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Triebel Lizorkin spaces on spaces of homogeneous type

by
Y-S HAN (Auburn, Ala.)

Abstract. In [5] the Besov aud Triebel-Lizorkin spaces on spaces of homogeneots
type weve infroduced. In this paper, the Triebel-Lizorkin spaces on spaces of homogeneous
type are generalized o the case where pg < » € 1 € ¢ < 0, and a new atomic decom-
position for these spaces 18 obtained. As a consequence, we give the Littlewood-Paley
characterization of Flardy spaces on spaces of homogeneous type which were introduced
by the maximal fouetion claracterization in [MS2).

1. Introduction. We begin by recalling the definitions necessary for
introducing the Triebel-Lizorkin spaces on spaces of homogeneous type.
A quasi-mefric d on a set X s a function d: X x X — [0, 0o) satisfying:

(1) d(a,y) = 0 if and only if z = ¥,
(1.1) (i) dz,y) = d(y,z) for all 2,y € X,
(iii) there exists a constant A < oo such that for all ,y,z € X,
d($, y) < A[d(ma z) + d(za flj)] :
Any quasi-metric defines a topology, for which the balls Bz, r) = {y € X :

dly,x) < r} form a base. However, the balls themselves need not be open
when A > 1,

Durinrrion (1.2} ((CW1]). A space of homogeneous type (X, d, p) is a
set. X together with a quasi-imetric d and a nonnegative measure p on X
such that p{B{e,r)) < oo for all x € X and all 7 > 0, and there exists
A < oo such that for all x € X and all » > 0,

(1.3) wW(Blx,2r)) < A'u(B(x, 7).

Here g is assumed to be defined on a o-algebra which contains all Borel sets
and all balls Bz, r).
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Macias and Segovia [MS1] have shown that one can replace d by another
quasi-metric g such that there exist ¢ < oo and some #,0 < # < 1, with
(1.4) o(z,y) = inf{(B) : B is a ball containing z and y},

—f
(1.5) lo(z,y) — o(z', )| < co(z,z")’[o(z, y) + o, 9)]"
for all w, 2" and y € X,

We will suppose that p(X) = co and u({z}) = 0 for all # € X, Thesc
hypotheses allow us to construct an approximation to the identity (soo [[12]).

DEFINITION (1.6). A sequence (Si)rez of operators is called an approgi:
mation to the identity if Se(xz,y), the kernels of S, are functions from X x X

inte C such that there exists a constant C such that for all k € Z and al
z, ', y, ¥ = X, and gome 0 < ¢ < 4, and some ¢ < oo,

(i) Sk(z,y) =0 if p(z,y) 2 c27F and [ Spljes < C2°,
(ii) |Sklz,y) — Skla’,y)| £ C2AUTg(g, 27)7
(iii) |5k (2, y) — Sile,y)| < C2HHp(y, )",

() [Sk(w.y) ~ Sula,y)] - (S, ¥) - Sul(a’ )]
< Colw, ') oy, y') 2P0,

(v) [ Se(ww)au(y) =1,
X

(vi) J Sz du(@) = 1.
X

For the existence of such a sequence of operators, see [DJS] where al
conditions are introduced and checked except the condition (iv) in (1.6). I
is easy to see that the construction in [DJS] satisfies (iv).

To define the Triebel-Lizorkin spaces on spaces of homogeneous type we
need the following definition (see [HS]).

DerFNITION (1.7}, Fix two exponents 0 < 8 < 8 and « > 0. A functio
[ defined on X is said to be a strong smooth molecule of type (B, ) centerec
at zg € X with width d > 0 if f satisfies the following conditions:

: . dv
(1) |fl=)] < c(d ¥ o(z, 2g)) i

) : olz,w) 1° a7
(1.8) (i) |f($)—f(w)§0[d+g(m,mo)] (d+ o(z, 20))' ™7

1
[, 4 R
for o(z,x') < 2A(d-|— oz, 20)),

() [ flz)duz)=0.

X
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This definition was first introduced in [M] for the case X = R™ with the
condition (ii) in (1.8) replaced by

(1.9)  |fl@) = f(z)]

¢ [0(%‘, w’)] g [ &7 + a1

- d (@ + elw, @) +7 * (d+ o(a', mo))“‘”] '
The colloction of all strong smooth molecules of type (8, v) centered at z €
X with width d > 0 will be denoted by ME (zg,d). If f € ME (g, d),
the norm of f in MY (2, d) is then defined by

(1.10) I F st g,y = inf{e 2 0+ (i) and (ii) in (1.8) hold} ..

Now we [ix a point @y € X and denote the class of all f &€ M) (20, 1)
by MWt is casy to see that M) is a Banach space under the norm
Il arenw < oo. Just as the space of distributions 5’ is defined on R™, the
dual space (MUY consists of all linear functionals L from M®@7Y) 10 C
with the property that there exists a finite constant ¢ such that for all
Fe MBI ALIA)| € el pewm- We denote the natural pairing of elements
he (MP) and f e MY by (h, £). Tt is also easy to see that for 1 € X
and d > 0, M2y, d) = MP with equivalent norms. Thus, (k, f) is
well defined for all h € (MPBMY and all f € M (2, d) with z; € X and
d > 0. .

In [I15] the Besov and Triebel-Lizorkin spaces on spaces of homogeneous
type were introduced by use of the family of operators (Dg)yez where Dy =

5 — Sk..1 and (Si)rez is an approximation to the identity defined in (1.6).
More precisely, the Besov space B{j‘”i’ for — < & < e,1 € p,g.< 00, is the
collection of all f & (M) with 0 < 8,+ < & such that

. . 1/q
(1.11) llggs = { @D} < oo
kel
The Triebel Lizorkin spoce Fﬁ*‘f for ~ < o < g1 < p,g < o0, is the
collection of all f e (MY with 0 < 8,7 < e such that

/e

1.12 s = | { S @IDu(A)) H < o0
(1.12) 1 = {2 LRGN

In this paper, our concern is to define the Triebel-Lizorkin spaces F;*9
on spaces of homogeneous type for ~e < o < gand pp <p <1 = ¢ < 00
The key fact to do this is that the Littlewood-Paley g-function in the right
hand side of (1.12) will be replaced by the Littlewood-Paley S-function. To
be precise, we introduce the following definition.

DEFINITION (1.13). Suppose that (Dg)sez 18 as in (1.12), 0 < a < 00,
~g < a<e¢ and 1 < g < oo. The generalized Littlewood~Paley S—fun;tzon
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of f € (MPY with 0 < 8,7 < ¢ is defined by

119 se@={> [ 2D}

MEE g(py) a2~k

By a standard argument, for 0 < p < 00,1 < ¢ < oo, and 0 < ¢ < og,

(1.15) 1550 (F)lp = 1551 G-

We write 57(f)(z) = S3,(f)(z) and introduce the following norm of f €
(MEMNY with 0 < 8,v < €.

DerFNITION (1.16). Suppose that ~e < a<e, 0 < p < oo, and 1 < ¢
< co. We define the “norm” of f € (MW@MY with 0 < f#,v < & by

(1.17) £l peca =155 (F)l -
The first main result in this paper is the following.

THEOREM A. Suppose that (Sk)kez ond (Py)iez are approzimations to
the identity. Set Dy = 5, —Sy—1 and By = Pr—Py_y. Then for f € (M(ﬁ”))’
with max(0, ) < 8 < ¢ and max(0, —a) < « < ¢, there exist constants ¢,
and ¢y such that for —e < a<e,1/(1+e) <p< oo and 1 < g < oo,

(1.18) el S5 (Dllp < 157 (Flp S el SE (£

where

Snw={> [ te=mpoawn}’

heZ p(z,y)g2*

In [HS], when 1 < p,¢ < oo the similar result for the Littlewood- Paley
g-function defined in the right hand side of (1.12) was proved. The idea of
the proof of this theorem is to use molecular decomposition. This molecu-
lar decomposition will follow from the Calderén-type reproducing formula
which was established in [HS] (see also [H2]). The proof of Theorem A
also shows that the L7 norm of S¥(f) is equivalent to the L? norm of
{2kez (@D ()T} for L < p,q < co. This allows us to goneralize the
Triebel-Lizorkin spaces F?;"‘*’I on spaces of homogencons type to the case
where —e < < g,1/(1+¢)<p< oo, and 1 € ¢ < c0.

DEFINITION (1.19). Suppose that (Sy)rez is an approximation to the
identity. Set Dy = Sy — Sy._1. The Triebel-Lizorkin space ]3‘3‘,-“"’ Ol & Bpace
of homogeneous type for —e < a < &,1/(1 + &) < p < 0o, and 1 < g < oo,is
the collection of all f € (M) with max(0,a) < 8 < ¢ and max(0, ~w) <
¥ < € such that

1 ke = 1S5}y < oo

To state our next result we need the following definition.
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DEMNITION (1.20). Suppose that —e <o <eand 0 <p <1< g < 00.
A distribution a € (M"Y with 0 < 8, < £ is said to be a (p,q, ) atom
for o if

(3) suppa © B = Blag, ), |

(i1) ||| o 5 0(B)/9=1/? where the norm of F¥ is taken in the sense

i

of (1.12),

(iil) @ satisfies the following cancellation condition: for any g € M (5:7)
with max{0, -«a) < # < g and max(0, a) < v < ¢,

{a,9) = {a,[g - g5lnz)
where B = Bay, 2403,
1
95 = T [ a(@)ng(z) du()
B fng() du(a) 5

and ng € CH{X) with nx(z) = 1 for z € B and ny(z) = 0 for z € B®.

Remark. This definition was first introduced in [H1] for the case X =
R o = 0, andl 1 € ¢ £ 2 with the cancellation condition (iil) replaced
by the following: [ a{w)x?dz = 0 for 0 < |v| £ [n{l/p - })], the greatest
integer less than or equal to n(1/p—1). In general, the original c?unc‘ellatzlon
condition does not make sense for o € Fgt9 since a could be a distribution.
However, by a duality vesult in [HS], (Fé"’q)* = F;%? for 1< ¢ < oo with
1/g+1/¢ = 1, and by the fact that if g € M) with max(0, —a) <

‘ 0, —a)
B < & and max((, o) < 7y < e then g and {g(z) — gglng(xz) are in qu, g
the cancellation condition (iii) in (1.20) makes sense. Fu'm.;hermore, it a is
an integrable function then (iii) is equivalent to the original c.ancellatmn
condition: [ a dp(x) = 0. Recall that a function o defined on R™ is a (p, 2, 0)
atom. for Iﬁ’, 1/2 < p < 1, if a satisfies (i) supp ¢ C &, ( is a cube mnR”, (i)
lallz < 1@/, (jil) [alw)de = 0.1t is easy to see that when X = R™, a =0
and ¢ = 2, any (p,2,0) atom, 1/2 < p £ 1, for F»? is a (p,2,0) atom,
1/2 < p < 1, lor HP (see [CW2] and [TW]).

The pext main result in this paper is the following atomic decomposition
of i,

TurorkM 13, Suppose that —& < a <&,

1 1 ) :
Pl [ <pLlgg<oo,
max (1 TR T E

and § & (MUY with max(0, ) < § < & and max(0, —a) <7 <€ T};en
f € .1’7”;?”‘1 if and only if there exist a sequence {Ae}32, of numbers and a
collection {ay}5%., of (p,q, @) atoms for F* such that
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(1.21) = Z)\kak
k

where the series converges in (M) and 3~ | Al < 0o, Moreover,

/
(1.22) P lger ~ imt (3 hale)

where the infimum is tuken over all representations f = 3  Akr w8 above,

As a consequence of Theorem B, we give a new Littlewood Paley char-
acterization of the Hardy spaces H” on spaces of homogeneous type, which
were introduced by Macfas and Segovia [MS2].

THEOREM C. For 1/(1+e)<p<1, Fg,z = H? wilh eguivalent norms,
where H? ds defined in [MS2] by means of o mazimal function.

We prove Theorem A in Section 2, and Theorems B and € in Section 3.

2. Proof of Theorem A. We first recall a result of Christ [Ch] which
gives an analogue of the Buclidean dyadic cubes,

THEOREM (2.1). There ewist a collection of open subsets {QkcX ke
Z,7 € I}, where Iy denotes some (possibly finite) index set depending on
k. and constants § € (0,1),a9 > 0,7 > 0 and 0 < cL, &y < 00 sueh thot

(1) u(X\NUQE) =0 for alk e Z, .

(il) of § 2 k then either Q7, C Q% or QF, N Q% =,

(iif) for ol (k,7) and j < k, there is a unigue ™ such that Qe @,

(iv) diam(Q%) < ¢, 6%,

(v) each Q% contains some ball B(z%,ag6").

We fix such a collection of open suhsets as in Theorem (2.1) and call
all @ in (2.1) the “dyadic cubes” in X. Without loss of generality, we
may assume § = 1/2 in Theorem (2.1). It is easy to check that our results
and proofs are independent of the choice of open subsets which satisfy the
hypotheses of Theorem (2.1).

Now we define smooth molecules.

DEFINITION (2.2). Fix two exponents 0 < B < 8 andy > 0, We say that
gk is a (8, v)-smooth molecule for a “dvadic cube” QF with p(QFy ~ 2k
if

(@) J max(e)du(z) = 0,
(if) Imqe(@)] < w(@7) 72 (1 4+ 2¥g(w, 21)) =04,
() [mow() — mos ()] < w(@E) ™2 P olz, y)[(L + 2% g, 25)) (147

+ (L+2¥(y, 25) )]
where z¥ is the “center” of Q¥
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As in thecase X = R" (see [FJ]), we also need certain spaces of sequences
indexed by “dyadic cubes” {QF} in X, which will characterize the coefficients
in ouwr decomposition of Fh? For —e < o < 6,0 < p<ocoand L £g < oo,
f{,” iy the collection of sequences s = {30} e or) such that

04 o g em 1/q
(2.3) Il o = [ { OI(@2)"2 s x 1) I,
oL

is finite, where x4 1s the characteristic function of Q.
To prove Theorem A, we need the Calderén-type reproducing formula
on spaces of howmogeneons type which was established in [HS].

THEOREM (2.4). Suppose that {Sy}rez is an approzimation to the iden-
tity. Set Dy = Sk - Sy-1. Then there exist families of operators { Dy} ez
and {Di}rer such that for all f e (MPMYy,

(2.5) F=Y DuDi(f) =Y DeBi(y)

kL kEZ _
where the series converge in the sense that for all g € ME7) ywith g > 8
and ¥ > vy,
(26) i (3 Dibufe)=h) = Jim (3 DuBilf).g).

el <M ETYPSY:
Morcover, ﬁ/.:(:(:,;t/) and ﬁk(w,yj, the respective kernels of Dy and Dy, sai-
isfy the following conditions: for 0 < &' < ¢, there exists a constant ¢ such
that

/

2-.’c€'
(2% + o(z,y))1 e

zuks
CRETEECS

(1) 1D,y < e Bilz,y)| < c

Dilar,y) = Dulalsy)

< ole, &) ) 27k
=N olmy) ) F el y)

for o(z,2') < 5%[2"° + o(z, ¥)],

(i) , ,
- . 2,1 ! £ 2—1«;5
II)i-r(wa:U) -D?\:(miyf)l < C(szf;zrj,y)) (2—k + g{m,y))l"“f'
for ol.t) < 57274+ ol )],
[ Dulo,y)dp(w) = [ Dile,v)duly) =0,
(i)

J Buley)du(@) = [ Delz.9)duly) = 0.
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Using this Calderén-type reproducing formula, we have the following
smooth molecular decomposition.

THEOREM (2.7). Suppose that ~& < o < g, 1/(1+¢€) < p < 00 ana
1< g < oo If Sf) € L” for f € (MBMY with 0 < 8,7 < &, then there
exist o sequence s = {sgr} and (€', &")-smooth molecules mqy, 0 < &’ < g,
such that f =} ou sgumge in (ME AN with §'> 8 and v > ~, and

(2.8) lsll e < SISZCE) -
Proof. By Theorem (2.4},

(2.9) f(m):ZEka(f)(m)=Z [ Da(z,v) D) () dpay)
=3 > f Dz, v)De($)iy) ZZ%.;kak

k T Qk

where sgr = cu(Q 1/2f e [Dw(F) ()| du(y) and

mar = ¢ Q%) 1/2[ J 1Du() () it y] J Dule )Du( D () duly)
Qs Q7
and the series above converges in (M) with 8’ > 8 and ¥ > 7.
It is easy to check that mge satisfy the conditions (i)-(iil) of (2.2) with
B=r=2¢"0<e <& Tosee (2.8), we have

210) el = |{ Sw@lsaubxa} |

Qk
A e fasorsna))
QI\
<e {ZZ,J -t @D )(y)l)“du(y)Xcaf;}]/qH,
CJH
<{S ] zernnuran)”|
Bl gaa® '

= | Sg(Nllp < ST
which proves (2.8) and, hence, Theorem (2.7).

. Conversely, we have

Tueorem (2.11). If f = > or Soumqn where the series converges in
(M=) and mqe are (B,7)-smooth molecules with max(0,a) < 8 < & und
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max (0, ~a) <y < g, then for 1/{(1+y)<p<ocandl < g < o0,
g e N I 3 /'q
e [T [ emowan )| <l
Boofwg)ger i

where Ky (0, y), the kernels of the operators Ey, satisfy the estimates (i) and
(iii) of (L.7) and [ 15, (x,y) duly) = 0.

To prove Theorens (2.11), we need a lemma of [F].

LiMMA (2.08). Suppose that p,m € Z with n < u and for “dyadic cubes”
QU wwith () ~ 270,

| fan ()] € (1+2"g(m, 2¢))~ 04,
where =8 iy the center of QF and o > 0. Then

210 Sheliatals @ (u( Sl ) o

where M s f;h(. Hordy- Littlewood mazimal function and r > 1/(1+ o).

The proof of this lemma ou spaces of homogeneous type is similar to the
case X = R (see [I7)]). We leave the details to the reader.

Now wo return to the proof of Theorem (2.11). Suppose that mgs is a
(#, y}smooth molecule with max(0,a) < 8 < £ and max(0, —a) <y < g,
and p(@QH) ~ 27" Then

| (g ) ()] = ‘ [ [Bule) ~ Bule, 2 mgs () duly)
< f |Ex(@,y) — Exlz, 22)|imgu ()] dp(y)
ol =t b (275 o)
+ f Bl w)llmae (1)) dp(y)
(33> g (2 el )

-+ f |Bx(z, 2l [mas (9)| duly)
el el gk (2% 40l 1))
o [ I 0L
If & < poand 28g(, ) < e, then

] < p ]‘ Mg(yaz#) 7
e 2%+ ol y)

ol 2t 1 g ghe (27 % b))

2~k w(QE)1/?
z d
X T g 1 2ty ) )
< cu.(Qf;)wl/22—~(u~-~fe)(1—1-1') _
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< cu(@p) M 2a =B ) (1 4 2%g(s, 24)) ()

where 0 < 4" < v and the last inequality follows from the fact that 2% p(x, 22

< ¢. Next,

o—ke (Qu)wl/‘z
(27F -+ o(m, y))te (1+ 2re(y, oF

I < ji
oly,28)> 25 (275 +ol=,))
ep(Qi)~ /29 (k=R (147

cu(Qﬂ)_l/ZQ"(M*k)U%-’Y’) (1 + 2'“9(:1;, zm)-w(l-l-'y’)

T dp(y)

<
<

since 0 < ' < v and g > k. Similarly,

n—he (Q,u. —~1/2
I )

2-k T,z 14 (1 4 2 p(q .,,.U 17
o{,2#) > g (27 F olmy)) ( o(x, 2r)) ( o(y, =)

< CM(QJ:)—U?Q—(#“FC)(H—’Y)
< c“(Qﬁ)—l/zz—(ﬂ—k)(l—i-’r')(1 + 2% o(z, z;:))-(H-v’) )

I <e dpay)

If k < g and 2%p(z, 2) > ¢, then

1< J‘ Q(yi zﬁ) v
B 27k + o(w,y)
ely,z8) S 770 (m =#)
oy, 28 ) <A (27" 4p(m,y))

x 9k’ w Q- L2 ]

(278 + p(, y)) 1+ (14 26p(y, =8 )7 w(y)

+ f (M)W
oly,=) > g o2t 27k + oz, y)
ey, 2 ) S g (27 M+ p(2))
k! 172
g (2 +2£’(93x@/))1""7 (1+ 25?5)(; PSR dpl)
<ec oly, 24)7 Q) =12

- / T ol g) T (T3 gty aET UHY)
ooy gty E T YN (L 2aly, 27)) Y

o~k Mel% -1/

e - ' die
Q(W’:)>a{ra(w,zi‘)(2 R oz, y) 7 (1 20 g(y, 22050 wla)

< CM(Q#)*1/22—H(1+’T') (z, zu)~(1+'r’)
< CM(QM) 1/29-(u—k) (1+w)(1+2k9(m zn))—(lw’)‘
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These estimates imply that if k < g and 0 < 4" < 4, then

(2.15) | Br(mge)(x)| £ cp(QE) VA= n=R) ) L ok (g, 6))~ ()

If k 2 uand 2%p(x, 2) < ¢, then

B (rrgpu ) ()] = U Ey(z,y){moe{y) — moe ()] duly)|  since Ex(1) =0
. ke
se) {27k Q(m,’y))l-ﬁ“(Qg)_l/z-ﬁg(may)ﬁ

x [(1+ 20y, 2£)) 704 o+ (14 2g(z, 2))0 ] dpa(y)
< ep(QE) WAk gince B < &
< en(QU) 421 4 9 g(g, o)) 704

Similarly, if & > g and 28p(z, 25) > ¢, then

| B (rngu ) ()]
2~k5
e py—1/2—23 A
= f (gm«k T o(m, )t e “(Qr) olz,y)

elinzl o gbe ol 2l)

x [(1 + 2% 0(y, 22)) O 4 (1 + 28 (m, )" ] dp(y)
2—-ic£

,.l,. o f
2—]c+ x, L+te
o) < dr e ,b)( oz, u))
oy,

(0 2ol 207 (14 20l )0 dily)
< e QU)AP(1 4 2l 24) 0+
A ep(QUy MR R g, 2#) ()2 H
Q) g, 28) 52 (L Dola, 22)) )

< eu(QUy 12 G mB ] 4 2 g, 24)) O
since v < € and 3 < &.

u(Quy—1e

These estimates imply that if & > pand 0 < 8,7 <e, then
@.16)  |Bulmge) ()] € (@) /227 B (L4 240, 1))
Note that if p{z,z) < 27", then (2.15) and (2.16) yield '

(2.17)  |Ep(mge)(z)] S eu(QF)” /2= (u~k) (147 N1+ ZRQ(z,zﬁ))_(H"")
for k< pand 0 <’ <7,

(2.18)  |Bi (o) (@) < (@) 22 B MR (1 + 20z )
for k> p.
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Now we have

(S [ e amn)”

ko ptzp)ga—®

k
oS 20 Y Sherlfimawl) duin}”

Q(E!y)sz_k =m0 T
-!-C{Z gk(zm }: ZJSQQ%’E’“(mc\?ﬂ)(y)!)Md,c,a(y)}w
*oelep)gam® p=kdl T
&
: c{ 2, (2m 30 fsqulu(Qyytro-tk-ma
k H=—CO T

. 1
x (14 24e, )7+ 1y g

" C{ 2 (W i Y lsgel (@) 122 iR+ )

p=k+1 7

3 ATy My
x (14 2%(z, 24))~ 0= L by (207)

b
< c{ (2ka¢ #;OO 9=(k=)f ,( Quy=1/2 (M ( 2 52 ‘XQ’;‘)TI) 1/1'(:{;)) q} 1/q

k

+ c{ Z (2’““ i 2-~(u—k)w’M(Q,:)_1/2

k pu=k+1

X (M(; !SQ?‘IXQg)T)l/T(E))q}”q by (2.13) and r > - "
k

< c{ ; ( Z 2“(k_}l)(ﬁ—W)M(.Qg)*l/?—u

p=—oo
X (M(ZT:|§Q¢:|x%)")1/'r'(m))q}1/q
+ c{ Z ( f: 2= (k=K' a) y( Quy=1/2-0
k

p=kAl
X (M(;|5Q¢]XQ¢)T)1/T(;U))Q}1/Q
< c{ ; (/—"(Qﬁ)—lmqa(M(Z ’SQﬂleﬂ)r)l/r(x))Q}l/q
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. e (R (A (k) ('
BLILCE Lkmz (h=p)lfi-e) Ekg,uz (k)Y +e) oo for A>aand vy >
—cv. Integrating yields

(> [ 2emmoenaw)|

ko plegyga®

% ('H{ S: (JM(Z(M(Qﬁ)wlﬂ—al{g@ﬁ‘XQg),’.)l/r(m))Q}lqu
" e .

(2.19)

(since for p > 1/(14-+) we can choose v <y and r > 1/(1+ ') such that
p/r > 1, and then apply the Fefferman and Stein vector-valued maximal
function inequality with p/r > 1 and ¢/r > 1)

{3 S sgs e} | = el o
oo

which shows Theorem (2.11).

<o

Now we prove Theorem A. Suppose that f & (M B with max(0, o) <
8 < & apd max(0, ) < v < g, and [|[S2(f)|lp < co. By Theorem (2.7},
[= —Z% sqummgy where the series converges in (ME)Y with 8/ > 8

and 4 > 7, and mgs are (€', ')-smooth molecules with 0 < ¢ < e, and
8l fon & o[l 81 () |- Without logs of generality, we may choose ja} < &' <,

| /
and p > L/(1 - ¢"). By Theotem (2.11), -

1850 e S ellsl joe < €55 (Dl

which shows one inequality of (1.18). The other inequality of (1.18} can be
proved in the same manoer.

Remark, Tt was proved in [HS] that the Triebel-Lizorkin spaces Foet
on spaces of homogeneous type for —e < & < € and 1 < p,g < oo have
the same swooth molecular decomposition as in Theorems (2.7) and (2.11).
Thus, the Triebel- Lizorkin spaces F defined in {1.19) generalize F*9
defined iu (1.12) to the case where —~e <@ <&, 1/(l+e)<psl<g<oo.

3. Proofs of Theorems B and C. To prove the “if” part of Theorem B,
we need the following lemma.

LuMMA (3.1). Suppose that —e <a <&, 1/(1+a+ gl<pLlsg<os
and {ay 5., is a collection of (p,q,¢r) atoms for F and {Mx}e, is o
sequence of numbers with 3 |AklP < o0 Then there exists a pair (Bo, 7o)
with max(0, ~a) < fo < € and max(0,a) < o < ¢ such that the series
3 Apay converges in (M Forre)y,

Proof. First consider the case where —& < & <& and 1/{l+a+e) <
p < L. It suffices to show that there exists a-constant ¢ > 0 such that for all
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g € M¥om0) with max(0,—a) < fy < & and max(0,a) < 7 < €,
(3.2) {a, g} S ¢

for all (p,q, @) atoms a for Frj"*‘?.

To see (3.2), suppose that a is a (p, g, o) atom for F;“"f with support
B = B(xq, r); then, by the cancellation condition on a,

(3.3) {a.9) = (a,[9 ~ 95]n5)
where B = B(zg, 247),

1
95 = W "'! 9(5'3)"7'5(“’) dp(z)

and gz € C§(X) with nglz) =1for z € B and ny(z) = 0 for z € B We
claim that there exists a constant ¢ > 0 such that

(3.4) llaC) = o5l (Mp-e < cu(B)/PmH,
Assuming (3.4) for the moment, we then have
(@l = llaligallol) - 95l 0 oo
(since (Fqc"‘-’)’ = FQT“’Q"’; see [HS] for this result and the proof)

< cp(B)Ya Ve, (Bylir=1/a

<ec,

by the size condition on a and {3.4)

which proves (3.2).

To prove (3.4), we first consider the case where —¢ < a < &,1/(1 + o + £)
<p <1/(1+a)and p < 1 It suffices to show (3.4) for g € M (o)
with max(0, —a) < fo = (1/p — 1) ~ @ < ¢ and max(0,a) < 7, < &. Set
f(@) = [g(z) - g5]n5(z). It is easy to check that f satisfies the following
estimates:

(3.5) |[f(z)] < en(B)™,

(3.6) |[F (1) ~ flz2)| < cplg, ma)™

where ¢ is a constant depending only on g. Set 84B = B(wy, 8BAr). Thus,
by the definition of the Triebel-Lizorkin spaces Fhdin (1.12),

(37 Mls0) = a5ln5 ()19

=" [ 275 D) (@)Y du(e)

keZ
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(X J+ ¥y

TRSAAr BAR  2-k<dAr (8AB)

LD D
27EndAr BAR 27F>44r (BARB)S
= L I T TV,

Nate first that IT = 0, since if ¢ € (84B)“ and 27% < 44r, then olz.y) >
ddr = 27 % for y By, r), and, hence, Di(f){z) = 0. Using (3.6) and the
fact that I, (1) = 0, we get
Hu(f) ()] = {f Dy, 9)[f (y) — f(z)] duly)| < c2~Fbo,
Thus, if By = (1/p 1) = o0 > —~cv, then
< Z 9 Auvu’g—#fh:q’M(B) < cu(B)r(‘”Hﬂ“)q’ < c#(B)l-l-(l/r)—l)q’ ]

2k Ay

By (3.5),

)27 D) (@) du(e)

D4 () ()] = U Dy, y) fly) du(y)| < e2Pu(B)L+
Thus,

I < e Z g-wkuq’gka’”(B)H-(l-l-ﬁo)q’
2 kg Ap
< ep( B 0-a)e' gree 1 g s 0
< ep(B) /P10
To estlmate IV, note that if « € (BAB)®, then
(58 (D)) = | [ (Do) = Date, m0)l () duty)

since [ f(y) du(y) = 0

" alnan)  \° a-ke

i g . d

i A ‘l (2 h 1 Q(.’B, QT())) (2.1.)\,- o+ Qcm: :IIJQ))J“’"E‘ U(y)l ,Uu(:tj)
o--ke

(20 fsplar, y))Hoe

i ft,[(‘,( ”) Lo Hy A

Thus,

WV }: Y .A:uq"[_“(B)(L,;n;-i(,»}.a)q’
2 Masldy

]

2*-3»‘8 qd
) [@"’“-f-@(m,y))”% HE)

plrymo ) Ar
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Z 2~kaq2 [L~{14-€)g']

2-h>d4A4r
<VC‘LL(B)(1+ﬁ0+5)qf7,.0£q’+1—(1_|_5)q.'
< GM(B)1+(1/p—1)q‘
The estimates above imply
Ilg€) = 95 ()l e = eu( BYM 1) oy By et
q

which proves (3.4) for the case where —¢ < @ < ¢,1/(I1+a-+e) < p <
1/(1+a) and p < L.

Now we prove (3.4) for the case where 0 < o < £,1/(1+a) < p < L and
g € MBum) with max(0, —a) < B < £ and max(0, @) <y < e. To do this,
we need the following estimates:
(3.9)  IPs(f)(a)| < 2
(3.10) |Dp{f)(z)l < since | f{y)| < ¢ and || De(z, )| L e,
(3.11) | Dx(f)(w)| < c2Pu(B)T  since |F(y)| < ep(B)™ .

By taking the geometric mean between (3.9) and (3.10), for 0 £ ¢ £ 1
we have
(3.12) [Dk(f)(2)] < 2™

We estimate I, III and IV in (3.7) as follows. For 0 € o9 = a —
I/p-1)<a<l,

I<c > omkedgheod By
2~k <4 Ar
< cu(Byr /711

< Cﬂ‘( (1+ﬁ0+5

since ag' + 1 — (L+g)g’ <0

since [ |£(y)|duy) < ¢,

by (3.12)

since 1/p—1>0

To estimate I, by taking the geometric mean between (3.9} and (3.11),
we have

(3.13) [Dx(f)(2)] < 2*u(B)IHPV fr D<o <1,
Thus, choosing 1 with 0 £ oy = llf-’;—[:jfl <1,
Ol <e S omhed'ght y(pylebiodsl 1y (313)
2k >4A4r

< CM(B)1+(1+ﬁ1)00q'?,(m—1)q’
< c,u,(B}l'Hl/p—l)q’
To estimate LV, we need the following estimates: for z € (8AB)",

(314)  [De()(&)] = | [ [Dule,9) — Dada, 20)|F ) dufy)

since av < [
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2»—!.‘,&:

< cp(B)E
= B

since [ ()] du(y) < ¢

By 1',;Lkling the geometric mean between (3.8) and (3.14), we see that for
0<ay =~ f‘,;]” <1,
2-»kze
(27% + pla,y)) 2
< e Z N(B)[E'F(lﬂ'?l)ﬁn]fI’Q—Fv[fﬂf’-l"l-"(1+5)f1'l
2R Ay
< (:M(B)[E-I~{?lM‘H)a‘u]q'rcw'-kl—(1+s)q' < CM(B)H-(J-/:W:L)Q’ )

(3.15) | De(f)()] € (;M(_B)E“l'(l-i-ﬁﬂrm

These estimates imply that for ~e < v <&, p <1 and o > 1/p -1,
M0y = 9515 pm < cpp(B)HP=H1
qf

which proves (3.4) for the case where 0 < & < & and 1/(1 + a)<p<l.

It remains to prove Lemma (3.1) for the case p = 1. In the proof of the
“iF” part of Theorem B, we will see that for any (1, ¢, o) atom a for e,

(3.16) H{ 320 Dy(a )(I}WH1 <e

ke
where ¢ is a constant independent of a. By using the Calderdn-type repro-
ducing formula of Theorem (2.4) (sce [HS] for the details of the proof),

o< [ { @i} e By

heZ keZ

< [{Z e o} {2

Therefore, it Hmfu(w. to show that for —g < @ < ¢ and 1 < ¢’ € o0, and
r] ¢ MW"” with & > f > max(0, —a) and v > 0, there exists a constant

= (b wuch Whad
/g
AL se
[«5)

(3.17) { o by
ke,
where Dy is as in Theorem (2.4) and ﬁ,‘; Is the transpose of Dy,
To see (3.17), suppose that g € M) with & > 8 > max(0, —~a) and
4 > (), Then

(3.18) |1Dio) ()| s e2*,

'}wdu(?)

St Biane )

Z
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(319)  |Dilo)e)l = | [ Dty )oly) du)
=|f Brtwra)lo) - (@) duly)|  since Bi(1) =0
§c2""“[j

where ¢ is a constant depending only on g. Thus,

[Te= B} ¢
keZ
< C[{ 2(2—kﬂ5;(9)|)¢}1/ql N { Z(zdkmlﬁz(!}mq;}1/11 ]

k<O k>0

(ng (1-a)q ) /g +C(Z2‘k(ﬁ"'”)‘l')l/q

k<D k>0

4

<e¢ sincel—a>0and 8+a>0,
which proves {3.17); this completes the proof of Lemama (3.1).

Now we prove the “if” part of Theorern B. Suppose that f = 3 o Axds

where {ax}re; is a collection of (p, g, &) atoms for F; 4 and {Ax}he, 18 a
sequence of numbers with 3 7o [Az|? < co. By Lémma (3.1), the series
oo | Away converges in (M7 for some 0 <, < £. Thus,

Hina; « = [ISg(HIE £ Z [ARIPSE (an) B -

It suffices to prove that there exists a constant ¢ such that for each (p, ¢, &)
atom a for o,
(3.20) 157 (@), < c-

To see (3.20), suppose that ¢ is a (p, ¢, @) atom for Fﬁ’*‘f supported on
@ = Q(zg, 7). Set 24Q = Q(zg,2Ar). Then

ISk = [ S2(a)?(x) dulz)
= ( I+ )53“ (@Y (z) dpfz) = I+ 1I .
2AQ  (24Q)°
By Hélder’s inequality and the size condition on a,

1< eu(@( [ S2(e) () du(x) )

2AQ
< cﬂ(Q)lup/q“(Q)(l/qwlfp)p =e.

»la
= cu(Q) /] alf

f“ cuy

icm
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To estimate II, we claim that there exists a constant ¢ such that for
x € (24Q)°,

(3.21) Du(a)(y)] (@)}~ /rkotegktiee)

Assume this claim for the morment; then for z € (240Q)°,

[ 2D duty) <

el iy} k

‘"H(@) (1-1/ptote)goh(ltetal

If & € (24Q)° and o(:r,y) < 2%, then Dy(a)(y) = 0 for 2% > efo(z,2o)
where ¢ is a constant. Thi,

[ Sy (@)? () dpa(e)

(2A)"
se [{ X srerernguressynnl™ gy )
(2/?:(3)"‘ Bh<efple,ng)

< e f ﬂ’(cg)(,l~)~.:t-|-ej--l/p)pg(w1 mQ) (14cxte)p d'u( )
(A"
< W"‘(Q)U M{»m~|~e=~~.l/p);u“(Q)].m-(1+n:—1-e)p

i 4} y

since (L+a+ejp>1

which together with the estimate of 7 yields (3.20).
We now prove (3.16), Supposce that a is a (1, ¢, &) atom supported on
Q= Qxg,r). Sct again 24Q = Q(zg, 24r). Then

femen)

(3
= ( f o+ f ){Z(Qjm\ﬂk(a)(m)l)"}wd,u(:r:)=I+I[.

2AQ (240" ke h

By élder’s inec unlity and the size condition on a,
) | )

< QY a2

.H;y (3.20) and the faet that if 2 € (24Q)" and o(z,v) < 2%, then Dy(e)(y)
0 for 28 = o/ ple,mg) where ¢ s o constant,

ns f {L(J“"IU

(A" ked

<y

(24" 2h<Co/olinmg)

‘,,.,v o,

I/y
2))1} " duta)

2"’“‘“‘**%@)“*“?} )
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<e [ p@)*olz,z) M) dulz) <
(24Q)°
which shows (3.16).
Now it remains to prove the claim (3.21). Set no € CH{X) with 0 <
ng < Lno(z)=1frze@ and nQ(a:) =0 for x € (2AQ)". Then

(322)  IDula)(w)l = | [ Dily, 2)a(z) duz)
= ‘f [Du(y, 2) — Delng ()a(z) dp(z )‘
by the cancellation condition on a,
(where Dy = WID" Y, 2)nq () du(z))
< llaf soo [P2 (v ) = Dilng () oo
< W@ V2 Di(y, ) ~ Bl ()l e
q
Set f(z) = [Drly,z) — ﬁk]nQ(:c). By the definition of the Triebel-Lizorkin

spaces in (1.12),

(3.23) IlfH" aw =2 [ 27D (£) ()7 du(e)

JEZ

2 S+ 3 [+

2-ISdAr BAQ 279 <4Ar (BAQ)S  2-inddr BAQ

+ 3 [ D@ dute)

279 >44r (84Q)°
=T+ IO+IT+1IV.

As in the proof of Lemma (3.1), I = 0. To estimate 7, note that | f(x &) -
F()| < 28+l g(g, )%, Thus,

D))l = U Dz, y)f d’f-‘('y)‘ = U Dy, y)[fly) ~ )] duly)
<ef [Dj(e,)128 gz, y)f duly) < c2-iephliee),

Hence,

Y. 2 [ (griegklayd gy (q)

2-9 <ddr 84Q .
Con@ T s
2= <44r

< ep(Q)rlatead ghite)d  gpo o +a>0.
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Notice that |f(@)| = |[Dy(y,2) — f);\,]XQ(m)[ < e2¥(+e)pe Thus,
DN [ 1Dsa )W)l duly) < 27280 (@)

2AE
and, therefore,

Mge o 279 [ D))" du(z)
2 dAw 846
< Z (Q) 1+ ot~ gh(142)d’ pet!
2odmdAr

< epp(Q)2RUH plevkedd’
Finally, for @ ¢ (RA@)® we have

D@ =] [ 1D3(2,9) ~ Dy, 20)1 (v} du(w)
240

since (1 —a)q' > 0.

9-ie
< e Qk(l-}-e) 2e : )
< (@) U= 2(@, 5 )

Thus,

IV Ze Y (@) abtredd p2ed gmind’

LY W T
. 2-~js q
” J { =7 e | k()
dr ) zer (277 + o(z, 2g))

<@ Z M(Q)Q'25'-(14-5)11’7»254’2——.7‘(cx+s)q’zj[(l+2€)rﬂ—ll
20 md A
since (L + 2e)¢’ > 1
< crll.(Q)’i’(“"*“”"I2"’“""’5)“" '
These estimates yield
“[I)f\(?fa ') ‘ ]).’\:(:’/1 il!Q)]?}Q(
and, henee,
Dy{a)(w)] = ||r!-||,—«:~n-u||[”a=(?/=-) - Dy (y, -Lce)]mJ

Mot € cp(@Q)HE peereghliee)
q'

I)V eny!

which proves (3.21) mul, hence, the “if” part of Theorem B.
Now we prove the “only if” part. Suppose that —¢ <o <,

1 1
N <1< g<oo,
Imm(lﬂ—a»ﬂ»a’l-{-a)<]}'— Lg<<o
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and f € (MPMY with 0 < 8,7 < &, and f € F}ﬁ‘"f. We follow the idea
in [CF]. Let 2, ={z & X: §;ch(f)($) > 2%}, where

SeoaN@={> [

REZ pm,y) <CpA2™"

st B duln}

C is a constant which will be chosen later and .ﬁk, is as in Theorem (2.4).
Set By, = {Q : Q a “dyadic cube” in X such that p(Q N 2) = §1(Q) and
1(Q N 1) < Fu(@)}. It is easy to see that for each dyadic cube @ in X
there is a unique k € Z such that Q € By. For each dyadic cube @ & By
there is a unique maximal dyadic cube @’ &€ By, such that @ € @'. Denote
the collection of all maximal dyadic cubes in By, by Q.4 € Iy, an index set
which depends on k (it is possibly finite). We then have

(3.24) U e=UU U e

Q:dyadic cube ki€l QCQRLQEB,

Write Dg = Dy, and Dg = Dy, for dyadic cubes @ with u(@) ~ 2%, Ap-
plying the Calderén-type reproducing formula of Theorem (2.4), we cbtain

(325) f2)=> DuDa(f)iz)=)_ >, [ Dule,y)Da(f)w)duly)

keZ EEZ 4 (Q)~2— % Q

=Y" [ Dolz,4)Dalf)y) duly)
Q Q
=3 Y [ Dule ) Bilf)(w) duly).

E i QCQLQeR, Q

To obtain an atomic decomposition of f, we need the following lemma.

LemMA (3.26). Suppose that By is as above. Then there erists o constant
¢ such thot

(3.27) > [l

QeBr Q

YT DR()) dualy) S ek fy).

Proof. Let 3 = {& € X : M(xn,)(z) > 1/2}, where M is the Hardy
Littlewood maximal function. By the EHardy- thtlewood maximal function
theorem, /.L(Qk) < cp{f2). Thus,

(3.28) [ 820 alf)2(e) dulz) < 23+ V9B < c2bau(,) .
2\

icm
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On the other hand,

(3.29) 182 alh) @0 () dus(x)

RN
=20 [ @D N a{z € B\r1 : ol y) < CoA29)) duy)
ioX
ey [ @) Do (N Q)
el o

x pl{x e é,g,\f?;wl cole,y) < CoAu(@Q))) duly) .

Since iy ¢ Q ¢ By, then @ © ﬁ"k, there exists a constant Cp such that if
(2 ¢ By then

B30) pl{e € 2\ Zurr + olw,y) < CoAp(@)}) 2 w((@ N )\ 2pn)
= 1 1
PQ NG ~ QD Bi) 2 4(Q) — 54(Q) = Su(Q).
Substituting (3.30) iuto (3.29) together with (3.28) yields (3.27).
Now sof

Moo = op@) (S [ (W@

QGQRLQEB, Q

i/q

)= Do () (w))) duuly))

and

one=e @YD [

C’JCQLIQEI}’# Q

x 3 [ Daley)Da(f)y) duly).
QUL Ry, ¢

By Lenuna {3.26),

Y. [ @ DN duty)

QL el
S 37 [ Q) 1 Bg(H D duly) < 2752 < oo
ey o
which shows Ay, and ap,y ave well defined. Thus, by (3.25),

flz) = E Ak Oi -
ki

It is eagy to see that the a, g satisfy the condition (i) of Definition (1.20).
To check (ii), by duality of Fh? for 1 < ¢ < oo,

—1/q

)= (£) ()7 duy))
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lanill poe = sup (@K )]

loll f—a,q <2
| Fq’ﬂq

< sp ST [1De(NWIDGL ()l dusty) (@47}

R =
o~ -1/q
(Y [ W@ De)wh ) )
QCQL,ReB, @

/ L/
< s @YX f Q)*1D5 (D)) dulw))
ngnra,qu ooy

ql

by Holder’s inequality
< (@M

since

=S ! 1/q'
(2 [ W@ 1Palo)w)) duty)

QcQ} @
¢ /¢
Y S @ 1Be@mD? ) S lglper <
Cdyadic @ ¥
If ¢ =1, then
i, ill o

= ZZjaHDj(a'k,'i)Hl

< ¢ (@)

S [ 32D Dolh i Do(£)w)l duly)

QCQL.QEB: @ 7

(X [ u@Dals

QCQL.QeB, Q

<@ X[ S 5o )

QCRLQEB. @

<{ ¥ [w@ribals Aol dutw)}”

-1
)(w) dply) )

5#(62?;)1‘1”’ Yo [ Q) Dalf)(y)l duly)

QCQk;QEB}e Q

icm
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(3 Jua

QCQLQER;, @
= (@)

71BN duty))

To see that the ap; satisfy the cancellation condition (iii) of (1.20),

suppose that supp ag,; C B(xg,r) and let g, g5 and nz be as in (1.20)(1ii).
Notice first that i

> |< [ Dot Do(n ) dﬁ(y),gﬂ

QUALERL @

(N w@rnyweT )

QG Qen, @

(Y Jwe

WeQ.Qeld, Q

4

=1 Balf) W) du))

wlhere the last Jn(‘quahtv follows from Lernma (3.26) and the fact that g

lwlmq,a Lo 1'1 ' if g e MU with max(0, —a) < # < £ and max(0,a) <
v < ¢ Thiy shuWH

S [ Dol Dolh)y) duly), g>

QCELOel, Q
= > ([ Dal.)Balp)
Q

(3) du(y), g>
QCQL.QEB,

and, hence,

(i ) =50 '

@)Y [ @ 1 Bamy duw)
UEQLRER Q

(3 (f patnPalh)w) duty).g))

Qe .al, @

‘‘‘‘‘ a3 [

latelnlcHi M)
X( > 'f4962('>y)=9>5@(f)(y)a’n.u(y))

QGRL.QeR, @

| Do) dute)) "

=@ (S [ @ BeNw aut)

QC‘QMQGH.E Q
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x Y [ (Dol iy o - 95ing De(F)y) duly)
QCQL.QeBy @

since supp Do(-,y) C B and J Do y) duy) =0
> W@ Daln dut))

= c‘ﬂb(@i)”"(
QCQLQEB. @

x 3 (] Dals)Dol)y) du) o ~ sl
QCRL.QeB, @

= {an,i, 9 — 95103}

since [g— gglny € M®) with max(0, -a) < § < e and max(0, @) < 7 < e.
Finally, we check the condition }, ; |Agl? < oo

> sl
ki

=Y u@ (Y [ @ Belf )W) duly)”
ki

QCQLQel; Q

= ; (Z M(Q;ﬂ)) lﬁp/q( Z Z f (#(Q)_aiﬁce(f‘)(y) Y ri,u(y))wq

QLB @

by Hoélder’s ineguality
_ o o/
<ed @) 3 [ (W@ 1Dalf)w)) duly))
B REBr @
since u(2x N Q}) > 3(Q}) and Q%,i € I, are disjoint
< cZM(Qk)l_”/q2p"’p(Qk)p/q by Lemma (3.26)
k

< CZ 2P () < C||§3E,onA(f)”p
&

< cllS7 (e by Theorem A,

which shows that f has an atomic decomposition; this completes the proof
of Theorem B.

Now we prove Theorem C.

Proof of Theorem C. In {MS2], it was shown that if f € H? for
1/(1+e) <p <1, then f =3, Apay, where the g are (p, 00, 0) atoms and
2ok [Ak[? < o0, Tt is easy to see that (p,00,0) atoms are (£,2,0) atoms (see
[CW]). Thus, by Theorem B and the remark following Definition (1.20), if
f e AP then f € Fg,z for 1/(14+¢) < p £ 1. Conversely, if f Fgﬂ for
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1/ (1) < p % 1, thew =37 Ayay, where the ay, are (p,2,0) atoms and
You Akl < oo by Theorem B and the remark following Definition (1.20).
It can be shown that if [ = 2,‘,’ Aiag, where the oy are (p,2,0) atoms and
Yo Al ooy then [ I for 1/(14+¢) < p € 1. See [MS82] for the proof
fhat 30 J = 32, Apatg, where the ay, ave (p, 00, 0) atoms and Yop lARlP < oo,
then f o HP for 1/(] +2) < p < 1. We leave the details to the reader. This
completes the prool of Theorem C.
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