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On the best constant in the Khinchin-Kahane
inequality

by

RATAEL LATALA and KRZYSZTOF OLESZKIEWICZ (Warszawa)

Abstract. We prove that if »; 18 the Rademacher system of functions then

(J IS0 )" <3 ] |$amiofa
d=1 d==]

for any sequence of vectors z; in any normed linear space F.

Introduction. The classical result of Khinchin [3] states that for each
p,q > 0 there exists a constant ¢, ¢ such that for any real numbers 1, ..., Zn,

(S [3enol )" <ol J [ Sente] )

The smallest constant ¢p o will be denoted by C}f’q. Obviously, C’,“f,q =1 for
p < g, but it took some efort to calculate the other best constants. The
especially interesting case p = 2,¢ = 1 was first solved by S. J. Szarek [4],
who proved OF, = +/2. A simpler proof was given by U. Haagerup {1] whio
also found C'ffz and C'Ep for each p > 0. A simple and elementary proof that

#

C%, = v/2 was also presented by B. Tomaszewski [6].

J.-P. Kahane [2] generalized the result of Khinchin to sequences 21, . .,
r, in & normed linear space F, replacing in (1) the absolute value by the
worm in 7. Let €, denote the smallest constant in the vector-valued in-
equalities, over all normed linear spaces F. It is of interest to know if the
constants are the same in the vector and real cases. As far as we know
the best result for p = 2 and ¢ = 1 known up to now was obtained by
B. Tomaszewski [5], who proved that C,; < v/3. In this paper we show that
Cy1 = +/2; we think that our proof is simpler than the cnes known for real
nurmbers.

1/q

1991 Mathematics Subject Classification: Primary 60B11; Secondary 46B09.



icm

102 R. Latala and K. Oleszkiewics

Notation. For ¢ = (o(,...,0,) € {0,1}", o = (a1,..., ) € R,
e = (e, y8n)ym = {m,...,7) € {~1,1}" and z,,...,2, € F let us
define

. lal = Z?:l Tis
e = H:.f:l ol (where 2° = 1 for any = € R),
o —c={(—z,...,—€n),
o X = | T szl
o d(s,n) = card{i : g; £ m; }.
We will denote by E(:) the mean value of (-).

Results. We will prove the following theorem:

THEOREM 1. Let § = Y | &yws, where ¢; are independent Bernoulli
random variables and x; are vectors of a normed linear space F. Then

(BIS|*? < v2E|S).
The constant V2 is the best possible.
Proof Differentiating in ¢ both sides of the equality

T
tz]:[(lﬁ-t'“lai): Z T P
i=1

ae{0,1}*
and setting ¢t = 1 we get
7 n T
2]J0+a) =30 I tta)= > (2~]o])a”
) J=1 =ik rg{0,1)m

Hence setting a; = ¢;7; and summing over £ and n we obtain

(2) Z (2 (1 + Ei"]i) - Z 57 fI (1 e Ei'r],j_))Xg;Xn
=1

E,TEE{—l,I}"- i= Fa=sl EE PSS

= Z Z (2 ~ aPen” X X,
eMnE{=11}" ag{0,1}n

o=k Y oex) oo Box)h

o&{0,1}? g€{~1,1}» ge{~1,1}"
The last inequality holds because X, = X_, for each e, so that obviously

Z E’alXE =)

ge{~1,1}n

it

for each o with |o| = 1.
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Since [T,(1 +&im) #0if e = n, and H?:l,i;éj (14+em)#0iff g5 =
for all i # 7§, the left-hand side of (2) is equal to

DD A W CE 3 XX,
5(':{"’]”]-}“ EE{"LZ}” Ey’ie{“lsl}“.d(&ﬂ)*l
we arrive at

@) 2 Y X+t Y ox( Y

ge{~1,1}n ge{-1,1}n ne{ =11} d({g,m)=1

<2( Yy, X

ce€{—-1,1}n

X, —(n -—2)X5)

By the triangle inequality for each fixed £ we get
(n—2)X, < > Xy
ne{~1,1}",d(e,m)=1
So inequality (3) yields
o Y oxige 3 XE)2.
ee{~1,1}" ee{-1,1}n
Dividing by 2% we get
E|S|IP < 2(E|S))*.

To see that the constant +/2 is the best possible it suffices to take n = 2,

zy = 29 % 0,

Remark 1. If we replace in the above proof X, by X? and use the
inequality

1 n (1 AL
s Y oxsihG( ¥ x)

T?E{.“I-l}"ud(fu"?)=1 WE{“lsl}":d(E,ﬂ)——-]

we will obtain, for p € [1,2),
(E||S|*)Y/ %) < (1 - pj2)~Y/ P E|S]P) P
but we do not think that the above constants are optimal for p > 1.

Remark 2. Since for each bounded real random variable X the func-
tion f(r) = rln E|X|Y" is convex Theorem 1 yields that for all ¢ € (0,1]
and p € (0, 2] with ¢ < p the following inequality holds:

(B[8]P)P < 2Me/P(B| )iy

and the constants 2/9~1/? are optimal.
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