ ∫
Rn

(
w(x)

w(x− y)w(y)

)p′

dy

]1/p′

‖ ‖f(x− y)g(y)‖Lp(dy)‖Lp(dx) .

The first factor in the last line of (5) is, by (4), at most 1, while Fubini’s
theorem can be applied to the second factor to yield

(6) ‖ ‖f(x− y)g(y)‖Lp(dy)‖Lp(dx) = ‖f‖p‖g‖p .

This proves (1).
Condition (4) is not, in general, necessary for (1). But, as we will show

in Section 4, it is if w is in a certain class containing C (cf. [10] for a result
similar to this in the case n = 1).

The main purpose of this paper is to investigate when

X(w) = {F : Rn → C : ∞ > ‖F‖X(w) = ‖Fw‖X}
is closed under convolution, where X is a rearrangement-invariant (r.i.)
space of functions on Rn with Köthe dual X ′. See Section 2 for definitions
and some properties of such spaces. For more background we recommend
[1].

Inequalities (5) with X and X ′ in place of Lp and Lp′ , respectively,
suggest the condition

(7) ess sup
x∈Rn

∥∥∥∥ w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

≤ C

is sufficient for

(8) ‖F ∗G‖X(w) ≤ C‖F‖X(w)‖G‖X(w) ,

which would certainly, by Nikol’skĭı’s argument (5), be true if the following
(weaker) analogue of (6) held:

(9) ‖ ‖f(x− y)g(y)‖X(dy)‖X(dx) ≤ C‖f‖X‖g‖X .

(We would like to point out that (8) is equivalent to X(w) being closed
under convolution, see [8], p. 471, and that one can take C = 1 if w is
replaced by w/C.) Now, on the one hand, (7) is no longer sufficient for
(8); in particular, as shown in Section 5, (7) guarantees (8) for the Lorentz
space X = Lpq(R), q ≥ p, if and only if p = q. On the other hand, as shown
in Section 2, (9) does hold for nonnegative f and g in the class R.D. of
radially decreasing functions; that is, f(x) = f(|x|) and g(x) = g(|x|) are
decreasing functions of |x|. This, then, raises the question of characterizing
those weights for which it is enough to test (8) for nonnegative functions in
R.D.
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To this end, we introduce the classM of weights w(x) = w(|x|) for which
w(y) ≤ Cw(z), 0 < y < z, and

B(r, s) =
w(r + s)
w(r)w(s)

(r, s > 0)

is essentially decreasing in each variable separately, i.e. B(r1, s)≤CB(r2, s),
whenever s > 0 and r1 ≥ r2 > 0. (This class contains C, since for w = eΦ,
Φ concave on R+, ∂B/∂r = (Φ′(r + s)− Φ′(r))B(r, s) ≤ 0.) We prove that
given w ∈ M there holds the following weighted analogue of an inequality
of F. Riesz [13] and S. L. Sobolev [14]:

(10)
∫

Rn

(
f

w
∗ g

w

)
hw ≤ C

∫
Rn

(
f+

w
∗ g+

w

)
h++w for f, g, h ≥ 0 .

Here, for example, h+ is the (a.e.) unique nonnegative function in R.D. on
Rn satisfying

|{x ∈ Rn : h+(|x|) > λ}| = |{x ∈ Rn : |h(x)| > λ}|

for all λ > 0, and h++ is the (larger) nonnegative R.D. function on Rn given
by

h++(x) = h++(|x|) = (Cn|x|)−n
∫

|y|≤|x|

h+(|y|) dy ,

where Cn
n = |B1(0)|.

In sum, we are able to prove the following

Theorem 1. Let w ∈M and suppose X is an r.i. space of functions on
Rn for which the mapping f → f++ is bounded on X ′. Then a necessary
and sufficient condition for X(w) to be closed under convolution is

(11)
∥∥∥∥ w(x)

w(x− y)w(y)

∥∥∥∥
X′(dy)

≤ C for x ∈ Rn .

The requirement that f → f++ be bounded on X ′ eliminates those
r.i. spaces X near L∞ (see Lemma 6 below). To include such spaces in our
theory requires a stronger weighted analogue of the Riesz inequality, namely
(10) with h+ in place of h++; that is,

(12)
∫

Rn

(
f

w
∗ g

w

)
hw ≤ C

∫
Rn

(
f+

w
∗ g+

w

)
h+w for f, g, h ≥ 0 .

We show that for w ∈M∞, where

M∞ =
{

w ∈M :
w(x + y)
w(x)w(y)

∈ L∞(Rn × Rn)
}

,
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(12) holds if and only if w satisfies the additional condition

(13)
r/2∫
0

w(r)
w(r − s)w(s)

sn−1 ds ≤ C
r∫

0

sn−1

w(s)2
ds for r > 0 .

(We note in passing that w(x) = e|x|
α

, x ∈ Rn, belongs to C ⊂ M∞ for
0 ≤ α ≤ 1, but satisfies (13) if and only if α = 1. Indeed, if α = 1 the left
side is ≈ rn, while the right side is O(1).) We can now obtain the following
result having no restriction on X.

Theorem 2. Let w(x) = w(|x|) belong to M∞ and satisfy (13). Sup-
pose X is an r.i. space of functions on Rn. Then (11) is a necessary and
sufficient condition for X(w) to be closed under convolution.

The sufficiency of (11) is related to (10) and (12) in Section 2 and proofs
of the latter are given in the following section. The necessity of (11) is the
subject of Section 4 and, as mentioned above, the question of the general
sufficiency of (11) is considered for the Lpq spaces, q ≥ p (when n = 1), in
Section 5.

The referee has pointed out that it should be possible to extend some of
our results to the setting of locally compact Abelian groups.

2. Rearrangement-invariant function spaces. Let (Ω,Σ, µ) be a
complete σ-finite measure space. A Banach lattice X = X(Ω) is a Banach
space of (equivalence classes of µ-a.e. equal) complex-valued measurable
functions on Ω such that if |g| ≤ |f | µ-a.e., where f ∈ X and g is measurable,
then g ∈ X and ‖g‖X ≤ ‖f‖X . If, in addition, X has the Fatou property :

0 ≤ fn ↑ f µ-a.e., sup
n
‖fn‖X < ∞ ⇒ f ∈ X and ‖f‖X = lim

n→∞
‖fn‖X

together with the property that whenever E ∈ Σ with µ(E) < ∞ we have
χE ∈ X and

∫
Ω
|f |χE dµ < ∞ for all f ∈ X, then X is said to be a Banach

function space. Such a space is a saturated Banach lattice in the sense that
every E ∈ Σ with µ(E) > 0 has a measurable subset F of finite positive
measure for which χF ∈ X.

The Banach function space X = X(Ω) is called a rearrangement-invar-
iant function space (r.i. space) if f ∈ X implies g ∈ X and ‖g‖X = ‖f‖X ,
whenever g is equimeasurable with f , that is,

µf (t) := µ({x ∈ Ω : |f(x)| > t})
= µ({x ∈ Ω : |g(x)| > t}) =: µg(t) for t > 0 .

Important examples of r.i. spaces are the Lorentz spaces Lpq(Ω), 1 < p < ∞,
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1 ≤ q ≤ ∞, with norms given by

‖f‖pq =
{
{
∫∞
0

(sµf (s)1/p)qs−1 ds}1/q for q < ∞,
sups>0 sµf (s)1/p for q = ∞.

In case p = q, Lpq(Ω) = Lp(Ω), the usual Lebesgue space, and we shorten
‖f‖pp to ‖f‖p. The smallest of all r.i. spaces is the intersection, L1 ∩ L∞,
of L1(Ω) and L∞(Ω), with ‖f‖L1∩L∞ = max{‖f‖1, ‖f‖∞}.

The Köthe dual or associate space X ′ = X ′(Ω) of a Banach lattice
X = X(Ω) consists of those complex-valued measurable functions f on Ω
such that fg ∈ L1(Ω) for all g ∈ X. We define

‖f‖X′ = sup
{∣∣∣ ∫

Ω

fg dµ
∣∣∣ : ‖g‖X ≤ 1

}
.

This is a norm provided X has the Fatou property. In this case, X ′ is a
Banach lattice which is both saturated and has the Fatou property; more-
over, X ′′ = X isometrically, so that

(14) ‖f‖X = sup
{∣∣∣ ∫

Ω

fg dµ
∣∣∣ : ‖g‖X′ ≤ 1

}
.

The generalized Hölder inequality asserts the consequence of (14) that when
f ∈ X, g ∈ X ′, the function fg ∈ L1(Ω) and ‖fg‖1 ≤ ‖f‖X‖g‖X′ . Theorem
5.2 of [1] shows that for X an r.i. space on Rn,

(15) ‖χBr(0)‖X‖χBr(0)‖X′ = Cnrn for r > 0 .

Given Banach lattices X = X(Ω), Y = Y (Ω) and 0 < θ < 1, the
Calderón product Z = X1−θY θ consists of all measurable h on Ω such that
|h| ≤ λf1−θgθ µ-a.e. for some λ > 0, 0 ≤ f ∈ X, 0 ≤ g ∈ Y , ‖f‖X ,
‖g‖Y ≤ 1. In this case, ‖h‖Z = inf λ. It is shown in #33.5 of [4] that Z is
a Banach lattice. Further, one readily proves that Z is saturated whenever
X and Y are and that it has the Fatou property whenever X and Y do.

Theorem 3. Let Xi = Xi(Ω), Yi = Yi(Ω), i = 1, 2, be Banach lattices
which have the Fatou property and let Xθ = X1−θ

1 Xθ
2 , Yθ = Y 1−θ

1 Y θ
2 for

some fixed θ, 0 < θ < 1. Suppose T is a linear operator which satisfies

0 ≤ gn ↑ g ∈ Xi µ-a.e. ⇒ 0 ≤ Tgn ↑ Tg ∈ Yi µ-a.e.

with
‖Tfi‖Yi

≤ Mi‖fi‖Xi
for fi ∈ Xi, i = 1, 2.

Then

‖Tf‖Yθ
≤ Mθ‖f‖Xθ

for f ∈ Xθ, where Mθ ≤ M1−θ
1 Mθ

2 .

P r o o f. Consider f ∈ Xθ with

|f | ≤ λg1−θhθ µ-a.e., λ > 0; g, h ≥ 0; ‖g‖X1 , ‖h‖X2 ≤ 1 .
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Then, by the abstract Hölder inequality ([9], p. 143)

|Tf | ≤ T |f | ≤ λT (g1−θhθ) ≤ λ[Tg]1−θ[Th]θ

≤ λM1−θ
1 Mθ

2

(
Tg

M1

)1−θ(
Th

M2

)θ

.

Hence, ‖Th‖Yθ
≤ λM1−θ

1 Mθ
2 and we are done.

Theorem 4 (Lozanovskĭı [11]). Let X = X(Ω) be a Banach lattice with
Köthe dual X ′ = X ′(Ω). Suppose X (and hence X ′) is saturated and has the
Fatou property. Set Z = X(Ω)1/2X ′(Ω)1/2. Then Z = L2(Ω) isometrically.

P r o o f. We begin by observing that Z is a saturated Banach lattice
which has the Fatou property.

Given f ∈ Z, let λ > 0 be such that |f | ≤ λg1/2h1/2 for 0 ≤ g ∈ X,
0 ≤ h ∈ X ′, with ‖g‖X , ‖h‖X′ ≤ 1. Then

‖f‖2 =
( ∫

Ω

|f |2dµ
)1/2

≤ λ
( ∫

Ω

gh dµ
)1/2

≤ λ(‖g‖X‖h‖X′)1/2 ≤ λ ,

and so ‖f‖2 ≤ ‖f‖Z . Here, we have used Hölder’s inequality.
Suppose, next, that f ∈ L2(Ω) and ‖f‖2 = 1. We have |f | =

√
|f |2,

where |f |2 ∈ L1(Ω) and ‖|f |2‖1 = 1. By Theorem 1 in [6], |f |2 = gh, where
‖g‖X‖h‖X′ = 1; indeed, without loss of generality, ‖g‖X = ‖h‖X′ = 1.
It follows that ‖f‖Z ≤ 1 = ‖f‖2. The same is then clearly true of any
f ∈ L2(Ω). This completes the proof.

Given a Banach lattice X = X(Ω) and measurable w : Ω → R+, define

X(w) = {F : Ω → C : ∞ > ‖F‖X(w) = ‖Fw‖X} .

It is easily seen X(w) is a Banach lattice which is saturated whenever X is
and has the Fatou property whenever X does; further, X(w)′ = X ′(w−1).
We thus have

Corollary 5. Let X = X(Ω) be a Banach lattice with Köthe dual
X ′ = X ′(Ω) and assume X (and hence X ′) is saturated and has the Fatou
property. Suppose w : Ω → R+ is measurable. Then X(w)1/2X ′(w−1)1/2 =
L2(Ω) isometrically.

We now record two additional results for r.i. spaces, the first of which
characterizes one of the hypotheses in Theorem 1.

Lemma 6 (D. Boyd [3]). Suppose X = X(Rn) is an r.i. space of func-
tions on Rn. Then the mapping f → f++ is bounded on X if and only if
lims→∞ h(s) = 0, where h(s) is the (finite) operator norm of the dilation
operator (Esf)(x) := f(sx) (s > 0, x ∈ Rn) from X to itself.
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Lemma 7. Suppose X = X(Rn) is an r.i. space of functions on Rn.
Then there is a positive constant C such that for all 0 ≤ f, g ∈ R.D.,

(16) ‖ ‖f(x− y)g(y)‖X(dy)‖X(dx) ≤ C‖f‖X‖g‖X .

P r o o f. Given 0 ≤ f, g ∈ R.D. and x, y ∈ Rn, we have

f(x− y)g(y) = f(|x− y|)g(|y|) ≤ f(|x|/2)g(|y|) + f(|x− y|)g(|x|/2) ,

since f(|x − y|) ≤ f(|x|/2) if |x − y| ≥ |x|/2 while g(|y|) ≤ g(|x|/2) if
|y| ≥ |x|/2 (one of these cases must hold as |x| ≤ |x − y| + |y|). Thus, the
left side of (16) is at most

‖ ‖f(|x|/2)g(|y|) + f(|x− y|)g(|x|/2)‖X(dy)‖X(dx)

≤ ‖f(|x|/2)‖X‖g‖X + ‖f‖X‖g(|x|/2)‖X ≤ 2h(1/2)‖f‖X‖g‖X ,

where we have used the fact that X is translation-invariant.

Finally, we show how the sufficiency of (11) for X(w) to be closed under
convolution reduces to (10) (in Theorem 1) and (12) (in Theorem 2). Indeed,
assuming first the hypotheses of Theorem 1 we have, by (15), with F =
f/w ≥ 0, G = g/w ≥ 0,

(17) ‖F ∗G‖X(w) = sup
‖h‖X′≤1

h≥0

∫
Rn

(
f

w
∗ g

w

)
hw

≤ sup
‖h‖X′≤1

h≥0

∫
Rn

(
f+

w
∗ g+

w

)
h++w given (10)

≤ C sup
‖h‖X′≤1

h≥0

∥∥∥∥(
f+

w
∗ g+

w

)
w

∥∥∥∥
X

‖h++‖X′ by Hölder’s inequality

≤ C

∥∥∥∥(
f+

w
∗ g+

w

)
w

∥∥∥∥
X

since h → h++ is bounded on X ′

≤ C ess sup
x∈Rn

∥∥∥∥ w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

‖ ‖f+(x− y)g+(y)‖X(dy)‖X(dx)

as in (5)

≤ C‖f+‖X‖g+‖X = C‖f‖X‖g‖X = ‖F‖X(w)‖G‖X(w) ,

since, by Lemma 7, (9) holds for the nonnegative R.D. functions f+, g+.
Assuming the hypotheses of Theorem 2 instead, we again obtain (17),

but this time with ‖h+‖X′ = ‖h‖X′ in place of ‖h++‖X′ (by (12)) and since
‖h‖X′ ≤ 1, no assumption on X ′ is needed now.
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3. The weighted Riesz–Sobolev inequalities. As shown in the
last section, the sufficiency of (11) for X(w) to be closed under convolution
depends, under varying assumptions on X and w, on the following two
theorems:

Theorem 8. Suppose w ∈M. Then

(18)
∫

Rn

(
f

w
∗ g

w

)
hw ≤ C

∫
Rn

(
f+

w
∗ g+

w

)
h++w for f, g, h ≥ 0 .

Theorem 9. Suppose w ∈M∞. Then

(19)
∫

Rn

(
f

w
∗ g

w

)
hw ≤ C

∫
Rn

(
f+

w
∗ g+

w

)
h+w for f, g, h ≥ 0

if and only if w satisfies (13).

The proofs of Theorems 8 and 9 require certain monotonicity properties
of w ∈M. These are a consequence of the following general result.

Lemma 10. Suppose Φ : Rn → Rn satisfies Φ(x) = Φ(|x|), x ∈ Rn. If
there exists C > 0 such that

(20) Φ(x) ≤ CΦ(z) for |x| ≥ |z| ,
then
(21)

∫
|x|≥r

χE(x)Φ(x) dx ≤ C|E|min
{

Φ(r), |F |−1
∫
F

Φ(y) dy
}

for all E ⊂ Rn, r > 0 and F ⊂ Br(0). In particular ,

(22)
∫
E

Φ(x) dx ≤ (C2 +1)
∫

|x|≤rn

Φ(x) dx for E ⊂ Rn, rn = C−1
n |E|1/n .

If there exists C > 0 such that

(23) Φ(x) ≤ C(Cn|x|)−n
∫

|y|≤|x|

Φ(y) dy for x ∈ Rn ,

then
(24)

∫
|x|≤r

χE(x)Φ(x) dx ≤ (C + 1)
∫

|x|≤r

χ++
E (x)Φ(x) dx ,

for all E ⊂ Rn and r > 0.

P r o o f. We obtain (21) from (20) since Φ(x) ≤ CΦ(r) and Φ(x) ≤ CΦ(y)
whenever |x| > r and |y| < r. Then (22) follows on writing∫

E

Φ(x) dx =
∫

|x|<rn

χE(x)Φ(x) dx +
∫

|x|≥rn

χE(x)Φ(x) dx

and applying (21) with F = Brn(0).
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If r ≤ rn, then (24) is trivial, so we suppose r > rn. We have∫
|x|≤r

χE(x)Φ(x) dx

≤
∫

|x|≤rn

Φ(x) dx + C
∫

rn≤|x|≤r

χE(x)
{

(Cn|x|)−n
∫

|z|≤|x|

Φ(z) dz
}

dx

≤
∫

|x|≤rn

Φ(x) dx + C
∫

|z|≤r

Φ(z)
{ r∫

max(|z|,rn)

χE(x)(Cn|x|)−n dx
}

dz

≤
∫

|x|≤rn

Φ(x) dx + C
∫

|z|≤r

Φ(z)
|E|

max{(Cn|x|)n, |E|}
dz

≤ (C + 1)
∫

|x|≤r

χ++
E (x)Φ(x) dx .

Lemma 11. Suppose w ∈M. Then

(i) B(|x|, ·) and B(·, |x|) satisfy (20) with C > 0 independent of x ∈ Rn;

(ii) W (x) =
|x|∫
0

w(|x|)
w(|x| − s)w(s)

sn−1 ds satisfies (23).

P r o o f. (i) is obvious. To prove (ii) we first show that if 3|x|/4 ≤ |y| ≤
|x|, then W (x) ≤ CW (y). Now,

W (x) =
( |x|/2∫

0

+
|x|∫

|x|/2

) w(|x|)
w(|x| − s)w(s)

sn−1 ds = I + II .

Since w ∈M, we have

(25) I ≤
|x|/2∫
0

w(|y|)
w(|y| − s)w(s)

sn−1 ds ≤ W (|y|) ,

and

II ≤
|x|∫

|x|/2

w(|y|)
w(|x| − s)w(s + |y| − |x|)

sn−1 ds(26)

≤
|y|∫

|y|−|x|/2

w(|y|)
w(|y| − t)w(t)

(t + |x| − |y|)n−1dt ≤ CnW (|y|) ,

since t+ |x|−|y| ≤ Ct for |y|−|x|/2 ≤ t|y| and 3|x|/4 ≤ |y| ≤ |x|. From (25)
and (26) we obtain W (|x|) ≤ CnW (|y|) for 3|x|/4 ≤ |y| ≤ |x|, as claimed.



Convolution algebras 113

Iterating this inequality yields the doubling condition

W (x) ≤ C

(
|x|
|y|

)β

W (|y|) for 0 < |y| ≤ |x| ,

where C and β are positive constants depending only on the dimension n.
We now obtain that W satisfies (23) easily from

W (x) = Cβ(Cn|x|)−n
∫

|y|≤|x|

W (x)
|y|β

|x|β
dy

≤ Cβ(Cn|x|)−n
∫

|y|≤|x|

W (|y|) dy .

Let Rn
+ = {(x1, . . . , xn) : x1 ≥ 0, . . . , xn ≥ 0}. Define the set E+ by

χE+ = (χE)+; this will be a ball (recall |x| = |x1|+ . . .+ |xn|) centred at the
origin with, say, radius rE+ . Lastly, denote by Ẽ the ball concentric with
E+ and with radius r

Ẽ
= 1

2rE+ .

P r o o f o f T h e o r e m s 8 a n d 9. To begin, observe that it is enough
to prove (18) and (19) for nonnegative simple functions f, g and h which
are symmetric with respect to all 2n-orthotants of Rn. Furthermore, we
claim that one need only consider f = χE , g = χF , h = χG, where E,
F and G are sets symmetric with respect to all 2n-orthotants of Rn. For,
suppose the latter fact to be true. Then the simple functions f, g and h
referred to above can be written as finite sums of the form f =

∑
i fiχEi ,

g =
∑

j gjχFj , h =
∑

k hkχGk
, where the sets Ei, Fj and Gk are symmetric,

with Ei ⊃ Ei+1, Fj ⊃ Fj+1, Gk ⊃ Gk+1 and the constants fi, gj and hk are
nonnegative. Hence, we get (for example) (18) as follows:∫
Rn

(
f

w
∗ g

w

)
hw =

∑
i,j,k

figjhk

∫
Rn

(
χEi

w
∗

χFj

w

)
χGk

w

≤ C
∑
i,j,k

figjhk

∫
Rn

(χE+
i

w
∗

χF+
j

w

)
χ++

Gk
w = C

∫
Rn

(
f+

w
∗ g+

w

)
h++w .

Summarizing, we have shown that in order to prove (18) and (19), it is
enough to establish, respectively,

(27)
∫ ∫
E×F

χG(x + y)
w(x + y)
w(x)w(y)

dx dy

≤ C
∫ ∫

E+×F+

χ++
G (x + y)

w(x + y)
w(x)w(y)

dx dy ,



114 R. Kerman and E. Sawyer

for symmetric sets E, F , G ⊂ Rn, and

(28)
∫ ∫
E×F

χG(x + y)
w(x + y)
w(x)w(y)

dx dy

≤ C
∫ ∫

E+×F+

χ+
G(x + y)

w(x + y)
w(x)w(y)

dx dy ,

for symmetric sets E, F , G ⊂ Rn.
To prove (27) and (28) we distinguish three cases, in all of which it may

be assumed without loss of generality that |E| ≤ |F |.

C a s e 1: |E| ≤ |F | ≤ |G|. In this case we actually have the stronger
inequality (28) for w ∈ M without any additional assumptions. Indeed,
since E and F are symmetric and w(x + y) ≤ Cw(|x|+ |y|), the left side of
(28) is at most

C
∫
F

∫
E

B(|x|, |y|) dx dy ≤ C
∫
F

∫
Ẽ

B(|x|, |y|) dx dy

by Lemma 11(i) and (21) of Lemma 10, and thus at most

≤ C
∫
F̃

∫
Ẽ

B(|x|, |y|) dx dy(29)

= 2nC
∫ ∫

Rn
+×Rn

+

χ
Ẽ

(x)χ
Ẽ

(y)B(|x|, |y|) dx dy

upon reversing the order of integration and applying (21) again. Since Ẽ +
F̃ ⊂ G+ and |x + y| = |x|+ |y| for x, y ∈ Rn

+, the last integral in (29) is at
most

C
∫ ∫

Rn
+×Rn

+

χ+
E(x)χ+

F (y)χ+
G(x + y)

w(x + y)
w(x)w(y)

dx dy

≤ C
∫

Rn

(
χ+

E

w
∗

χ+
F

w

)
χ+

Gw .

C a s e 2: |E| ≤ |G| ≤ |F |. Here again there holds the stronger inequality
(28) assuming only w ∈M. We have∫

Rn

(
χE

w
∗ χF

w

)
χGw ≤

∫ ∫
E×Rn

χG(x + y)B(|x|, |y|) dx dy(30)

≤ C
∫ ∫

E∩Rn
+×Rn

+

χG(x, y)B(|x|, |y|) dy dx ,
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where χG(x, y) =
∑

χG(x1 ± y1, . . . , xn ± yn) for x, y ∈ Rn
+, the sum being

extended over all choices of ±. The last term in (30) equals

C
∫

E∩Rn
+

∫
Gx

B(|x|, |y|) dy dx where χGx
(y) = χG(x, y), x, y ∈ Rn

+ .

Arguing as in case 1 and observing that |Gx| ≤ 2n|G| for all x ∈ Rn
+, we

obtain the upper bound

C
∫ ∫

Rn
+×Rn

+

χ
Ẽ

(x)χ
G̃

(y)
w(x + y)
w(x)w(y)

dx dy

≤ C
∫ ∫

Rn
+×Rn

+

χ
Ẽ

(x)χ
G̃

(y)χG+(x + y)
w(x + y)
w(x)w(y)

dx dy since Ẽ + G̃ ⊂ G+

≤ C
∫

Rn

(
χ+

E

w
∗

χ+
F

w

)
χ+

Gw .

C a s e 3: |G| ≤ |E| ≤ |F |. In this case we can only obtain (27) for
w ∈ M. We then prove (28) holds for w ∈ M∞ if and only if (13) does.
The left side of (27) is at most

(31)
( ∫ ∫

Ẽ×Ẽ

+
∫ ∫

(Ẽ×Ẽ)c

)
χG(x + y)

w(x + y)
w(x)w(y)

dx dy = I + II .

Let rk = xk + yk, sk = yk, r =
∑

k |rk| and s =
∑

k |sk|. Since |r − s| ≤∑
k |rk − sk| = |x|, we have w(|r − s|) ≤ Cw(|x|), and we may bound I by

(32)
∫

E+

χG(r1, . . . , rn)
rẼ∫
0

w(r)
w(|r − s|)w(s)

sn−1 ds dr1 . . . drn .

We now show that the inner integral in (32) satisfies

(33)
rẼ∫
0

w(r)
w(|r − s|)w(s)

sn−1 ds ≤ C[W (r) + W (r
Ẽ

)] .

Indeed, when r
Ẽ
≤ r ≤ rE+ , the left side of (33) is at most CW (r

Ẽ
)

since w ∈ M; while, for 0 ≤ r ≤ r
Ẽ

, we have, letting r0 = min{r, r
Ẽ
− r}

and observing that w(r)/w(r + s) ≤ C and w(r
Ẽ

)/w(r
Ẽ
− s) ≥ c,

rẼ∫
0

w(r)
w(|r − s|)w(s)

sn−1 ds = W (r) +
rẼ−r∫
0

w(r)
w(r + s)w(s)

(r + s)n−1 ds
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and
rẼ−r∫
0

w(r)
w(r + s)w(s)

(r + s)n−1 ds

≤ C
[
rn−1

r0∫
0

B(r
Ẽ
− s, s) ds +

rẼ∫
r

B(r
Ẽ
− s, s)sn−1 ds

]

≤ C

rẼ∫
0

B(r
Ẽ
− s, s)sn−1 ds = CW (r

Ẽ
) .

Thus,

(34) I ≤ C
∫

E+

χG(r1, . . . , rn)W (r) dr1 . . . drn + C|G|W (r
Ẽ

) .

Both terms on the right side of (34) are no larger than

C
∫

E+

χ++
G (r)W (r) dr1 . . . drn ;

this is true for the first term by Lemma 11(ii) and (24) of Lemma 10, while
for the second term we have, by Lemma 11(ii) again,

|G|W (r
Ẽ

) ≤ C
|G|

(r
Ẽ

)n

∫
Ẽ

W (r) dr1 . . . drn ≤ C
∫

E+

χ++
G (r)W (r) dr1 . . . drn .

Since∫ ∫
E×F

χ++
G (x + y)

w(x + y)
w(x)w(y)

dx dy

≥
∫ ∫

(E+∩Rn
+)×(E+∩Rn

+)

χ++
G (|x|+ |y|)B(|x|, |y|) dx dy

≥ c
∫

E+

χ++
G (r)W (r) dr1 . . . drn ,

we get I dominated by the right side of (27).
Using the notations G and Gx as in case 2 above, term II in (31) is seen

to be at most

(35)
( ∫ ∫

Ẽ×Ẽc

+
∫ ∫

Ẽc×Ẽ

+
∫ ∫

Ẽc×Ẽc

)
χGx(y)B(|x|, |y|) dx dy = II 1 + II 2 + II 3 .
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Now,

II 1 =
∫
Ẽ

{ ∫
Ẽc

χGx
(y)B(|x|, |y|) dy

}
dx(36)

≤ C
∫

E+

{
|Gx|
|E|
∫

E+

B(|x|, |y|) dy

}
dx by (21)

≤ C
∫ ∫

E+×E+

|G|
|E|

B(|x|, |y|) dx dy since |Gx| ≤ 2n|G| .

Similarly,

(37) II 2 ≤ C
∫ ∫

E+×E+

|G|
|E|

B(|x|, |y|) dx dy .

Again,

II 3 ≤ C|E||G|B(r
Ẽ

, r
Ẽ

) by Lemma 11(i)(38)

≤ C
∫ ∫

E+×E+

|G|
|E|

B(|x|, |y|) dx dy .

But the common right side of (36), (37) and (38) is no bigger than∫ ∫
E+×E+

χ++
G (x + y)B(x, y) dx dy ,

since χ++
G (2rE+) = C|G|/|E|, which is dominated, in turn, by the right side

of (18).
Next, we show that when w ∈ M∞, (28) and (13) are equivalent. Sup-

pose (28) holds. Taking E = F = Br(0) and G = Br+δ(0) − Br−δ(0),
0 < δ ≤ r/2, in (28) yields

(39)
∫

|x|<r

∫
|y|<r

χG(x + y)
w(x + y)
w(x)w(y)

dy dx

≤ C
∫

|x|<r

∫
|y|<r

χ+
G(x + y)

w(x + y)
w(x)w(y)

dy dx .

On the left side of (39) restrict attention to x and y in the first orthotant
and make the substitution tk = xk + yk, sk = xk, t =

∑
k tk, s =

∑
k sk to

get the lower bound
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C
r−δ∫
0

sn−1
r+δ∫

r−δ

B(s, t− s)tn−1 dt ds

≥ c
r−δ∫
0

sn−1B(s, r + δ − s)
r+δ∫

r−δ

tn−1 dt ds

≥ cδrn−1
r−δ∫
0

w(r + δ)
w(r + δ − s)w(s)

sn−1 ds .

As for the right side of (39), with εn = cδrn−1, it is dominated by

C
∫

|x|≤r

∫
Bε(−x)

w(ε)
w(x)w(y)

dy dx < ∞ ,

since w ∈M∞. We conclude

εn
r/2∫
0

w(r + δ)
w(r + δ − s)w(s)

sn−1 ds

≤ Cw(ε)
r∫

0

sn−1 ds

w(s)

∫
Bε(−x)

dy

w(y)
< ∞ .

Dividing by εn and letting ε → 0+, we obtain (13).
Now suppose that w ∈M∞ and that (13) holds. With a view to bound-

ing I in (31) by the right side of (28) we claim that, given (13),

(40)
rẼ∫
0

w(r)
w(|r − s|)w(s)

sn−1 ds ≤ C

rE+∫
0

sn−1 ds

w(s)2
, 0 ≤ r ≤ rE+ .

For r
Ẽ
≤ r ≤ rE+ , the left side of (40) is at most

rẼ∫
0

w(r
Ẽ

)
w(r

Ẽ
− s)w(s)

sn−1 ds since w ∈M

≤ C

rE+∫
0

sn−1 ds

w(s)2
by (13).

When 0 ≤ r ≤ r
Ẽ

,

r∫
0

w(r)
w(r − s)w(s)

sn−1 ds ≤ C

rE+∫
0

sn−1

w(s)2
ds
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by (13), while, arguing as for (33),
rẼ∫
r

w(r)
w(s− r)w(s)

sn−1ds =
rẼ−r∫
0

w(r)
w(r + s)w(s)

(r + s)n−1 ds

≤ C

rẼ∫
0

w(r
Ẽ

)
w(r

Ẽ
− s)w(s)

sn−1 ds ≤ C

rE+∫
0

sn−1

w(s)2
ds ,

by (13). This proves (40), so we have

(41) I ≤ C
∫

E+

χG(r1, . . . , rn) dr1 . . . drn

rE+∫
0

sn−1

w(s)2
ds ≤ C|G|

∫
E+

dx

w(x)2
.

We now show (41) holds with I replaced by II . By symmetry, II 1 in
(35) satisfies

II 1 ≤ C
∫

Ẽ∩Rn
+

{ ∫
(E+∩Rn

+)c

χGx(y)B(|x|, |y|) dy
}

dx

≤ C
∫

Ẽ∩Rn
+

|G|B(|x|, r
Ẽ
− |x|) dx = C|G|

rẼ∫
0

B(r
Ẽ
− s, s)sn−1 ds

≤ C|G|
rE+∫
0

sn−1

w(s)2
ds ,

by (13). The term II 2 in (35) is dealt with similarly. Again,

II 3 ≤ C|E||G|B(r
Ẽ

, r
Ẽ

)

≤ C|G|
rẼ∫
0

B(r
Ẽ
− s, s)sn−1 ds ≤ C|G|

rE+∫
0

sn−1

w(s)2
ds

by (13). Since w ∈M∞,

|G|
w(x)2

≤ C
∫

−G+∩Rn
+

w(−y)
w(x− y)w(x)

dy ,

whence, by (41) (for II as well as for I), the left side of (28) is at most∫
E+∩Rn

+

∫
−G+∩Rn

+

w(−y)
w(x− y)w(x)

dy dx ≤ C
∫

E+∩Rn
+

∫
(−G+∩Rn

+)−x

w(x + y)
w(x)w(y)

dy dx

≤ C
∫ ∫

E+×E+

χG+(x + y)
w(x + y)
w(x)w(y)

dy dx ,

which completes the proof.
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4. Necessary conditions. In this section we prove the necessity half of
Theorems 1 and 2. In fact, we show that, given w ∈M, X(w) closed under
convolution implies (11). But first we prove simpler necessary conditions
which are valid in a wider context than that of Theorem 1 or 2.

Lemma 12. Suppose w is even on Rn, i.e. w(x) = w(−x) for all x ∈ Rn.
If X = X(Rn) is an r.i. space and X(w) is closed under convolution, then
X(w) ⊂ L1(Rn) or , equivalently , w−1 ∈ X ′. Moreover , if C > 0 is as in
(8), then

‖f‖L1 ≤ C‖f‖X(w) for f ∈ X(w) .

P r o o f. Fix f ∈ X(w) with ‖f‖X(w) = 1 and define T : X(w) → X(w)
by (Tg)(x) = (|f | ∗g)(x), x ∈ Rn. By (8), T is bounded on X(w) with norm
at most C and, by duality, T ′ is bounded on X(w)′ = X ′(w−1) with norm
at most C. But, since w is even, T ′ = T , so, by Theorem 3 and Corollary
5, |f | ∗ L2 ⊂ L2 with norm at most C and it follows that∫

Rn

||f |∧(ζ)|2|g(ζ)|2 dζ =
∫

Rn

|(|f | ∗ ĝ)(x)|2 dx

≤ C
∫

Rn

|ĝ(x)|2 dx = C
∫

Rn

|g(ζ)|2 dζ

for all g ∈ L2. Thus ||f |∧(ζ)| is bounded by C and, in particular,

‖f‖1 =
∫

Rn

|f | = |f |∧(0) ≤ C = C‖f‖X(w) .

Lemma 13. Suppose w is radial , finite a.e. and satisfies

(42) B(r1, s) ≤ CB(r2, s) for s > 0, r1 ≥ r2 > 0 ,

yet fails to satisfy

(43) w(y) ≤ Cw(z) for 0 < y < z

for the same constant C; that is,

(44) w(y) > Cw(z) for some 0 < y < z .

Then (w−1)+(x) = ∞ for all x ∈ Rn.

P r o o f. w radial and finite a.e. implies there exists M > 0 and a set
E ⊂ {x ∈ Rn

+ : y ≤ |x| ≤ z}, |E| > 0, with w(x) ≤ M for all x with |x| ∈ E.
We will be done if we can show that for each k = 1, 2, . . . ,

w(x) ≤ Mrk for |x| ∈ E + k(z − y) ,

where r = Cw(z)/w(y) < 1 by (44). But, for |x| ∈ E + k(z − y), say
|x| = u + k(z − y), u ∈ E, we have
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w(x) = w(|x|) = w(u)
k−1∏
j=0

w(u + (j + 1)(z − y))
w(u + j(z − y))

≤ M
k−1∏
j=0

C
w(z)
w(y)

by (42)

≤ Mrk .

Corollary 14. If w is radial and satisfies (42) and X(w) is closed
under convolution, then (43) holds.

P r o o f. By Lemma 12, w−1 ∈ X ′, which means (w−1)+(x) < ∞ for all
0 6= x ∈ Rn. We suppose now that w satisfies (42), X = X(Rn) is an r.i.
space and X(w) is closed under convolution (i.e. (8) holds) and prove that
(11) holds. Begin by fixing r > 0. For g(x) = g(|x|) ≥ 0 we have

(45)
∫

|x|<r

((χBr(0)w
−1) ∗ (gw−1))(x)w(x) dx

≤ ‖(χBr(0)w
−1) ∗ (gw−1)‖X(w)‖χBr(0)‖X′

≤ C‖gw−1‖X(w)‖χBr(0)w
−1‖X(w)‖χBr(0)‖X′ by (8)

≤ C‖χBr(0)‖X‖χBr(0)‖X′‖g‖X ≤ Crn‖g‖X

by (15). Now, the left side of (45) is

(46)
∫

|x|<r

∫
|y|<r

w(x)
w(x− y)w(y)

g(y) dy dx

≥ crn
∫

|y|<r/2

g(y)
1

rn − |y|n
∫

|y|≤|x|≤r

w(x)
w(x− y)w(y)

dx dy

≥ crn
∫

|y|<r/2
y∈Rn

+

g(y)
1

rn − |y|n
∫

|y|≤|x|≤r
x−y∈Rn

+

w(x)
w(x− y)w(y)

dx dy

≥ crn
∫

|y|<r/2
y∈Rn

+

g(y)
1

rn − |y|n
r∫

|y|

B(s− |y|, |y|)sn−1 ds dy

≥ crn
∫

|y|<r/2
y∈Rn

+

g(y)B(r − |y|, |y|) dy since w ∈M

≥ crn
∫

Rn

g(y)χBr/2(0)(y)B(r − |y|, |y|) dy .
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Combining (45) and (46) yields∫
Rn

χBr/2(0)(y)B(r − |y|, |y|)g(y) dy ≤ C‖g‖X ,

which, by duality, implies

‖χBr/2(0)(y)B(r − |y|, |y|)‖X′(dy) ≤ C .

Thus, given x ∈ Rn, we have, by (43),∥∥∥∥χB|x|/2(0)(y)
w(x)

w(x− y)w(y)

∥∥∥∥
X′(dy)

≤ C‖χB|x|/2(0)(y)B(|x| − |y|, |y|)‖X′(dy) ≤ C .

From (43) and the rearrangement-invariance of X ′ we further obtain for all
z ∈ Rn, |z| = |x|,∥∥∥∥χB|x|/2(z)(y)

w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

≤
∥∥∥∥χB|x|/2(x)(y)

w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

≤
∥∥∥∥χB|x|/2(0)(y)

w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

.

As B|x|(0) is covered by B|x|/2(0), together with a finite number (indepen-
dent of x) of B|x|/2(z), |z| = |x|, we conclude

(47)
∥∥∥∥χB|x|(0)(y)

w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

≤ C .

By (43) again,

(48)
∥∥∥∥χRn−B|x|(0)(y)

w(x)
w(x− y)w(y)

∥∥∥∥
X′(dy)

≤ C

∥∥∥∥χRn−B|x|(0)(y)
1

w(x− y)

∥∥∥∥
X′(dy)

≤ C‖w−1‖X′ ≤ C ,

in view of Lemma 12, and, together, (47) and (48) yield (11).

5. Examples. Let

(49) w(x) =

{ 1, −3 < x < 3,
9k[3k − (1− 3−k)||x| − 2 · 3k|],

3k < |x| < 3k+1, k = 1, 2, . . .

We will prove that w satisfies (11) for all r.i. spaces X, yet Lpq(w) is not
an algebra when 1 < p < q ≤ ∞.

The assertion concerning (11) is an immediate consequence of the fact
that L1 ∩ L∞ is the smallest r.i. space and
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Lemma 15. Let w be defined on R by (49). Then∥∥∥∥ w(x)
w(x− y)w(y)

∥∥∥∥
L1∩L∞(dy)

≤ C for a.e. x ∈ Rn .

P r o o f. It is sufficient to consider x > 0, indeed x > 3. Let j and k be
integers, k ≥ 1 and 0 ≤ j ≤ k − 1, such that

3k − 3j+1 < |x− 2 · 3k| < 3k − 3j + 1 .

We show

(50)
w(x)

w(x− y)w(y)
≤ 324

( 1
w(x− y)

+
1∑

i=−1

Wk+i(y)
)

,

where

Wl(y) =
1 + 9lH(|y| − 3l)

w(y)
, l = 0, 1, 2, . . .

(H = χR+ being the Heaviside function) is readily seen to be in L1∩L∞(dy)
uniformly in l. Observe that w(x) ≤ 4 · 9k+j+1 and consider the following
cases for y, assuming j ≥ 1.

C a s e 1: |y − 2 · 3k| < 3k − 3j−1. Here, w(y) ≥ 9k+j−1, so w(x)/w(y) ≤
324 and

w(x)
w(x− y)w(y)

≤ 324
w(x− y)

.

C a s e 2: 3k − 3j−1 < |y − 2 · 3k| < 3k + 2 · 3k−1. We have y > 3k−1 and

|x− y| ≥ |y − 2 · 3k| − |x− 2 · 3k| > 3j − 3j−1 − 1 ≥ 3j−1 ,

so w(x− y) ≥ 9j−1 and

w(x)
w(x− y)w(y)

≤ 4 · 9k+j+1

9j−1w(y)
≤ 324Wk−1(y) .

C a s e 3: |y−2 ·3k| > 3k +2 ·3k−1, y > 0. Either 0 < y < 3k−1 ≤ x/2 and
we are done by symmetry, or y ≥ 3k+1 +2 ·3k−1, which means y−x ≥ 3k−1,
w(x− y) ≥ 9k−1 and

w(x)
w(x− y)w(y)

≤ 4Wk+1(y) .

C a s e 4: y < 0. If −3j−1 < y < 0, then 3k < x− y < 3k+1 and

|x− y − 2 · 3k| ≤ |x− 2 · 3k|+ |y| < 3k − 3j + 3j−1 + 1 ,

so w(x− y) ≥ 9k+j−1, w(x)/w(x− y) ≤ 324, whence

w(x)
w(x− y)w(y)

≤ 324
w(y)

.



124 R. Kerman and E. Sawyer

If y < −3j−1, then w(y) ≥ 9j−1, and

w(x)
w(x− y)w(y)

≤ 324Wk(y) .

Finally, when j = 0, one of y and x−y is greater than 3j−1. Therefore, (50)
holds then also.

To see that Lpq(w) is not an algebra when 1 < p < q ≤ ∞, let N be
a large positive integer and set f =

∑n
k=1 3−kχEk

, where Ek =
⋃

Ij and
Ij = (3j , 3j + 3/2) for 3kp+1 ≤ j ≤ 3(k+1)p. We show that∥∥∥∥w

(
f

w
∗ f

w

)∥∥∥∥
Lpq

≤ C‖f‖2Lpq

implies

N1/p+1/q ≤ CN2/q

with C > 0 independent of N , and hence that q ≤ p.
Since µf (t) ≤ (3p+1/2)t−pχ(3−N,3−1)(t), we have

‖f‖2Lpq ≤ 32(p+1)N2/q .

Next, (f∗f)(x) 6= 0 only when (f∗f)(x) =
∫

Ij
f(x−y)f(y) dy and x ∈ Ij+Ij′

for some j and j′; moreover, for x ∈ Ij + I ′j and y ∈ Ij ,

w(x)
w(x− y)w(y)

≥ 1
1000

.

Thus,

w(x)
(

f

w
∗ f

w

)
(x) =

∫
R

w(x)
w(x− y)w(y)

f(x− y)f(y) dy

≥ 1
1000

(f ∗ f)(x) =
1

1000

n∑
k=1

3−k
∫

Ek

f(x− y) dy .

Suppose, now, that 3−N < t ≤ 3−1 and that the positive integer l satisfies
3−l−1 < t ≤ 3−l. Then∣∣∣∣{x : w(x)

(
f

w
∗ f

w

)
(x) >

t

1000

}∣∣∣∣ ≥ |{x : (f ∗ f)(x) > 3−l}|

≥
l∑

k=1

∣∣∣{x :
∫

Ek

f(x− y) dy > 3−(l−k)
}∣∣∣

≥
l∑

k=1

3kp3(l−k)p = l3lp ≥ 1
log 3

log 1
3t

(3t)p
.
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It follows that ∥∥∥∥w

(
f

w
∗ f

w

)∥∥∥∥
Lpq

≥ CN1/p+1/q > 0 ,

c > 0 independent of N , and so we are done.

In the case p > q we are unable to construct a weight w satisfying∥∥∥∥ w(x)
w(x− y)w(y)

∥∥∥∥
Lp′q′ (dy)

≤ C, x ∈ Rn

((Lpq)′ = Lp′q′) for which Lpq(w), p > q, is not an algebra, though we
believe such a w exists. In any event, we can show Nikol’skĭı’s proof will
not work in this case, since (9) does not hold for X = Lpq when p > q. (Of
course, what we just proved implies (9) does not hold for Lpq when q > p.)

Indeed, as we now prove, (9) with X = Lpq implies p ≤ q. For, take
f = g = χEN

, where EN =
⋃N

k=1 Ik, with Ik = [4k, 4k + 1/k], k = 1, . . . , N .
Then,

|EN | =
N∑

k=1

1
k
≤ C log N ,

whence
‖χEN

‖2Lpq ≤ C|EN |2/p ≤ C(log N)2/p.

We claim

(51) ‖ ‖χEN
(x− y)χEN

(y)‖Lpq(dy)‖Lpq(dx) ≥ c(log N)1/p+1/q ,

so that (9) entails (log N)1/p+1/q ≤ C(log N)2/p and so p ≤ q. Observe that
the left side of (51) equals

‖(χEN
∗ χEN

)1/p‖Lpq ≥ C
{ N−1/p∫

N−2/p

|{χEN
∗ χEN

> 2tp}|q/ptq−1 dt
}1/q

.

Now,

χEN
∗ χEN

≥ 2
N∑

j=1

N∑
k=j

1
k

χIj,k
,

where the Ij,k = [4j + 4k + 1/k, 4j + 4k + 1/j] are pairwise disjoint. So,
when N−2/p < t < N−1/p,

|{χEN
∗ χEN

> 2tp}| ≥
T∑

j=1

T∑
k=j

(
1
j
− 1

k

)
, T =

[
1
tp

]
,

≥ 1
2

[T/3]∑
j=1

T∑
k=2j

1
j
≥ 1

2
(T − 2[T/3])

[T/3]∑
j=1

1
j
≥ c

log N

tp
.
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Thus,

‖(χEN
∗ χEN

)1/p‖Lpq ≥ c

{ N−1/p∫
N−2/p

(
log N

tp

)q/p

tq−1 dt

}1/q

≥ c(log N)1/p

{ N−1/p∫
N−2/p

dt

t

}1/q

≥ c(log N)1/p+1/q .
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