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Restrictions from R™ to Z" of weak type (1,1) multipliers

by

NAKHLE ASMATR (Coluubia, Mo.),
FARL BERKSON (Urbana, IL) and
JEAN BOURGAIN (Bures-sur-Yvette and Urbana, T}

Abstract. Suppose that {175 is o sequence of weak type (1,1) multipliers for
LYY such that for each j, ¢ is continuous at every point of Z™. We show that the
vostrictions ¢;1Z", § = 1, are weak type (1,1) multipliers for LN(T™). Moreover, the
weak type (1, 1) norm of the maximal operator defined by the sequence {o; }3";] controls
that of the maximal operater defined by the sequence {¢;|Z" 155, This de Leeuw type
restriction theoram for waxinal estimates of weak type (1,1) answers in the affirmative a
question about single multipliers posed by A, Pelezyriski. Our central result, from which
this restriction theorem follows by sultable yegularization srgiments, 15 another maximal
Wiearem regarding convelution of a finction in L1 (E™) with weak type {1,1) multipliers,

1. Introduction. Let n be a posilive integer, and let (7 be either the
additive group R™ or the multiplicative group T™. Denote by I" the dual
group of ¢, For ¢ € L™ (), we symbolize by T the corresponding multiplier
transform on LA(G): Ty f = (q’)f)v . The function ¢ is said to be a multiplier
of weak type (1,1) (in symbols ¢ € M 1““)(1’)) provided that T is of weak
type (1,1) on L'(GH M L*((). Given a sequence {¢;};21 & MU, we
denote by N ,“”){{ b }iz1) the weak type (1,1) norm of the maximal operator
on LN M L2 defined by {Ty, bz

[ [4, Problesn 5, p. 412], A, Peteuyniski posed the following question,
which seeks an annlogue for weak type (1,1} multipliers of a de Leeuw
restriction theorem for strong type multipliers [3, Proposition 3.3):

il @ A5 RY, and ¢ is continuous at each point of Z*, is it necessarily
true that the restriction ¢|Z" belongs to M o (gmy?

190 Mathernaodics Subject Clﬂ.ss'éﬁ(:n,:*.virm:. 421315, 421325,
The work of the authors was supported by separate grauts from the National Science

Toundation (I.5.A).




292 N. Asmar et ol,

Special methods must be devised in order to treat this question, since stan-
dard tools such as Lorentz space duality do not fit weak type (1, 1) estimates.

In §3 we show the following maximal theorem, which includes an allie-
mative answer to Pelezynski’s question.

(L.1) THEOREM. Suppose that {$;}52, C ]\4’1(1”)(]14&‘”'), Suppose also thai
for each j > 1, ¢; is continuous at each pownt of Z". Then {¢;|4"}X|
Mltw)(Z“), and

NEP U127 Y520) < G (91550),
where (,, is a real constant depending only on n.

Theorem (1.1) follows from our central result, which concerny convo-
lutions with weak type (1,1) multipliers. This is established in §2, and is
stated as follows.

(1.2) THEOREM. Suppose that k € L*(R™) and {1;}3%, C M{") (R™).
Then

{k ;)52 © MIVRY,
and

NP ({k  953320) < Kallklloagen N{® (9 }52.)
where K, is a real constant depending only on n.

In what follows, N will denote the set of positive integers, and X will he
Lebesgue measure on B, Applications of Khinchin's Inequality [6;, Theorem
V.84, p. 213] will be expressed in terms of the J-fold direct product Y
{J € N) of the multiplicative group D = {-1, 1}. The general element of
D7 will be written £ = (£1,...,2;), and dé will be Haar measure on D7
normalized to have total mass 1. The symbol “C” with a set of subgeripts
will be used to indicate a positive constant depending only on the subscripts
which may change its value from one oceurrence to another.

2. Proof of the convolution theorem. We begin with three lemmas
which provide the necessary framework for the demonstration of Theorem
(1.2). The first of these is a variation on the method used to prove [B,

Lemma 1, pp. 146, 147]. As noted in [5], this method traces back to the

proof of Calderén’s Lemma in [6yy, pp. 165, 166).

(2.1) LEMMA, Let G be a compact abelian group, and let m be normalized

Hoar measure on G. Suppose that A is a measurable subset of G such that
m(A) > 0. Let ' '

N =max{k ¢ N: m(4) < k'),
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Then there are clements z1,. .., 25 of G such that the corresponding trans-
latrs satisfy

N

(2.2) m(UJA+g)>1-27,
j'.zl

where ¢ ds the base of natural logarithms.

Proof Let I denote the complement G\ A, and let x be the character-
istic function of B. We have

(2.4) f dm(a) f dm(a) ...

¢ g
] dm{ay.1) f xiwy +8). . xlay + 8)dm{zy)
4
= m(G\ ANV < [L— (N + 1Y < 27!,
By Fubini's Theorem the left hand side is equal to
f dm(ay). .. f dm(zy) f x(=zy - 8) . x(~zN + ) dm(s)
g Y g
= f dmzy) ... [ dmizy.1) f m((B+z)N...0(B+zy))dm(zy).
g g g
Clombining this with (2.3), we seo that there are 2;,...,2n5 in G such that

o

N .
m(_c}\ Ja+ zj-) =m((B+z)n.. .N(B+zy))<2 ' m
=1

Lemma (2.1) has the following adaptation to R™.
(2.4) LmmMA. Suppose that b > 0, and A is a Lebesgue-mensurable subset
of [=b,0)" such that A(A) > 0. Pul
N o= max{k € N: A(4) € 20"k},
Then there are points {u, Y20 € [~20, 26)" such that
Non

@0 - 267" < ,\( U4+ u,,) .
wel
Proof. Let Q = A+ (b,...,b) € [0,2b)™ Denote by & the group opera-
tion on [0, 26)" of addition mod (2b) in each coordinate: for & = (z1,...,%n)
€ [0,2())”, Y == ('.U.h R yn) € [(],2[))”, LE<m s n,
; et ym if Zon 4 Ym < 20,
(25) (@ ® Y)m = {mm—i-ymwizb if B + Y = 2.
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Apply Lemma (2.1) to the normalized Haar measure (2b) ™A of the gronp
[0, 2b)" and the set Q. This gives points {2z}, € [0,2b)" such that

N
(2.6) MU@ea) >0 -2".
k=1
For 1 <k < N, put z, = (z’;‘,)l, . .,z;‘:,n), and let Wi, = {[),2{) © ks
Wiem,2 = [2b — z,m, 2b), 1 < m < n. Tt is readily seen thab, for 1< < N,
we have

(27 Q& az = U{ {Qm ﬁ ch,m,jm] Dap: (Giyoodn) € {12} } .

rirael

For each choice of (§1,...,4,) in (2.7), we see from (2.5) thal there is some
Wi, (jy,.000n) € (=20, 28)" such that

n
[Q n H Wknm;jm} ED Zk g— Q + 1”?0,(3‘1,...,,?'“) ‘
m=]

Using this in (2.7), we now obtain the desived conclusion from (2.6). =

The circle of ideas in the next lemma is well-known. We inchude a version
convenient for our purposes.

(2.8) LEMMA. Suppose that (2, u) is & measure space, J € N, and 1y, 1 <
k < J, is a linear mapping of L*(§2, ) into the complec-valued measurable
functions on (2 such that Ty, is of weak type (1,1). Let M be the manimal
operator on L' (2, u) defined by the operators {Tk}ﬁzl, and denote the weok
type (1,1) norm of M on LY (02, 1) by N:Ew)(M). If0<p<l, and Sis @
subsel of 12 such that u(S) < oo, then for ecach g € LM, u),

1Ml 225y < w(8)EP/P(L— p) NI M) gl -

Proof. Put N=(NM (M) 1M, and let f be aunit vector in L1(12, p).
Writing 6(y) = u{s € §: (N F}(s) > y} for all y > 0, we have

L/u(8) o
Wi, = [ 26 dy+ [ 60y dy.
0 . 1/u(8)

Since 6(y) < (), the first term on the right does not exceed u(8) 7. It i
also clear that 8(y) < y~1, and consequently the second term on the right
does not exceed p(1—p) " u(S)1~P. The desited conclusion is now evident. =

Proof of Theorem (1.2). Throughout what follows, the Schwartz
class of functions on R" will be symbolized by &, and the characteristic
function of a subset B C R™ will be written yp. Suppose that J € N,
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{0 € MR, ke S, feS, andy>0. Put
A= {zeR": max [(Tewy, £)(2)1 > v},

and suppose that A(A) > 0. Pick and fix M & N such that Ay = Ay
[ M, MY satisfies A(dpr) > AMA)/2. Let N = max{k € N: MAy) <
(2M )%k '} By Lemnma (2.4) there are points {2, }¥2) C [-2M, 2M)" such
that

N2Wl
(2.9) @M1~ 2¢7) < AU Awe + w)-

el

Vor 10w = N2* et [, denote the translate of f by —z,. It is clear that
Apg -+ 2 G {2 € [-304,3M)" pax, (T wopy (2 ))(m)] > 4}

Consequently, we soe that, pointwise on R",

N 1/
(2.10) X Xneben S YT X508 ]Iélf!g{f{z; | T vy (f=z,)] } .

L=

Now fix an index p such that 0 < p < 1, Applying Khinchin’s Inequality for
p Lo the majoraut in (2.10), and then taking LP-norms, we find with the aid
of (2.9) that

- - 1/2
(2.11) (2M)MPC, <y l{ S éb-‘”‘é‘.f“’WFE\Il’ripa—sm,smdﬁ} ’

IDNETI‘
where, for cach & belonging to DV?" | we define F, € § by writing
Nz".

(2.12) Fe = Z Eufn,

rms]

Tomporarily fix £, and for ecach ¢ ¢ R", denote by = the corresponding
chiaracter on R™. Then for 1 < § < J, we can arrange to have for all x € R",

Doy, )@= [ k(Eyyla) (Ty, (v Fe)) (@) de
B

Apply the Canchy -Schwarz Inequality to the right-hiand side to get

. Y
(2.18) |(’1’k,m1,,_,ﬁ})(;z;)\sllk:ll}ffiw..){ BT,y Fe)) ()2t}
IR'II

[t iy casy to see from standard cousiderations that for each z € R*, &
includes the function of & given by k(t)[(Ty, (v-+Fe))(2)*. Putting Ips =
[-~3M, 3M)", we see from (2.13) and Fatou’s Lemma that
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(214) || max |Toss Fellizoran

= ”kH)lg/lg(Rn) lin:n%nf 9-mn/2

” l<3<J{

We now focus attention on estimating the majorant in {2.14), For rn € 1,
L € N, it is straightforward to see with the aid of Kbhinchin's luequality (by
suitable labelling of indices) that

(2.15) |112?§CJ{ LS

> RO Ty, (Yo ) |} 1/2|

[SYAL Lr(ly)

" 9 1/2
U)HTUJ (7~2 """che:)’ }

=t L (U )
o lloo <L
o=,y |1/%
<al{ [ gl 3 akerol
peLt® sen™
lllo0 S L
n /v
X Yoymg By | dn}
Yogemg e | i Lo {Iar)
<6, [ |pln X ko
pl2L+1)" ey A
ller]loo £2
K Y gumg dry .
Yg-mo by Lo(Tnr) i
From Lemma (2.8) we infer that
(2.16) f ;f?ﬁ;% Ty, }: Nl B(270) |2y ora o Fe o an
peL+u™ aCEn HeTn)
' Hff\im<b

< Cop MMDE NI (3] )

B2y o :),F@(::r:)’dvyd:x:.
Tl- D ﬁL ‘ 1)1‘1 ge li
lorfloo ST

After applying Khinchin’s Inequality to the inner integral in the majorant
of (2.16), we readily find that

f HlIEJaSXJIT% Z nﬂ“k(Q—md)ll/zle—Z*maFe

_D(z):+1)1'L agaf™
lolloe <L

Le(In) 1
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ey (Y -p)/p i - 1/2
A (T S AV L S e [ S X Y
VA
oo £ 1

Using this in (2.15], we get

1) | § Z 2 )T, (-amna P}

S A Lo (lm)
i s,
o F wll -p) g ) i » 1/2
M (f-,;,,pf"’j Nl ({1/1!1'}:}‘:»1){ Z ik(z mo,)l} ”FEHLJ-(RH)-
=y
ol i

Bnploying (2.17) in (2.14), we infer that for each & in DN*",

(2.18) “ 11"])1‘]"?] Iﬁ")ﬂ*‘f/’"‘F’E'!HL?'“‘M

& CpllBll e o, AP NED (g} L) Fell ey -
Notice that by (2.'12) and the definition of N,

e ey € N2 1] ey € 2 Fllzsgeny (M) (A(AD T
Hence we dedace {rom (2.18) that

[Lotta)

< Gyl ey MO N (g H D Fll o ey (A(A))

Applying this to (2.11), we find after some obvious simplifications that M
cancels out, leaving us with

(2.19) Mz eR*:

o, T, T2

F > v}

<y Cupllllz ey N (s Ha) I Loy

for J &N,y =0, ke & & Since the index p s fixed, the constant G,
in {2.19) clv]wmh only on n, and standard approximations using (2. 19) now
coniplete the proof of Theorem (1.2). w

max | (Trwp,
1:“;43.{!“ kwp;

3. Proof of 'I‘hoomm (1 1). Let the sequence {k,}3%, be the Fejér
kernel For IRk, (ay, . ax [0 Fu(zq), where, for all s € R,

)

Denote nornalized Haar measure on T by m. We consider a finite sequence
{¢y }3’.:” oM f“’J(R”) quch that for 1 € § £ J, ¢; is continuous at each point
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of Z", and we shall show that for each f € L*{T"), and y > 0,
no.
(31) miweT": max (T sp2n £)(w)| > v}

< Ko NI oy My 0 I

where K, is the constant in Theorem (1.2). This will establish Theorem (1.1)
with the constant K, of (1.2} serving as (.

By considering {k,,qﬁj} /1, and then letting ¥ — o0, we can casily roduce
the proof of (3.1) to the bpecml case where each ¢; has compact suppori
In this case, for each v € N, and 1 € j £ J, theve is hyy & L'(R")
such that h,,J = ky * ¢;. For each z = (wy,...,2,) € R" lot ()(r)
(expliz1),...,exp(izy,)}, and let Ry be the translation operd.mr ou L)
corresponding to 8(z). For v € N, and 1 < j < J, we use L1(T")-valued
Bochner integration to define the fransferred convolution opervtor M, ; on
LY(T™) by writing

(3.2) Hy;f = [ hyle)

R"

L)

R_nfdz forall f e LY(T™).

Now fix f € L%(T"). Taking the LY{T")-Fourier transform on each side of

(3.2), we easily deduce that
I:I;,,jf = T(hy,j)/\‘%"f = T(Aiu*(ﬂ’j)lznef f

For v € N, we can use the representation R to transfer the weak type (1,1)
bound of the maximal convelution operator on L'{R") defined by the ker-
nels {h,;}{_; (see [2] for this kind of transference in the classical setting at

hand, or {1, Theorem (4.14)] for the general abstract sctting). This gives for
all y > 0,

m{w € T ¢ max [(Huif)()l > v} < N{™ ({(heg) " H)

ol
Y ”fHLL {rey -
In view of the preceding discussion this can be rewritten in the form

(3.3) miweT": Bz, |( (w7 F) (@) >y}

(w) ~ Ll
{k’u *4).] j—«l L”f LI.(’H"H).
After an application of Theorem (1.2) in the majorant of (3.3) we arrive at:

84 mweT": B T, gy zn S Y W) > )

< KN (083 ey Il s
forve N, f € L*(T"), and y > 0. Letting v — oo we can, use the continuity

of ¢;, 1 <4 < J, at each point of Z" to obtain (3. 1) from (3.4) and thereby
complete the proof of Theorem (1.1). m
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