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Maximal estimates for nongsymmetric semigroups

by
JACEK ZIENKIBEWICZ (Wroctaw)

Abstract. Tet Xo,X1,...,X; be left-invariant vector fields on a Lie group and let
L= Ef:‘l X2 4 Xy. Then L is the infinitesimal generator of a semigroup {pi}iyo of
probability measures on G. Let P*f(z} = supgeser |F * pe(z)]. A necessary and sufficient
condition for P* to be of weak type (1,1) is given.

1. Let @ be a Lie group and g its Lie algebra identified with the left-in-
variant vector fields on @, Let Xg, X1, .-, X% belong to g and assume that
they generate g as a Lie algebra. Let

k
(1.1) L= X}+Xo.
N
The operator L is the infinitesimal generator of a semigroup {pi}tzo of
probability measures on G. We consider the local mazimal function

(1.2) P*f(e) = sup |fx*pi(z)].
o<l

The aim of this note is to show that

(1.3) : P* is of weak type (1,1)

if and only if Xy belongs to the linear span of Xi,..., X} and of their
brackets of length two.

The proof is obtained by showing that (1.3) is equivalent to a condi-
tion formulated in terms of a system of optimal control metrics defined by
Hebisch in [He|, which might be of independent interest.

We note that the global mazimal function

P, f(x) = sup |f * pe(a)]
1

is usually unbounded if Xy # 0. Indeed, for the operator 9% + 8 on R, we
have ' :

P.6o{z) = Olz|7*/?.
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If X = 0, then L is a symmetric, Markovian, nonpositive operator on
L?(m) and, by a general theorem of E. M. Stein [S], P* is bounded on
LP(m), 1 < p < oo.

Also it has been proved [Co] that, in this case, (1.3) holds. The basic tool
used in [Co] were the Dunford-Schwartz ergodic theorem and the pointwise
estimates of the semigroup kernels. This technique seems to be applicable
in the proof of the sufficiency part of our theorem; however, we give here a
more direct argument based on the classical covering properties.

Let d be the optimal control metric corresponding to Xy, ...,

B(ry={z € G:d(z)<r}.
Then, for m being the left invariant Haar measure (cf. e.g. [V] or [He]),
p:(2) < Cr(B()) Y2 exp(—ed(z)?/f) forallO<t <1,

and for some constants €' and . From this (1.3) can be deduced as in the
proof of Lemma (2.1) below.

Similarly, if X1,..., Xy form a linear basis of g, and Xy is arbitrary, then
(1.3) holds.

However, in the case when X, ..., X} only generate g as a Lie algebra,
E. Damek and A. Hulanicki [DH] have noticed that (1.3) may not hold for
an appropriate Xg.

X,rc and

The author is grateful to Andrzej Hulanicki for discussions on the subject
of this paper,

2. Let Xo, X3,..., X} belong to g and assume that they generate g as a
Lie algebra. We define vector fields

Yy =adl (X)), ie{l,...,k}, 7€{0,1,...,dim(G)}.
Then the Lie algebra f) generated by the ¥ ;’s is either equal to g or is of
codimension 1 in g depending on whether Xy € h or X & b.
Let H = exp . An absolutely continuous curve v : (0,1) — H is called

edmissible if-
k dim(Q)

()= > aii(s)Vii(x(s))

i=l  g=0
where a;,; € L3(0,1).
Following W. Hebisch [He] we define the length of v and the distance
on H:
k& dim(G
|’7|t = KZ Z f |a'r.,j |2d5t_1 2"'
i=1l 4F=0 0
di(%) = inf{[7]; : v admissible, 4(0) = e, v(1) =z}
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where the constant A will be specified later.
We extend the metric d; to the whole of G putting di(x) = oo for

z € G\ H. The basic properties of the metrics d; are collected in the two
lemmas below.

(2.1) LemMA. Let d = 2dim{G} + 1. For s> 1, t € {0,1], we have
s7y(2)? < dur(z)? < 57Ny (2)2 .
Proof. It suffices to prove (2.1) with d; replaced by |v|;. Let d =
2dim(G) + 1 and s > 1. From the definition of ||, we obtain
ko dim(G) 1

=3 Y f ouslu)du(st)y™"¥

im]  d=(
kodim(&) 1

> Z f as, 5 () dus™4 172 = |y|2574,
i=0 0

f==

The second inequality can be proved in the same way. m
= {x: d(z) < R}.
(2.2) COROLLARY. By(k) C Byay(1) fork =1,2,3,...

Let By(R)

Let eq,...,¢e, be a basis of g. Define a family of linear transformations
of g, called dilations, by

51,(61') = t““e,- .

We say that a vector X € g is homogeneous of degree o if

§,(X) = £°X .
A norm | - || on g is called homegeneous if
16X =t X

Denote by m the left invariant Haar measure on G.

We identify a neighbourhood of ¢ in g with a neighbourhood of 0 in &G
via the exponential map. The following facts have been proved in [He].

(2.8) LEMMA. There exists a homogeneous norm | - || on H and a family
of dilations {6:}150 such that

(i) By(R) 2 {z: ||z| < CtM/%} for 1>t 0,
(ii) {z : ||z| < C1t*?} 2 By(R) for 1>t > 0,

where C, Cy depend on R,
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(iil) Xo is the sum of homogeneous vectors of degree 1 or 2 (in the sense
defined above) if and only if

k k
Xo = Za@-Xi + Z bi:j[Xi,Xj} f

i=1 ing=1
(iv) there erist positive constants g, C, ¢ such that

ct?’? < m(By(1)) < C19%  for 0 <t < 1.

The equivalence of (i) and (ii) has been proved in {He, Lemnmas (4.1) and
(4.10)].

The property (iii) follows easily from the construction of the nerm |||
and the construction of gradations defined in the proof of [He, Lemma. (4.1)].

Our basic tool is the following semigroup kernel estimate proved in [He].

(2.4) THEOREM. Let p; be the kernel of the semigroup generated by L,
and let

q: (1") =Pt * 5exp(—th)($) .

Then there exist C and K (see definition of d;) such that for q defined in
(2.3)(iv) and all t < 1 we hove

a(2) < 1792 exp(—di(2)?) .

3. First let G = H. We will now control our maximal operator by a local
maximal operator of Hardy-Littlewood type

(3.1) M f(z)= sup m(By(1))™" [ [flwy™)|dy
0<tl
By (1)
where dy is the right-invariant Haar measure on G.
(3.2) LEmMA. Assume that

(3.3) sup dy(exp(tXp)) < 00.
0<t<l

Then there is an operator S bounded on L'(m) and a constant C' such that
P flz) < CM" f(z) + 5f(x)
forz e @G,

Proof. Denote by I4 the indicator function of the set A. From Theo-
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rem (2.4) and Corollary (2.2) we obtain

[2a]

eufw) = Ct™% exp(—di()*) < Ot/ 3 exp(—k*) Iz sy (2)
k=0
SOt 3 exp(—k) g, )(e)
k*gt“l
+ O exp(-(2)7Y) Y exp(—k?/2)Ip, 1 (2)
k2>t

<001 Y exp(=k")htm(Biay(1)) I, 1y (=)
k*<1

[+ el
+ sup t" 9% exp(—(2t)"t —k*? )
Sup xp(—(2t) )kzz;)exp( k*/2)Tg, (k) (@)

Hence, for f >0,

frefz) S CCL Y K exp(—k)m(Bias(1)) 72 f  In,, y(2)

ki<l
= a]
+Ca Y exp(~k?/2)f * I, (1 (2)
k=0
and so
sup |f »ey(2)] < CC1 Y K exp(—k*)M" f(c)
o<t<l k=1
+Co Y exp(—k2/2)|f|  In, iy ().
k=1
Let |

Sf=Iflx> exp(—k*/2) L5, -
k=1
Since m(B;(k)) = m(B(1))* < %, § is bounded on L(m).
From (3.3) and (2.2) we obtain
ei(wexp(tXo)) < t™U? exp{—dy(2)?/2 + 8ds(exp(tXp))?}
< Cst™ % exp(—dy(2)?/2) = Cuea (),
which completes the proof of the lemma. m C
(3.4) LEMMA. There exist R, ty such that for t < tg we have

- [ awdyzi/2.
- T By(R) ‘ -
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Proof As in the proof of Lemma (3.2), for # & B:(R) and ¢ < {g we
have

et (:L‘) S G Z

R2ck2ct?

exp(wkg)kqm(Bkzt(l))”UBMU) ()

+C sup (5792 exp(—( Zexp —k*2)Ip, (1) () -

O<at k=0

Hence

(3.5) f qi(z) de < f ei(z) dz

Bi(R)® B‘t(R ¢

<Cquexp (—k%) + C sup (s™9 % exp((25)71)).
= 0<s<t

On the other hand,
f g(z)de =1 ast— 0T,
which, in view of (3.5), implies the lemma. »

(3.6) COROLLARY. Let fr = Ip(2r). Then fr * g:{z) 2> 1/2 forz €
BT(R) and t < T.

Proof We have

fo* ai(z) = )dy =2 1/2,

[ awdy> [ a@)

Br(2R)z B:(R)

whence, since for € B;(R) and t < T we have Br(2R)z 2 Br(R) 2 Bi(R),
the corollary follows. =

As a consequence we obtain
(3.7) COROLLARY, For z € B,{R) exp(—tXg) andt < T,
fr * qi(zexp(tXo)) > 1/2.

(3.8) LEMMA. Assume that supge,; de(exp(tXp)) = co. Then for fized
N there exists Ty < 1 such that

dyy, (exp(IN"'TwXp)) > 4R forle{l,...,N}.

Proof. Let tﬂ \4 0 be such that dtn(exp(tn){g)) — 00 as n — 00,
tn = ((N—1))7", and 1 <71 < N. Then

dy; (exp(tnXo)) = d{n-1)1c, (e3p((V = 1)lenXo))
= d(v—1)te, ((exp(IN "Len Xo))'7h)
< NU - 1yie, (exp(IN " en X))
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N1 _
< mdcn (exp(IN "¢, Xp)).
Hence
e, (exp(IN "¢, Xp)) 00 asm - 0. m

(3.9) LEMMA. Let 7j = j{(2N) " Tyy, where N < § < 2N. Under the
hypothests of Lemma (3.8), the balls

Bj = Br,(R)exp(~7Xo), N <j<2N,
are digjoint.

Proof Suppose

yexp(—7iXg) = zexp(~7X0), yE€B(R), ze B (R),i>7].
Then z~'y=exp(I(2N) ' TenXo),I=i—j €{1,..., N} and, by Lemma (3.8),

dryy (@7 'y) = doyy (exp(I(2N) " Ton X)) > 4R.
On the other hand,
dryn (271y) < dnyy (o

and the lemma follows. m

Nt dryy (v) < diy () - dri(y) < 2R

Now we are ready to prove our main result.
(3.10) THEOREM. The following conditions are equivalent:

(1) P* is of weak type (p,p) for ap, 1 < p < 0.
(i) suPgesey de(exp(tXn)) < 0o.
(iif) Xo = 30y a:X; + Z:‘c,jzl bi, [ X, X5 -

Proof. The equivalence of (ii) and {iii) follows easily from Lemma (2.3)

. and from the definition of d;.

To prove (i)=>(ii) we fix a sufficiently large N From Corollary (3.7) and
Lemma (3.8) we infer that

N
m({z € G 1 P*fr, (o) 2 1/2}) >m(UB) S m(Br,)
J=N i=N

2 Nm(By-11,y (R)) 2 Nm(By-17,,, (1)) -
But ”mev ”iP(Hj = m(BTzN(QR)) < Gm(BQ“lTaN(l)); whence
(3.11) m({z € G+ P* fry (@) 2 1/21) 2 Nl fzan 5o ey »

which completes the proof that P* on LP(H) is not of weak type (p,p) in
the case when g = b.

In the case when g # §) we represent elements x from a small neighbour-
hood of e in @ in the wnique form iz = hexp(—~tXo) where h-€ H. Let f be



48 J. Zienkiewicz

a Borel function on G such that f € LP(G) for some p < co and f equals
400 on H. Then, from Theorem (2.4), we have

T.f(c) = [ flwexp(tXo)y™) du(y) = oo
where g, is a measure supported on H with the density g:. This completes
the proof of (i)=(ii). ‘
The proof of (ii)=>(i) is classical and well known [CW]. We only briefly
sketch two main steps.
Let 0 < f € (@) and K = {z : M*f(z) > A}. By the definition of K,
for every = € K, there exists 0 < #, < 1 such that

(3.12) [ flay™)dy > dm(B:, (1)
By, (1)

Denote by A the modular function d;y/dy (where dry is the left invariant
Haar measure on G). From (3.12) one easily derives

(3.13) [ f)AGE"y) dy > dn(Be, (1))
2B, (1)7"
Hence
(3.14) ¢ [ fy)dy>m(zBy, (1)
B (1)

because the balls B, (1) are symmetric and |A{z"1y)| < C for y € By, (1).

The required weak type (1,1) estimate follows, by a standard argument,
from (3.14) and the following covering property:

Let K = \JI, #:By,(1) where £; < 1. Then there exists a constant C' and
numbers iy, . ..,4s such that

(i) the sets @i, By, (1) are pairwise disjoint,
(it) m(Up—y 26, Br;, (1)) = Om(K).
We omit a standard proof of this property.

Rem ark. Since the crucial estimate also holds for operators of the form
(3.15) L= "(-1)™X;"™ + Xo

minor modifications of our argument prove the equivalence of (i) and (ii)
of Theorem (3.10) for operators (3.15). Also an analogue of (iii) can be
formulated.
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