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Pointwise multipliers for reverse Hélder spaces
by

STEPHEN M. BUCKLEY (Maynooth)

Abstract. We classify weights which map reverse Hélder weight spaces to other re-
verse Holder weight spaces under pointwise multiplication. We also give some fairly general
examples of weiglts satisfying weak reverse Holder conditions.

1. Introduction and examples. In this paper our main task (Sec-
tion 2) will be to classify those weights f for which fw is in some reverse
Hélder weight space for all w in some other reverse Holder weight space. In
most cases, we will find that it is necessary and sufficient for f to be in some
related weight space. The weight spaces with which we shall be concerned
are RH, (0 < p < oo), and larger spaces which we shall denote as WRH .
The RH, condition, first examined by Gehring [G], is quite useful in many
areas of analysis, particularly in the theory of quasiconformal mappings. It
is intimately related to the A, condition of Muckenhoupt [Mu] and their
theory has in fact been developed together (notably in [C-F1). If one tries
to develop the theory of quasiregular mappings as for quasiconformal map-
pings (see [B-I]), one is forced to consider a reverse Holder condition weaker
than RH,, leading to the class of weights which we denote as WRH . As
this condition is not as well understood as RH,,, we shall give some fairly
general examples of WRH , weights.

Let us Arst introduce some terminology and notation. Let 2 C R™ be
a fixed open set. By a weight on {2, we mean any non-negative function
on 2 which is not identically zero. Since we are concerned with integrals
throughout, a set will mean a mesasurable set, and sets of measure zero-
do not concern us. A cube will always refer to a cube in {2 whose faces
are perpendicular to coordinate axes. The sidelength of a cube @ will be
denoted by 1(Q). We say two cubes are adjacent if their closures intersect,
but their interiors are disjoint. For any set B and weight w, we write |E| for
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the Lebesgue measure of B, w(E) = [, w, and

el = { ;,pr)”pz (I%I [ wP(z) da:)l/p, peR\{0}.
£ E

We also write [|ul|,, o = esssupgeqw(z). We shall be concerned with re-
verse Holder conditions of either of the following two forms:

(1.1) wilpo < Klwll, ,q, whenever oQ C 12,
(1.2) lwil, o < Klwll,q,  whenever 0@ C £2.

Here 0 < ¢ <« p € o0, K > 1, and o is the concentric dilate of a cube
@byafactor e =2 1. I o > 1 and 0Q C 2, we say Q ig ¢-allowable (or
allowable). We denote the Hardy-Littlewood maximal operator by M and,
for any exponent 1 < p < oo, we write p’ =p/(p— 1).

We denote the class of weights satisfying (1.1) by WRH 2 g o> 1, and
by RHﬁq if o = 1. For ¢ > 1, we denote by RHI;,?&].]?,“ the class of weights
satisfying (1.2). Given w € WRHﬁq, we define WRH;{W(w) to be the
smallest constant K for which (1.1) is true; a similar notation is employed
for all other weight spaces (we shall term this best constant the norm of the
weight in the weight space). If A, B are positive quantities, we shall write
A < B to indicate that A is bounded above by a constant dependent only
on Bj if the bound for A depends on a set § of quantities, we write A < 8.

"279 shall use the following basic facts about the WRH f giors RH;,?;;';C, and
RHp,qi

(A)  All three types of weight spaces are independent of ¢ (for 0 < g
< p) and the first two are independent of ¢ > 1. Therefore, we shall
usually drop references to ¢ and o in future, assuming ¢ = p/2 and
¢ = 20 (this choice of & simplifies the proof of Theorem 2.6). Also,
WRH;‘tq;a(w) < {p,q,0,m, WRHﬁp/Q;QO(w)}, and the corresponding
control statements for RH;2 and }21’;?;"%1’3c are also true.

(B) Ifw e RH, thenw & RH{}, for some e, where 1/ < {p, RHE (w)}
(for any 0 < p < co). The corresponding results for the other gpaces
are also true.

(C) Ifwe RH] for some p > 1, then w € AL for some 1 < 8 < oo;
conversely, if w € Af for some 1 < p, then w € RHZ for some
- 1 < s < oo. This result is also true for RHf'l"" and AI‘?’]“C.

The space Af mentioned in (C) is the space of weights satisfying
lwlly o < Klwll,_p o whenever @ C 2.

This is the well-known weight condition of Muckenhoupt, Afloc ig defined
by the obvious modification to the scope of this inequality. For RH I;O , (A)
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is trivial; (B) and (C) are contained in {G] and [C-F]. For WRH f, (A)
is due to Iwaniec and Nolder [I-N], and (B) can be found in [B-I]. Using
(A)-(C) above, it is easy to show that RHl” = Up<oo Af- = A and also
that w £ RHf if and only if w? € A2 for any 0 < p < co. It also follows
that if w & RHIf2 for some p > 0, then 1/w € RHf for some q > 0.

Most of the versions of (A)-(C) for RH2'° foliow immediately from
the corresponding version for RH?, since w € RHP° if and only if
w & RH;?, for all allowable @ (with a uniform RH, norm), and Ag’bc
is “local” in a similar sense. The one exception is the fact that RH°c
is independent of & > 1. To see that this is true, one simply dissects an
arbitrary (1 4 ¢)/2-allowable cube into 2" o-allowable subcubes. By com-
bining the defining inequality over all the subcubes, it follows easily that
RH Mo C RH;? ql?‘i +o)/2- Since the reverse implication is trivial, iteration
gives the required result. _

We say a positive Borel measure u is doubling (on the set £2) i there
is some C < oo for which p{eQ) < Cu(Q), for all o-allowable cubes @
and some fixed ¢ > 1. We denote this class of measures by D, or simply
DI f is a weight, we shall write f € D? in place of the more awkward
f(z)dz € D?. 1t is well known that RH "¢ < D*? (this result, is essentially
contained in [C-F]). The following lemma is useful in dealing with the D
condition.

LEMMA 1.3, Df is independent of o > 1. Moreover, for anyr >0, p €
D# if and only if there is some constant C = C, such that u(Q') < Ap(Q)
whenever Q, Q" are adjacent, (Q") < rl(@), end (1+2r)Q C {2.

Proof. Suppose 1 < 7 < ¢ and let o/ = (1 +0)/2. If p € D then,
by slicing an arbitrary o'-allowable cube @ into subcubes Q@ (1 < k < 27),
each of sidelength 1{Q)/2, we see that

27’1

2“ .
p(o'Q) <27y " p(oQu) < CY p(@r) = Cu(@Q)-
h=1 k=1

Thus DY ¢ D, By induction, we get D?_l,g-m_a C D{ for every m > 0,
where § = g~ 1. Let 7, = 14+27"0§, where mg is the smallest integer m for
which 14 2=™§ < 7 also let 7 = 7/71. Then 73 < 7, since mm =17 < 2.
If § is r-allowable, then @ and 7@ are both 7i-allowable (and u € Dfl)
Therefore, ‘
u(rQ) < Cp(rQ) < Cu(nQ) < C*u(Q).

Conversely, iteration of the defining inequality for D gives D2 C DY
for all m > 0. Choosing n so.large that 7 > o gives DZ € D& C DT, as
required. ! _ L : : : . .
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Suppose that x4 € D? and that @, Q' are as in the statement of the
lemma. Then Q' C (1 + 2r)Q, and so u(Q") < ({1 + 2r)Q) < Cu(Q).
Conversely, the annulus ((1 + 2r)Q\ @ can be covered with a finite number
(dependent on n, 7) of cubes adjacent to @, with sidelength r times that
of Q. Thus p((1+ 2rQ) < Cu(Q), and so p € D, as required. m

Let us add the following to our list of basic facts about weight spaces:
(D) w & WRH? if and only if w? € WRHY. In fact, for any 0 < g

< p, WRngég(w) = (WRqu/p;a(wp))l/p. The corresponding state-
ments for RH;} and RH'° are also true.

(B) Ifwe WRH, and w® € D? for some £ > 0, then w € RH e,

The first statement in (D) follows from the second statement and (A)
above; the second statement is simple to verify. (E) is trivial: if w® ¢ D%,
then {w]], o < Kllw]|, 50 < 2" K, o for all allowable Q.

The weight conditions RH;D'2 and A;? have been extensively studied
(IG-R] is a good source for their theory), and are much better understood
than WRH f. Therefore, we shall begin by giving some fairly general exam-
ples of WRH f welghts.

It is known that non-negative subharmonic functions on 2 (and more
generally non-negative subsolutions in {2 of any self-adjoint elliptic partial
differential equations [Mo]) satisfy (1.1) with p = oo; therefore such func-
tions are WRH g weights if they are not identically zero. Note that, in
confrast to l‘%I—I;,Q weights, WRH f weights can grow arbitrarily fast (for ex-

ample, f € WRH]S, if f(z) = |e®’| for all z € C = R?). Convex functions
are subharmonic, and so if f is convex, non-negative, and not identically
zero, then f € WRH 150 - We shall weaken the notion of convexity to produce
more examples of weights in WRH 1‘? (0 < p £ o). First, let us state the
following easy geometrical lemma.

LeEMMA 1.4. Suppose a cube Q is sliced into 3° subcubes of equal size. Let
Qo = (1/3)Q be the central subcube and let {@;}2, be the corner subcubes,
i.e. those which include a vertex of Q. Furthermore, suppose T, € Q; (i =

1,...,2%). Then co({m}ill) = Qo, where co S indicates the convex hull of
the set §. :

Proof. We may assume without loss of generality that Qg = [Tia[~1,1]
(so that @ = TT([-3,3]). The result is obviously true for n = 1, so we
assume inductively that it is true for all dimensions n < k, where k > 1.
For dimension n =k + 1, let us order the corner subcubes @Q; so that,
forall 1 <4 .25 Qi = B x [-3,-1] and Qiiax = P; x [1,3], where
{P}2, are the corner subcubes of the Rh-cube P = 1_[;;1[“3, 3!. For each
1 <4< 2% the convex hull of {z;, T;yox ; 18 a line segment which includes
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points yis = (s, 1) for all =1 < ¢ < 1, where u; 4 € P;. It follows from the

inductive hypothesis that co({yijt}f;) 2 Pyx {t}, where Py = (1/3)}P. The
inductive step now follows easily, so we are done. m

DEFINITION 15, If g is a real-valued function on R, and {z € R"™ |
g(z) < o} is convex for every o € R, we say g is conves-contoured.

It is easy to see that convex functions are convex-contoured, as is any
radially increasing function. On the other hand, g(z) = arctan|z| is an
example of a convex-contoured function on R™ which is not convex (or even
subharmonic). There are also, of course, subharmonic functions which are
not convex-contoured (for example, g(z) = |cos 2| for z ¢ C).

ProrosITION 1.6. If u G'RH;? Jor some 0 < p < 00, and g 5 a convex-
contoured weight, then w=ug € WRH?.

Proof. Notefirst that any convex-contoured weight g is locally bounded.
In fact, if Qq is any cube, then g attains its maximum value over Qg at one of
the vertices, v. Writing & = g{v), Lemma 1.4 ensures that the set {g(z) > a}
includes one of the corner subcubes Q; of @ == 3Qy. Let us fix an exponent
g such that 0 < ¢ < p, and assume that @ is allowable. Since RH;? c D9,

g € elluly g, < Kollullyq, < Klwllyq, < 3%/ 7K |w], a0,

where K depends on RHS (w). u .

The simple geometrical assumption in Proposition 1.6 that g is convex-
contoured is not crucial; it is easy to alter the above proof to handle certalm
weaker conditions. For exarple, it suffices to assume only that there exist
C,z > 0 and o > 1, such that for any o-allowable Q, there is a subset 5 of
o @ for which |8}/|Q| > ¢ and

esssup g(z} < Cessinf g(x).
rEQ rEeS
In particular, it is easy to see that uxg € WRHI? for all'vj € RH;?, if
S ¢ R™ ig the “checkerboard” set for which z € S if and only if the sum of
the integer parts of the coordinates of 2 is even. ' -

Obviously, RHI“,Q C RHf‘l"" c VT/’RH{,2 . Using Proposition 1.6, it is
casy to see that the second containment is always s})rict. For examplg,llf

: Jnc
oQ is an allowable cube, then w = Xp\ g € WRH,, but w ¢. RH,
for any p > 0, since w? ¢ D?. On the other hand, if w € RH'°°, then
w e RHf for some g < p, where ¢ depends only on p, -RHf'l‘m(w), and tl:be
dimension n;-this fact follows from Corollary 3.17 of .{SFa]J). For Q.—; R,
RHE = RHX¥ but, if 2.# R, these- spaces are dls%ngf. For. exanple,
it is casy to see that wy(x) = {dist(e, R”\Q)) " € RH, for all r > 0.
However, w, & RHE. In fact, if-we choose & cube @ sueh that 8Q N &N
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is non-empty, then w, & L™7(Q), and so w ¢ R-FI,” = It follows that, if
2 £ R™, then 1’%1’1‘2{"""C Z Rﬂf for all 0 < p, g < o0.

2. Pointwise multipliers. The examples of WRH f weights given in
the first section lead us to ask what conditions on a weight f guarantee
that, for all 0 < p < oo, f- l‘iﬁI-_i’jf‘2 = {fw|we RH;?} is a subset of
WRH f . More generally, one can ask when it is true that f. S € T, where
S, T' are reverse Hplder spaces. In this section, we shall show (Theorem 2.9)
that a quantitative version of such a containment can only occur if § C T
Thus, the only possible cases are f - RH, 2 C RH” f- RH” C WRH, @
f-WRH f C WRH q‘q, and local versions of the fixst two (for some paruculcmr
indices 0 < ¢ < p < oo in each case). It is not hard to classify f in the first
case (Theorem 2.3), but the third case (Theorem 2.6) presents considerably
more difficulties. In the second case, we can only give a partial answer (The-
orem 2.4). We need a couple of preliminary lemmas, the first of which is
the version of the Whitney covering lemma found in [Sal.

LiMMma 2.1. Given R = 1, there is a dimensional constant Cr such that
if G is an open subset of R™, then G' = |, Qx, where the cubes Qy are
disjoint, 3p Xpo, < CrXG ond

H i
5R < w < 15R.
diam(Q)
The next lemma shows that certain weak versions of the 4., condition
are equivalent to the WRH . condition. We shall only need the equivalence
of (ii) and (iv), but we include (i), as it is interesting for its own sake.

LeMMA 2.2. For any fized o > 1, the following conditions on a weight w
are equivalent.

(i) There exist constants 0 < o < 1 and 0 < 8 < 1/Ch% such that if E is
a subset of a o-allowable cube Q, and |E|/|Q| £ «, then w(B)/w(aQ) < 8.
Cy is the constant in Lemma 2.1, for B = 2.
(ii) There exist constants C, ¢ > 0 such that if E is o subset of a
o-allowable cube Q, then w(E)/w(cQ) < C(|E!/\Q]*.
(i) w e WRH“ra for some p > 1.

(iv) we WRH”.

Proof. For the sake of simplicity, we shall assume & = 2. To see that (i)
implies (ii}), let us first write C' = (BOO\f" )" It suffices to show that, for all
positive integers k, w(E)/w(2Q) < B°C¥~! whenever E|/|Q| < cvk/C"’“ =1,
The statement is true for k = 1, so we assume inductively that it is true
for k="4ko > 1.If |E)/1Q[ < of""O"‘l/CkO we apply Lemma 2.1, with R = 2,
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to the set G = {z € Q | Mxp(z) > a/(100y/n)"} > F to get G = |J, Qx,
where the cubes @), are disjoint, 3", Xag, < Caxc and

dISt(Qk )

W0 —=2— 7

T diam(Q) < 30.
It follows that 1004/nQy, intersects G° and that |Eg|/|Qi| < o, where Ej, =
E N Q- Therefore w{Ey)/w(2Qy) < B, and so

= Zw(Ek) = Z 5((2%%”(2@“ < BChw(@) .

But by a standard weak-type estimate on M (see [Ste, p. 5]),
Gl < (500\/—

Bl < 1@

and so w(E) < BCy - freC} ol 1w(2Q), which completes the inductive step.
Let us now prove that (11) implies (iil). We work with an arbitrary but
fixed cube @) and normalize so that w(2Q) = [Q\ Letting By, = {z € Q |
2 < w(z) < 281}, it is clear that |Ex| € 27Fw(Q) < 27%|Q)|, and so
w(Ey) < C27%u{2Q). Thus,

oo

f phtel2 < w(2Q) + Z2s(k+1)/2w(Ek)

(] k=0

w(2Q) (14223 Co72) < C'w(2Q) = C'1Q,
k=0

where C' = C'(C, ). Thus |[w]l;0peq < C" = 27C"||u]); 40, and so w €
WRHIQ+E/2, as required.

Since trivially (iii)=-(iv) and (ii)=>(i), and we know from Section 1 that
(iv)=>(iii), we need only prove that (iii)=-(ii) to finish the proof. If E C @,
and w € WRH ;? for some p > 1, then

v ' 1/p
B o fows ()" ($20)" <o fo) ()
<] I Q Q Q@ : 2R |
which proves (ii) with e =1/p'. »

It is important for our purposes to note that, in proving that (iv) im-
plies (ii), we can choose C' and £ to depend only on n, o and WRH{ (w).
We are now ready to state and prove the first, and easiest, of our pointwise
multiplier theorems. The case p = ¢ of this theorem was prevmusly shown
by Johnson and Neugebauer [J-NJ..
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THEOREM 2.3. (i) If 0 < ¢ < p < oo, then [ - RHE C RHY if and only
if £ € ey RHE, where s =pq/(p—q) (s =00 if p=9q).

(il) If 0 < g < oo, then f-RHS ¢ Ran if and only if [ € RI—I(:,Q.

Proof. We shall first prove (i). (D) allows us to reduce our task to the
case ¢ = 1, since f - RH? C RHZ if and only if f9- RHT?M C RH{, and
£ € Nyey RHS if and only if f4 € Nerpyqy RS

Suppose that f € (), RH{, and that w € RH}’. Thus w € RHE for
some t > p; in fact, [w]l, g £ Cllw|l ;g forsome 0 <& <1, andall @ C .
Since t' < p',

lwflly @ < lwlglflly g < Clwllollf 20
< Clwlgllwfls o/ llwll_cq £ C- Cllwfle g
where the first and third inequalities are by Hbélder’s inequality. Thus, w €
RH{ = RH{®. ‘

Conversely, suppose that f - RHf C RH{? for some 1 < p < co. In
particular, f-1 = f € RH{, and so f1/? € RH?, which in turn implies
that f1+1/7 ¢ RH{. Continuing this iteration, we see that f € RH,ffn, where
P =T 1/pF. But 70— p' (m — 00), and so f € M, ., RHL.

The proof of (ii) is quite similar. Choosing w = 1, we see that f-1 € RH f
is a necessary condition. To prove the converse, suppose first that ¢ < oco. If
f € RHZ, then f € RHJ] for some t > 1. Also, {lw,, o < Cliwll_, g, for
some () < £ < g and all @ C £2. Thus,

H'wf 2.Q < “wHt’q,Q“-ﬂltq,Q < CHw”t’q,Q“f”e/ZQ
< Clwllyg glwfil g/ lwll_e g < Clwfl g

and so wf € RHZ. If ¢ = oo, the proof follows in the same manner, ex-
cept that the first use of Hélder's inequality is replaced by the inequality

[0 f o € 1%llo ol Fllooq ®

It is easily seen from the above proof that if, for some weight f, f-RH ;,7 G
RHJ’, then a quantitative version of the same statement is true, namely
RH’;z (fw) < RHf (w). Similarly, containment leads to quantitatively con-
trolled containment in Theorem 2.6; in Theorent 2.4, one obtains controlled
containment, as long as f satisfies the stated sufficient condition.

We now state an analog of the above theorem for the case f - RH;”? c
WRH ff; we omit the proof which is easily obtained by a few minor modifica-
tions to the above proof {(“Q” becomes “oQ” in a few places). The one part
which cannot be.carried over is the iteration in the proof of the converse
part of (1); this is why we cannot give a full-strength analog of (i) (although
it seems likely that such an analog is true). - R :
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THEOREM 2.4. () If 0 < g<p< o0, a necessary condition for f-RI-Ip{‘2 <
WRH f is that f € WRH f; a sufficient condition is that f € Ny, WRH f ,
where s = pg/(p — q) (s = o0 if p = q),

(if) If 0 <'g < oo, then f-RHE C WRHY if and only if f € WRHZ.

Various other analogs of Theorems 2.3 and 2.4 could be stated. For ex-
ample, it follows as an easy corollary to Theorem 2.3 that if we replace
every RHE space with the corresponding RH'°° space, the statement of
Theorem 2.3 remains valid. Also, one can prove the version of Theorem 2.4
where RHZ1°° replaces WRH 2 in exactly the same fashion as the original
prool.

The following special case of Theorem 2.4 is interesting, as it answers
the question posed at the beginning of this section; it also sheds some light
on the checkerboard set example given after Proposition 1.6. We omit the
gbvious proof.

COROLLARY 2.5. u - RH? C WRHS for all 0 < p < oo if and only if

w € WRH ﬁ, In particular, uw = xg has this property if and only if there
exists some & > 0 for which |S N (2Q)| > &|@| for all cubes @ for which
S| > 0.

THEOREM 2.6 (i) If 0 < ¢ < p < oo, then f- WRHL C WRHY if and
only if f € (o, RE%, where s = pg/(p—g) (s = o0 if p=g).

(it) If 0 < g < oo, then f- WRHZ C WRH? if and only if f € RH&QJ"C.

Most of the statement of this final theorem can be proved by modify-
ing the proof of Theorem 2.3, There is, however, one major obstacle to be
overcome: we must show that if f- WRH % WRH f, then f € D?. If we
assume that WRH f(w f) < WRH f (w), this is not difficult to prove. Let
us consider, for example, the case ¢ = 1. If f ¢ D, then Lemma 1.3 im-
plies that, for each positive integer k, there are adjacent allowable cubes
Qr, @), for which 1(Q%) < UQk)/(4k) but f(Qe) < F(Q,)/k. Letting
Sk = (R™\3Qx) U Qr U Q%, it is easy to see that {WRHfo-(ng)}iil is
a bounded sequence of numbers (this is in fact Lemma 2.7 below for a se-
quence of length 1), Letting @ = (3/2)Q« and E = @, we see that E C Q,
1E|/|1Q] < (6k)™™, and that

X .
E«,[ Fxg, = (B} > m(%_fxgk);_

By Lemma 2.2, the sequence { WRH T (fx 5,/ oy must be unbounded, which
contradicts our additional assumption. o

To eliminate this quantitative control, we must essentially find a single
weight w which does the work of all the weights x . ahaove, If the cubes can

s
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be chosen so that the dilates 4@y, are disjoint, our task is easy: we let w=yxg,
where § = | Jo°, Sk. Arguing as before, it follows that w f 9! WRH?. Because
of disjointness, it is not difficult to see that w WRH
hypothesis.

This argument does not extend to the case where the cubes Q, intersect,
or if they are too close together, because the cubes will then “interfere” with
each other. Some of the more general cases can be handled by more elaborate
versions of this argument; the task of altering the cubes and the weight w so
that the cubes do not interfere with each other will necessitate some extra
techuicalities. The more elaborate weights we shall construct will he asso-
ciated with certain sequemces of quadruples {(Pk,P,’c,A;ﬂ,d;c)}ﬁikl, where
—00 < ky < kg < o0, Py, and P}, are adjacent cubes, Ay is a cube containing
the dilates 50P; for all § > k, and 2.9 £ dy < 3. These quadruples will be
such that I(P]) and I{Ay) are less than I(Py) (in particular, the sidelengths
I{Py) form a decreasing sequence), and Ay is k-conditioned, where we say
a set A is k-conditioned (or conditioned with respect to (Py, P, dy)) if A is
fully contained in one of the sets Py, Pf, Sy = dpPi\(Px U P}), R\ dpFr,
which partition R™. Letting By = | ;5 3F;, the associated weights will have
the form

, contradicting our

_Jon ze€ R"\(Sk U Bk),
w(e) = {bk, z € Si\Bs.

where 0 < by < ag. Furthermore, we have the “continuity condition”

s e i By C S
A7 ey, if By C RS,

It follows that max,eg, w(z) = by and max,egng, w(z) = ar. We shall
denote by W the class of all such weights. For our purposes, by will be very
small compared with ay,.

The weights xg previously considered are of this type (k1 = ko = 0,
ag = 1, by = 0). Since the weights in W generalize these weights, and the
k-conditioning of the sets Aj; is designed to stop the cubes interfering with
each other, the following result should come as ne surprise,

LEMMA 2.7. If w € W, then w ¢ WRHR. . In fact, WRHY (w) < C,,
where C, depends only on n.

Proof We will prove the lemma with Oy, = 5™/),, where A, = 1 —
(3/4)™ ~ (1/40)™. Without loss of generality, we assume k; = —oo and
k2 = oo (we can choose ay = by, when k is outside a given range). Fixing
a cube @), we have |Py_1} > |Q| > |Py| for some integer k. Now, 20Q is
j-conditioned for all except possibly one integer j < k: To see this, note
that if | <k 4s the largest exceptional integer, then 20Q intersects 3P}, and
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s0 20Q C 50P; (since |Q] < |B). Thus 20Q C A; for any 5 < I, and so 20Q
is j-conditioned for all § < [

We therefore assume that 20Q is j-conditioned for all § < k, j # 1. If
4() is [-conditioned, then the assumptions on w imply that w(z} < ¢ for
all z € 4@, with equahty for ¢ € 4Q\By_; (c is either a4 or by). It follows
from our hypotheses that | By} < 107"|Py|, and so [Br_1{ < 13P| + |Bx| <
(3" 4+ 107")|Q|. Therefore, [{z € 4Q | w(z) = c}| > (4" — 3" — 1077)|Q),
and so ||w”1,4c9 Z )"ﬂHwHoo,Q

We must now take care of the alternative case when 4Q is not
l-conditioned. Let us first show that for any cube Qp which is not
I-conditioned, [(5Q0)\5)| > |Qo|. This is easy to see if |Qg| > | P}, so suppose
|Qo| < |Pi]. If Qo intersects R™\(3F), then |(5Q0)\(38)| > |Qol, whereas
if o intersects P, then [(5Q0) N P| > |@p|. The last way that Qy can
fail to be {-conditioned is if @y intersects P/. In this case, it is clear that
1(5Q0) NP1 > |Qol i 1P = 1Qol, while |(3Q0) N Bl > Qo] i | P{] < |Qol-
Letting Qo = 4@, we see that [(20Q) N (R™\S})| > {4Q)|. Proceeding as in
the previous case, we see that [|w]|; yoq 2 57" An||w]|s, g, Which finishes the
proof of the lemma a

We are now ready to prove the main theorem. In this proof, a dilate of
a cube @ will refer to r@) for any r > 0 (not just » > 1); when we need to
be more precise, we refer to rQ as the r-dilate of Q.

Proof of Theorem 2.6. We shall first prove (i). As in Theorem 2.3,
it suffices to do so in the case g = 1. If f € N, RE ", it follows that
for some 0 < £ <.1, all r < p/, all allowable , and some constant C' = C,,
1flleg < CUfIl ;20 Suppose also that w € WRH,, and so w € WRHE
for some t > p. Since ¢/ < ¢,

“wfﬂl,cg < Hf“t’,@”w"t,Q < Cl“f”z‘,@”'w“g/z,zq
< Flly le2/Mflc2q < C-Clwfl, g
where the first and third inequalities are by Hdlder’s inequality. Thus w €
WRH .
Conversely, suppose that f« WRH ¢ WRHY forsome 1 < p < co. Mod-

ifying the iteration argument of Theorem 2.3, we see that f € (.., WRH, 2.
Because of (E), the desired result will follow if we can show that f € D

Let us first show that f(Q) > 0 for all allowable cubes Q. If not, then
there exists an allowable @ for which f(Q) 0, but fiQ) > 0 'f0r all
t > 1. We inductively construct a sequence of cubes {C‘;e} k=1 _mth associ-
ated parameters

o = in{r | Gy C (1+7)@Q},
by = sup{r | Cx and (1+7)Q are disjoint},
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satisfying
(1) ) = 1/2,
(2) 0< bk < Gk/2,
(3) Gy < bk/(k + l),
(4) FU((1+ ar1)QNQ) < F(Ch)/k.

Cy is easily constructed since f(2Q) > 0. Having chosen Cj, we choose
@11 > 0 50 small that (3) and (4) are satisfied. Since f({1+a;)Q) > 0, it is
clear that we can choose a cube C..1 which has positive f-measure and for
which (2) is satisfied (for k = j +1). Letting § = QU (Uis; Cr) U (R™\36),
it follows easily from (2) that w = yg € WRH gf, Letting £y = (% and
Qr = (k/2)Cp, we see that

However, 2Q;, € by—1Q% and so, by (2),

k
ffw:f(Ek)>m ff'w

By 20

By Lemma 2.2, f ¢ WRH f", contradicting our hypothesis.

Let us assume that f ¢ D and arrive at a contradictior. By Lemma 1.3
there are, for every k > 0, adjacent 20-allowable cubes G, @), for which
Q) < U@Qwk)/(2k) but F(Qr) < F(Q%)/k. In the discussion after the state.
ment of Theorem 2.6, we saw that this leads to a contradiction if the dilates
4@y, are disjoint. There is, of course, nothing special about the dilation fac-
tors 3 and 4 in this argument. If the cubes Qr can be chosen so that, for
some 1 > 1, their r-dilates are disjoint, simple modifications to the above
argument will give the required contradiction, Therefore, we shall assume
that {Qi} cannot be chosen to have disjoint r-dilates for any r > 1. We
shall need to consider separately three types of cube sequences: cubes which
stay about the same size, cubes whose sidelengths tend to 0, and cubes
whose sidelengths grow without bound (by selecting a subsequence, all cube
sequences reduce to one of these three types).

Suppose first that 0 < r « (@) < R < oo for all 1 € k. Since no
subsequence of the cubes has disjoint dilates, it follows that the sequence
{Qkl}is compactly supported in 2. By choosing a subsequence if NECeEsALY,
we can assume that @ — @ and Q% — {z}, for some allowable cube Q
and some z € 2 (by which we mean that the vertices of Qr converge to the
corresponding vertices of @, and the vertices of @} all converge to ). But
now, f(Qk) < f(@4)/k — 0 as k — oo, and so F(Q) = 0 (by Lebesgne's
dominated convergence theorem), which, as we have already seen, leads to
a contradiction.
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Suppose next that the cubes Q, Q) can be chosen so that {Qr)— 0
(k — o). Again, we can assume the cubes Qr are compactly supported
in {2 and so, by choosing a subsequence if necessary, we can assume that
@i — {x} for some @ € Q2. Let Ag be the smallest cube containing 50Q); for
all § > k, and s0 Ax — {x}. By taking a subsequence if necessary, we can
assume that for all k € N, 24, is a subset of £2 and that

() 1000(44) < UQ4),
b) 2f(As) < F(Q4),

¢) Qi) < 2R H(Q4),
Q) |Q}| < 27k Qy .

For 1 £ k& < oo, we now construct adjacent cubes Py, P, and a dilation
factor 2.9 <€ d) < 3 such that Ay is k-conditioned. These cubes will be
congtructed by modest dilations of the cubes Qy, Q.- More precisely, it will
be true that

99
(28) 1’6’6@1\: - Pk C Qka Q;&, - Pfi -

In particular, 4; contains 50P; for all j > k.

We need to consider several cases for this construction. If A is condi-
tioned with respect to (Qx, @}, 3), we let (P, Pl di} = (@, Q%, 3)- Othgrm
wise, il Ay intersects (101/100)Q%, let P be the smallest dilate of @, which
containg Ay, let Py be the dilate of @ which is adjacent to P}, and .Iet
dr = 3. Otherwise, if Ay intersects Qr, we let Py be the dilate of ¢} which
is adjacent to Ay, let P be the dilate of @}, adjacent to .Pk, and let c.ik =3
(note that P does not intersect Ay, because of the previous case).. Finally,
if Ay is only partially contained in 3Qy, the triple (@, Q},2.9) will suffice.
In each case, it follows from (a) that our new cubes satisfy (2.8). The new
cubes satisfy conditions very similar to (a)-(d). Specifically,

(a') 1000 I{Ay) < I(Py),

(b") 2/ (Ax) < f(PL),

(') F(Pe) < 2% f(PL),

(@) [Pyl < 277 By,

Now let

(
(
(

102

. FUPL)/(28F(3P%)), = € Sk,
k(@) = { 1,( ’ otherwise,
and w(z) = [oo,; wilz). Clearly, w € WQC WRHY. We get the desired
contradiction by showing that wf ¢ WRH{’. First note that

fsm\P,; Juww — f(Py) + Jo, T

J <27k o7k m o7k
ff’,ﬁ Sun - f(Plé)
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By construction, w{z) < w(z) for z € 3P, with equality if ¢ & Ay, Thus

ff'w_<_ f Juwy .

3P \P, 3P\ P,

Since wy is constant on P, it follows from (b’) that

and so

Since Py, C 2P, it follows from (d') and Lemma 2.2 that fw ¢ WRH.

Finally, we need to consider the case when |@| — co (k — o0). Since we
are assuming that no subsequence of these cubes can be produced to have
disjoint r-dilates for any r > 1, we can inductively produce a subgequence
of these cubes whose 3/2-dilates are pairwise intersecting. We redefine Q,
to be the kth term of this subsequence, We can assume, in addition, that
UQk41) > T1{(Qx), from which it follows that 2Q; C 2Q4+y (for all k € N),
and hence that | 5o ,(5/2)Qk = R™.

We define Ay = 50Q;—; (and so 4; 2 50¢}; for all j < k). We can also
assume that these new cubes Qy, Qf, and Ay satisfy conditions (a)-(d). As
before, we can construct {Py, PJ, dy) so that Ay, is k-conditioned, and

%chﬂc CQw QLCPFC %Qﬁc
We can actually choose dy = 3, since (a) implies that A, ¢ (5/2)Q%.

We shall inductively define weights uy for & > 0, and then define w(z) =
limpg. 00 g {z). This lmit will exist for all ¢ & R™, because the weights
will be defined so that uy(2) = uj(z) for all § > k, x € 3P,. We define
U = 1, to start the induction. If k = 1 or if 4 C P, U P/, we define

n(z) = { F(Pelup-1(2)/ (28 F(3P,)), o € Sy,
up—y (), otherwise.
Otherwise (i.e.,if k > 1 and 4y C S}, = drPe\(Py U P})), we define

o = [ ue-a(@), z € S,
uk@) {'_Zkf(3Pk)Uk—1(m)/f(P,,’,), other\i:fise.

We also write

(&) = {f(P,:)/@’“f(aPk)), z € 5,

1, otherwise,
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Notice that, for each k > 0, up is a constant times Hi.“zl w;, but is
normalized to ensure that w # 0. Clearly, w € W ¢ WRH fo (our sequence
of gquadruples is indexed in the reverse order to that in the definition of W,
but this does not matler), The proof that fw ¢ WRH f is similar to the
case |Qp| — 0. First,

[ fue <2 ¥ [ puy
3PP Py
Next, there exists a constant ¢, > 0 such that w(z) € cpwg(x) for all
¢ € 30, with equality if « & Ay. Since 2f(4y) < F(P)), it follows as before

that
f fw < 27k+2 f fw,
3]’&\]’}; P,:
and so fuw & WRH, This finishes the proof of (i).

For (if), it is obvious that f € RH!° is a sufficient condition for con-
tainment. For the converse, the case g < oo can be reduced to the case
g = 1, which can then be proved by straightforward modifications to the
proof of (i) (the main task, proving that f € D, has essentially been proven
already, since all of the weights w we constructed are WRH weights). The
case ¢ = oo also follows easily, If f - WRHE C WRH? < WRH, then
f e RHM ¢ D (by the case ¢ < o), and also f-1=f &€ WRHD. It
follows that f ¢ RIFZWC, » '

The following theorem shows more or less that if S and T are reverse
Holder spaces, f is a weight, and f- 5 C T, then S CT.

THBOREM 2.9. Suppose f is o weight and 0 < p,q < c0.

() If f - RES ¢ WRHE, and WRH] (fw) < RHS (w), then g <p.

(i) £+ WRHT ¢ RH e,

(ii1) If 2 5t R™, then f- R.Hr{?’l"c ¢ RHZ,

Proof. Let us prove (1. We can assume without loss of generality that
p = 1. Suppose, for the purposes of contradiction, that f is aweiggt for which
WRH{,‘?(M) < RE{ (u), for some ¢ > 1. Thus, f = f-1 € WRH, .Le1:, us‘ﬁx
8 3-allowable cube @, normalize f so that | [, 5o = 1, and fix s satisfying
1/q < & < 1. For any a € R, pu{z) = [z —a|™*" ¢ 4) C RH1, and RH (p.)
is independent of a. We shall denote by € any constant independent of a. If
Q. G Q I8 a cube centered at a, and ug = fp,, then .

Ua(Qa) $ |Qul el g, < 1Qal11Q1Y4|luall, g
But, by hypothesis, { WRH ‘; (ts) }aeq is bounded, and so |
”u'GHc],Q < C”'“'a“l/g,zcz < 0||pavH1;2Q”le,2Q ORI
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Therefore

)”q QP

)34 1/4'
<

"}, cach of sidelength [(Q)/N,

4el @) (

Since pa(z) > ¢n|Qo| ™ for z € Q

f Q) £C

If we split @ into subcubes Py ( 5
this last inequality implies that

Nn
FQ) =3 f(Ps) S N™ - CIQI/N+T) = QN o
k=1
where C' is independent of N. Letting N — oo, this implies that f(Q) =0
for all allowable cubes, a contradiction since f £ 0.
To prave (ii), suppose that f. WRH f c Rﬂf']““ for some weight f.
Thus, f € RH;”"“, and so 1/f € RH219¢ for some s > 0. It follows from
Theorem 2.3 that

WRHY = f. f - WRH C RHMREM ¢ Ry

where ¢ = 5q/(s+q) if ¢ < oo, and t = s if ¢ = 00, Since WRH 2 ¢ RHSl
for any r > 0, this gives us the required contradiction.
We saw at the end of Section 1 that if £2 # R”, then R, (dlee 7 RHP

for any p,t > 0. The proof of (iii) now follows in a similar fashmu to thcn
of (ii), so we omit it. m
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