

STUDIA MATHEMATICA 109 (1) (1994)

Maximal estimates for nonsymmetric semigroups

by

JACEK ZIENKIEWICZ (Wrocław)

Abstract. Let X_0, X_1, \ldots, X_k be left-invariant vector fields on a Lie group and let $L = \sum_{i=1}^k X_i^2 + X_0$. Then L is the infinitesimal generator of a semigroup $\{p_t\}_{t \geq 0}$ of probability measures on G. Let $P^*f(x) = \sup_{0 \leq t \leq 1} |f * p_t(x)|$. A necessary and sufficient condition for P^* to be of weak type (1,1) is given.

1. Let G be a Lie group and \mathfrak{g} its Lie algebra identified with the left-invariant vector fields on G. Let X_0, X_1, \ldots, X_k belong to \mathfrak{g} and assume that they generate \mathfrak{g} as a Lie algebra. Let

(1.1)
$$L = \sum_{i=1}^{k} X_i^2 + X_0.$$

The operator L is the infinitesimal generator of a semigroup $\{p_t\}_{t\geq 0}$ of probability measures on G. We consider the local maximal function

(1.2)
$$P^*f(x) = \sup_{0 < t < 1} |f * p_t(x)|.$$

The aim of this note is to show that

$$(1.3) P^* is of weak type (1,1)$$

if and only if X_0 belongs to the linear span of X_1, \ldots, X_k and of their brackets of length two.

The proof is obtained by showing that (1.3) is equivalent to a condition formulated in terms of a system of optimal control metrics defined by Hebisch in [He], which might be of independent interest.

We note that the global maximal function

$$P_*f(x) = \sup_{t>1} |f * p_t(x)|$$

is usually unbounded if $X_0 \neq 0$. Indeed, for the operator $\partial^2 + \partial$ on \mathbb{R} , we have

$$P_*\delta_0(x) = C|x|^{-1/2}$$
.

¹⁹⁹¹ Mathematics Subject Classification: Primary 22E30.

If $X_0 = 0$, then L is a symmetric, Markovian, nonpositive operator on $L^2(m)$ and, by a general theorem of E. M. Stein [S], P^* is bounded on $L^p(m)$, 1 .

Also it has been proved [Co] that, in this case, (1.3) holds. The basic tool used in [Co] were the Dunford–Schwartz ergodic theorem and the pointwise estimates of the semigroup kernels. This technique seems to be applicable in the proof of the sufficiency part of our theorem; however, we give here a more direct argument based on the classical covering properties.

Let d be the optimal control metric corresponding to X_1, \ldots, X_k and

$$B(r) = \{x \in G : d(x) \le r\}.$$

Then, for m being the left invariant Haar measure (cf. e.g. [V] or [He]),

$$p_t(x) \le Cm(B(t))^{-1/2} \exp(-\varepsilon d(x)^2/t)$$
 for all $0 < t \le 1$,

and for some constants C and ε . From this (1.3) can be deduced as in the proof of Lemma (2.1) below.

Similarly, if X_1, \ldots, X_k form a linear basis of \mathfrak{g} , and X_0 is arbitrary, then (1.3) holds.

However, in the case when X_1, \ldots, X_k only generate \mathfrak{g} as a Lie algebra, E. Damek and A. Hulanicki [DH] have noticed that (1.3) may not hold for an appropriate X_0 .

The author is grateful to Andrzej Hulanicki for discussions on the subject of this paper.

2. Let X_0, X_1, \ldots, X_k belong to $\mathfrak g$ and assume that they generate $\mathfrak g$ as a Lie algebra. We define vector fields

$$Y_{i,j} = \operatorname{ad}_{X_0}^j(X_i), \quad i \in \{1, \dots, k\}, \ j \in \{0, 1, \dots, \dim(G)\}.$$

Then the Lie algebra \mathfrak{h} generated by the $Y_{i,j}$'s is either equal to \mathfrak{g} or is of codimension 1 in \mathfrak{g} depending on whether $X_0 \in \mathfrak{h}$ or $X_0 \notin \mathfrak{h}$.

Let $H=\exp \mathfrak{h}.$ An absolutely continuous curve $\gamma:(0,1)\to H$ is called admissible if

$$\dot{\gamma}(s) = \sum_{i=1}^k \sum_{j=0}^{\dim(G)} a_{i,j}(s) Y_{i,j}(\gamma(s))$$

where $a_{i,j} \in L^2(0,1)$.

Following W. Hebisch [He] we define the length of γ and the distance on H:

$$|\gamma|_t^2 = K \sum_{i=1}^k \sum_{j=0}^{\dim(G)} \int_0^1 |a_{i,j}(s)|^2 ds t^{-1-2j},$$

$$d_t(x) = \inf\{|\gamma|_t : \gamma \text{ admissible, } \gamma(0) = e, \ \gamma(1) = x\}$$

where the constant K will be specified later.

We extend the metric d_t to the whole of G putting $d_t(x) = \infty$ for $x \in G \setminus H$. The basic properties of the metrics d_t are collected in the two lemmas below.

(2.1) LEMMA. Let $d=2\dim(G)+1$. For $s\geq 1,\ t\in [0,1],\ we have <math display="block">s^{-d}d_t(x)^2\leq d_{st}(x)^2\leq s^{-1}d_t(x)^2\ .$

Proof. It suffices to prove (2.1) with d_t replaced by $|\gamma|_t$. Let $d = 2\dim(G) + 1$ and $s \ge 1$. From the definition of $|\gamma|_t$ we obtain

$$|\gamma|_{st}^{2} = \sum_{i=1}^{k} \sum_{j=0}^{\dim(G)} \int_{0}^{1} a_{i,j}(u)^{2} du (st)^{-1-2j}$$

$$\geq \sum_{i=1}^{k} \sum_{j=0}^{\dim(G)} \int_{0}^{1} a_{i,j}(u)^{2} du s^{-d} t^{-1-2j} = |\gamma|_{t}^{2} s^{-d}.$$

The second inequality can be proved in the same way.

Let
$$B_t(R) = \{x : d_t(x) < R\}.$$

(2.2) COROLLARY. $B_t(k) \subseteq B_{k^2t}(1)$ for k = 1, 2, 3, ...

Let e_1, \ldots, e_n be a basis of g. Define a family of linear transformations of g, called *dilations*, by

$$\delta_t(e_i) = t^{\alpha_i} e_i .$$

We say that a vector $X \in \mathfrak{g}$ is homogeneous of degree α if

$$\delta_t(X)=t^{\alpha}X.$$

A norm $\|\cdot\|$ on g is called homogeneous if

$$\|\delta_t(X)\| = t\|X\|.$$

Denote by m the left invariant Haar measure on G.

We identify a neighbourhood of e in $\mathfrak g$ with a neighbourhood of 0 in G via the exponential map. The following facts have been proved in [He].

- (2.3) LEMMA. There exists a homogeneous norm $\|\cdot\|$ on H and a family of dilations $\{\delta_t\}_{t>0}$ such that
 - (i) $B_t(R) \supseteq \{x : ||x|| < Ct^{1/2}\} \text{ for } 1 > t > 0,$
 - (ii) $\{x: ||x|| < C_1 t^{1/2}\} \supseteq B_t(R) \text{ for } 1 > t > 0,$

where C, C1 depend on R, as the state of the

(iii) X_0 is the sum of homogeneous vectors of degree 1 or 2 (in the sense defined above) if and only if

$$X_0 = \sum_{i=1}^k a_i X_i + \sum_{i,j=1}^k b_{i,j} [X_i, X_j],$$

(iv) there exist positive constants q, C, c such that

$$ct^{q/2} < m(B_t(1)) < Ct^{q/2}$$
 for $0 < t < 1$.

The equivalence of (i) and (ii) has been proved in [He, Lemmas (4.1) and (4.10)].

The property (iii) follows easily from the construction of the norm $\|\cdot\|$ and the construction of gradations defined in the proof of [He, Lemma (4.1)].

Our basic tool is the following semigroup kernel estimate proved in [He].

(2.4) Theorem. Let p_t be the kernel of the semigroup generated by L, and let

$$q_t(x) = p_t * \delta_{\exp(-tX_0)}(x).$$

Then there exist C and K (see definition of d_t) such that for q defined in (2.3)(iv) and all t < 1 we have

$$q_t(x) \le Ct^{-q/2} \exp(-d_t(x)^2).$$

3. First let G = H. We will now control our maximal operator by a local maximal operator of Hardy-Littlewood type

(3.1)
$$M^*f(x) = \sup_{0 < t < 1} m(B_t(1))^{-1} \int_{B_t(1)} |f(xy^{-1})| \, dy$$

where dy is the right-invariant Haar measure on G.

(3.2) LEMMA. Assume that

$$\sup_{0 < t < 1} d_t(\exp(tX_0)) < \infty.$$

Then there is an operator S bounded on $L^1(m)$ and a constant C such that

$$P^*f(x) \le CM^*f(x) + Sf(x)$$

for $x \in G$.

Proof. Denote by I_A the indicator function of the set A. From Theo-

rem (2.4) and Corollary (2.2) we obtain

$$e_{t}(x) = Ct^{-q/2} \exp(-d_{t}(x)^{2}) \leq Ct^{-q/2} \sum_{k=0}^{\infty} \exp(-k^{2}) I_{B_{t}(k+1)}(x)$$

$$\leq Ct^{-q/2} \sum_{k^{2} \leq t^{-1}} \exp(-k^{2}) I_{B_{k^{2}t}(1)}(x)$$

$$+ Ct^{-q/2} \exp(-(2t)^{-1}) \sum_{k^{2} > t^{-1}} \exp(-k^{2}/2) I_{B_{1}(k)}(x)$$

$$\leq CC_{1} \sum_{k^{2}t \leq 1} \exp(-k^{2}) k^{q} m(B_{k^{2}t}(1))^{-1} I_{B_{k^{2}t}(1)}(x)$$

$$+ \sup_{0 < t < 1} t^{-q/2} \exp(-(2t)^{-1}) \sum_{k=0}^{\infty} \exp(-k^{2}/2) I_{B_{1}(k)}(x).$$

Hence, for f > 0.

$$f * e_t(x) \le CC_1 \sum_{k^2 t \le 1} k^q \exp(-k^2) m(B_{k^2 t}(1))^{-1} f * I_{B_{k^2 t}(1)}(x)$$
$$+ C_2 \sum_{k=0}^{\infty} \exp(-k^2/2) f * I_{B_1(k)}(x)$$

and so

$$\sup_{0 < t < 1} |f * e_t(x)| \le CC_1 \sum_{k=1}^{\infty} k^q \exp(-k^2) M^* f(x)$$

$$+ C_2 \sum_{k=1}^{\infty} \exp(-k^2/2) |f| * I_{B_1(k)}(x).$$

Let

$$Sf = |f| * \sum_{k=1}^{\infty} \exp(-k^2/2) I_{B_1(k)}.$$

Since $m(B_1(k)) = m(B(1))^k \le e^{Ck}$, S is bounded on $L^1(m)$. From (3.3) and (2.2) we obtain

$$e_t(x \exp(tX_0)) \le t^{-q/2} \exp\{-d_t(x)^2/2 + 8d_t(\exp(tX_0))^2\}$$

$$\le C_3 t^{-q/2} \exp(-d_t(x)^2/2) = C_4 e_{ct}(x),$$

which completes the proof of the lemma.

(3.4) LEMMA. There exist R, t_0 such that for $t < t_0$ we have

$$\int_{B_t(R)} q_t(y) \, dy \ge 1/2 \, .$$

Proof. As in the proof of Lemma (3.2), for $x \notin B_t(R)$ and $t < t_0$ we have

$$\begin{split} e_t(x) &\leq C \sum_{R^2 < k^2 < t^{-1}} \exp(-k^2) k^q m(B_{k^2 t}(1))^{-1} I_{B_{k^2 t}(1)}(x) \\ &+ C \sup_{0 < s < t} (s^{-q/2} \exp(-(2s)^{-1})) \sum_{k=0}^{\infty} \exp(-k^2/2) I_{B_1(k)}(x) \,. \end{split}$$

Hence

(3.5)
$$\int_{B_{t}(R)^{c}} q_{t}(x) dx \leq \int_{B_{t}(R)^{c}} e_{t}(x) dx$$
$$\leq C \sum_{k=R}^{\infty} k^{q} \exp(-k^{2}) + C \sup_{0 < s < t} (s^{-q/2} \exp((2s)^{-1})).$$

On the other hand,

$$\int q_t(x) dx \to 1 \quad \text{as } t \to 0^+,$$

which, in view of (3.5), implies the lemma.

(3.6) COROLLARY. Let $f_T = I_{B_T(2R)}$. Then $f_T * q_t(x) \ge 1/2$ for $x \in B_T(R)$ and t < T.

Proof. We have

$$f_T * q_t(x) = \int\limits_{B_T(2R)x} q_t(y) \, dy \ge \int\limits_{B_t(R)} q_t(y) \, dy \ge 1/2 \, ,$$

whence, since for $x \in B_t(R)$ and t < T we have $B_T(2R)x \supseteq B_T(R) \supseteq B_t(R)$, the corollary follows.

As a consequence we obtain

(3.7) Corollary. For $x \in B_t(R) \exp(-tX_0)$ and $t \le T$, $f_T * q_t(x \exp(tX_0)) > 1/2.$

(3.8) Lemma. Assume that $\sup_{0 < t < 1} d_t(\exp(tX_0)) = \infty$. Then for fixed N there exists $T_N < 1$ such that

$$d_{T_N}(\exp(lN^{-1}T_NX_0)) > 4R \quad \text{for } l \in \{1, \dots, N\}.$$

Proof. Let $t_n \setminus 0$ be such that $d_{t_n}(\exp(t_n X_0)) \to \infty$ as $n \to \infty$, $c_n = ((N-1)!)^{-1}t_n$ and $1 \le l \le N$. Then

$$d_{t_n}(\exp(t_n X_0)) = d_{(N-1)!c_n}(\exp((N-1)!c_n X_0))$$

$$= d_{(N-1)!c_n}((\exp(lN^{-1}c_n X_0))^{N!/l})$$

$$\leq N! l^{-1} d_{(N-1)!c_n}(\exp(lN^{-1}c_n X_0))$$

 $\leq \frac{N!}{((N-1)!)^{1/2}l} d_{c_n}(\exp(lN^{-1}c_nX_0)).$

Hence

$$d_{c_n}(\exp(lN^{-1}c_nX_0)) \to \infty$$
 as $n \to \infty$.

(3.9) LEMMA. Let $\tau_j = j(2N)^{-1}T_{2N}$, where $N \leq j \leq 2N$. Under the hypothesis of Lemma (3.8), the balls

$$B_j = B_{\tau_j}(R) \exp(-\tau_j X_0), \quad N \le j < 2N.$$

are disjoint.

Proof. Suppose

$$y \exp(-\tau_i X_0) = x \exp(-\tau_j X_0), \quad y \in B_{\tau_i}(R), \ x \in B_{\tau_j}(R), \ i > j.$$

Then
$$x^{-1}y = \exp(l(2N)^{-1}T_{2N}X_0)$$
, $l = i - j \in \{1, ..., N\}$ and, by Lemma (3.8), $d_{T_{2N}}(x^{-1}y) = d_{T_{2N}}(\exp(l(2N)^{-1}T_{2N}X_0)) > 4R$.

On the other hand.

$$d_{T_{2N}}(x^{-1}y) \le d_{T_{2N}}(x^{-1}) + d_{T_{2N}}(y) \le d_{\tau_j}(x) + d\tau_i(y) \le 2R$$

and the lemma follows.

Now we are ready to prove our main result.

(3.10) THEOREM. The following conditions are equivalent:

- (i) P^* is of weak type (p,p) for a $p, 1 \le p < \infty$.
- (ii) $\sup_{0 < t < 1} d_t(\exp(tX_0)) < \infty$.
- (iii) $X_0 = \sum_{i=1}^k a_i X_i + \sum_{i,j=1}^k b_{i,j} [X_i, X_j]$.

Proof. The equivalence of (ii) and (iii) follows easily from Lemma (2.3) and from the definition of d_t .

To prove (i) \Rightarrow (ii) we fix a sufficiently large N. From Corollary (3.7) and Lemma (3.8) we infer that

$$m(\{x \in G : P^* f_{T_{2N}}(x) \ge 1/2\}) \ge m\Big(\bigcup_{j=N}^{2N} B_j\Big) = \sum_{j=N}^{2N} m(B_{\tau_j})$$
$$\ge Nm(B_{2^{-1}T_{2N}}(R)) \ge Nm(B_{2^{-1}T_{2N}}(1)).$$

But $||f_{T_{2N}}||_{L^p(H)}^p = m(B_{T_{2N}}(2R)) \le Cm(B_{2^{-1}T_{2N}}(1))$, whence

(3.11)
$$m(\lbrace x \in G : P^* f_{T_{2N}}(x) \ge 1/2 \rbrace) \ge N \| f_{T_{2N}} \|_{L^p(H)}^p,$$

which completes the proof that P^* on $L^p(H)$ is not of weak type (p,p) in the case when $g = \mathfrak{h}$.

In the case when $g \neq h$ we represent elements x from a small neighbourhood of e in G in the unique form $x = h \exp(-tX_0)$ where $h \in H$. Let f be

a Borel function on G such that $f \in L^p(G)$ for some $p < \infty$ and f equals $+\infty$ on H. Then, from Theorem (2.4), we have

$$T_t f(x) = \int f(x \exp(tX_0)y^{-1}) d\mu_t(y) = \infty$$

where μ_t is a measure supported on H with the density q_t . This completes the proof of (i) \Rightarrow (ii).

The proof of (ii) \Rightarrow (i) is classical and well known [CW]. We only briefly sketch two main steps.

Let $0 \le f \in C_c^{\infty}(G)$ and $K = \{x : M^*f(x) > \lambda\}$. By the definition of K, for every $x \in K$, there exists $0 < t_x < 1$ such that

(3.12)
$$\int_{B_{t_x}(1)} f(xy^{-1}) \, dy > \lambda m(B_{t_x}(1)) \, .$$

Denote by Δ the modular function $d_l y/dy$ (where $d_l y$ is the left invariant Haar measure on G). From (3.12) one easily derives

(3.13)
$$\int_{xB_{t_x}(1)^{-1}} f(y) \Delta(x^{-1}y) \, dy > \lambda m(xB_{t_x}(1)).$$

Hence

(3.14)
$$C \int_{xB_{t_x}(1)} f(y) \, dy > \lambda m(xB_{t_x}(1))$$

because the balls $B_t(1)$ are symmetric and $|\Delta(x^{-1}y)| < C$ for $y \in xB_{t_x}(1)$.

The required weak type (1,1) estimate follows, by a standard argument, from (3.14) and the following covering property:

Let $K = \bigcup_{i=1}^n x_i B_{t_i}(1)$ where $t_i < 1$. Then there exists a constant C and numbers i_1, \ldots, i_s such that

- (i) the sets $x_{i_k}B_{t_{i_k}}(1)$ are pairwise disjoint,
- (ii) $m(\bigcup_{k=1}^{s} x_{i_k} B_{t_{i_k}}(1)) \ge Cm(K)$.

We omit a standard proof of this property.

Remark. Since the crucial estimate also holds for operators of the form

(3.15)
$$L = \sum (-1)^{n_j} X_j^{2n_j} + X_0$$

minor modifications of our argument prove the equivalence of (i) and (ii) of Theorem (3.10) for operators (3.15). Also an analogue of (iii) can be formulated.

References

[CW] R. Coifman et G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, New York, 1971.

- [Co] M. Cowling, G. Gaudry, S. Giulini and G. Mauceri, Weak type (1,1) estimates for heat kernel maximal functions on Lie groups, Trans. Amer. Math. Soc. 323 (1991), 637-649.
- [DH] E. Damek and A. Hulanicki, Maximal functions related to subelliptic operators invariant under an action of a solvable Lie group, Studia Math. 101 (1991), 33-68.
- [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
- [G] Y. Guivarc'h, Sur la loi des grands nombres et le rayon spectral d'une marche aléatoire, Astérisque 74 (1980), 47-98.
- [He] W. Hebisch, Estimates on the semigroups generated by left invariant operators on Lie groups, J. Reine Angew. Math. 423 (1992), 1-45.
- [Hö] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
- [S] E. M. Stein, Topics in Harmonic Analysis Related to the Littlewood-Paley Theory, Princeton Univ. Press, 1970.
- V N. Th. Varopoulos, Analysis on Lie groups, J. Funct. Anal. 76 (1988), 346-410.
- Y K. Yosida, Functional Analysis, Springer, 1965.

MATHEMATICAL INSTITUTE UNIVERSITY OF WROCLAW PL. GRUNWALDZKI 2/4 50-384 WROCŁAW, POLAND

> Received November 20, 1992 Revised version May 2, 1993

(3028)