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Some spectral inequalities involving generalized scalar operators
by

B. AUPETIT and D. DRISSI (Québec)

Abstract. In 1971, Allan Sinclair proved that for a hermitian element k of a Ba-
nach algebra and A complex we have ||A + hlf = r(A + h), where r denotes the spectral
radius. Using Levin’s subordination theory for entire functions of exponential type, we
extend thig result locally to a much larger class of generalized spectral operators. This
fundamental result improves many earlier results due to Gelfand, Hille, Colojoari-Foiag,
Vidav, Dowson, Dowson~Gillespie-Spain, Crabb-Spain, L. & V. Istritescu, Barnes, Pytlik,
Boyadzhiev and others,

1. Imtroduction. The study of invertible operators with polynomial
growth, that is, T' & B(X) satisfying, for scme k > 0,

(1) |7 = O(|n|*)  as |n| goes to infinity,

began with the work of E. R. Lorch in 1939, in the case of reflexive spaces
and with the work of B. Sz.-Nagy in 1947, in the case of Hilbert space and
k =0 (see [32], §144 and Appendix). Later on F. Wolf [40] made a systematic
study of these operators for k arbitrary, the case k = 1 being investigated
by G. K. Leafl [29].

Extendmg the work of N. Dunford on spectral operators, C. Foiag in-
troduced in 1960 the wider class of generalized spectral operators. These
are operators in B(X) having a spectral distribution instead of a spectral
measure. This class can be built up with real generahzed spectral operators,
that is, operators H € B(X) such that ' satisfies (1), which is equivalent
to saying that _ _ '

(2) [l = O(Jt|*)  as t real goes to infinity.

This class wag intensively investigated by B. G. Tillman [36], D. R. Smart
[35], 8. Kantorovitz [28] and mamly Oolo;oaré~‘£“01a§ [15], also recently by
B. A. Barnes [5].

The pioneering work of 0. Taeplitz and F. Hausdorff around 1918 on the
numerical range of matrices, extended by M H. Stone in 1932 to operators
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on Hilbert space, lead I. Vidav [37], F. L. Bauer and G. Lumer around
1960 to extend this notion to Banach spaces and to define the notions of
an abstract hermitian operator and abstract normal operator on a Banach
space (for a complete history of this and references see {9]). These hermitian
operators are characterized by the condition

(3) )| =1 whenteR,

s0 they are real generalized spectral operators. For these hermitian opera-
tors I Vidav proved that ||H| = v(H), where v denotes the radiug of the
numerical range and this is equivalent to saying that ||e¥} = r(ef) (see
(9], p. 54). This implies in particular that |H|/e < r(H). All this theory
was greatly improved by the fundamental result of Allan Sinclair [34] saying
that |\ + H|| = r{A + H) for H hermitian and A complex. The original
proof used a version of the Phragmén—Lindelof theorem established by Duf-
fin and Schaeffer. For A = 0, more elementary proofs have been given by
A. Browder [14], V. E. Katsnel'son [27] and F. F. Bonsall [10]. For more
details see [9, 10].

It is very surprising to see these two lonely fields live in a parallel manner
with practically no interconnections. The aim of this paper is to show that
the two fields are in fact intimately related.

F. F. Bonsall and J. Duncan [10] say on page 73 that B. Bollobés, in a
lecture, established a proof of Allan Sinclair’s result using the subordination
theory of Levin. This is really the spark which gave us the idea to extend
Sinclair’s theorem both locally and to the class of generalized spectral oper-
ators. We had in mind the possible generalization of many results obtained
previously in the [rst field.

After having proved Theorem 2.5 we discovered many applications given
in §3. We believe that there are still many others to be found.

When we submitted this work for publication, J. Zemanek mentioned to
us that similar results were obtained by K. N. Boyadzhiev in 1087 (12, 13]
also using Levin’s subordination theory. Our work was done independently
of Boyadzhiev’s papers and was motivated by the ideas of B. Bollob4s. The
results contained in [12, 13] are much less general than ours. For instance
in [12], our Corollary 2.6 is proved but only for A = 0 and the main result
of [13] is our Theorem 2.5 for A = 0. The case A = 0 is much easier to prove
and has fewer consequences.

2. The fundamental inequalities. For the standard definitions and
tools needed in, operator theory see {3].

Let T € B(X) and.z € X.-We define {2, to be the set of o € C for which
there exists a neighbourhood V,, of o and u analytic on V, with values in
X such that (A — T)u(\) = z on V,. This set is open and contains the
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complement of the spectrum of T'. By definition the local spectrum of T at
, denoted by Sp, (T, is the complement of £2,.

In general this closed set may be empty (take the left shift operator on 12
with ey = (1,0,...)). But for z 5 0, the local spectrum of T is nonempty if T
has the uniqueness property for the local resolvent, that i, (A—=TwA)=0
implies v = 0 for any analytic function v defined on any domain D of C
with values in X. It is easy to see that an operator T having spectrum
without interior points has this property. In particular, the opexators of the
class § defined below have this property because their spectra are real by
Lemma 2.2, For operators with this property there is a unique local resolvent
which is the analytic extension of (A — 7)1z to £2,. In this case the local
spectral radius ro(T) is equal to Hmsup,_, HT":::H” k. In general this last
property is false, we only have r.(T) < limsupy_, o, || T%2|[Y/* (see [4]).

If T is an operator of the class N defined below, that is, T = H +
iK where H, K € § and H, K commute, then T also has the uniqueness
property for the local resolvent. This result, much more difficult to prove,
is due to C. Foiag [21]. Using completely different methods it was strongly
generalized in [4].

The holomorphic functional calculus for local spectrum was first discov-
ered by C. Apostol [2] and also obtained by R. G. Bartle and C. A. Kariotis
6] and P. Vrbovd [38] in 1973.

Lemma 2.1 (Holomorphic functional calculus for local spectrum). Let
T € B(X), z # 0, and let f be holomorphic on a neighbourhood D of Sp(T).
Then f(Sp,(T7)) C Sp(f(T)). If f is injective on D then f(Sp,(T)) =
Sp, (f(T)). Moreover, if T has the uniqueness property for the local resolvent
then equality holds for any f holomorphic on D.

Proof. The proof of the inclusion is exactly the first part of the proof
of Theorem. 1.6, page 6 in [20], where the single-valued extension property
is not used at all. The injective case is obtained by applying this inclusion
to the holomorphic function f~ and to f(7'). The last part is: exactly the
last part of the proof of Theorem 1.6, page 7 in [20]. » "

Extending the work of N. Dunford on spectral operators, C. Foiag in
1960 introduced a wider class of generalized spectral operators which we
denote by A in this paper. Originally this class was defined with the help
of spectral distributions instead of spectral measures, Instead of the original
definition we use the definition involving the growth of semigroups which is
more tractable, _ _

First we define the class 8 of real generalized spectral operators, that is,
the set of T' € B(X) which satisty |6""| = O(|¢|?) for some v 2 0 and for
all real t near infinity. This is equivalent to saying that there exist G > 1
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and v > 0 such that

el < |1 +dt]”
for every ¢ € R, an inequality which we shall use later in the proof of
Theorem 2.5. By definition, the constant and the degree of T are the smallest
C and the smallest integer v > 0 such that the previous inequality is true
fort € R,

Tt is easy to verify that if T € S then its adjoint 7" defined on the topo-
logical dual space X’ of X is in the corresponding set 8. If H is hermitian
on B(X) then it is in S with constant C = 1 and degree zero. In that case
the spectrum of H is real. The set of hermitian operators is stable by ad-
dition, but unfortunately H? is not hermitian in general. This was proved
by G. Lumer in 1961, but M. J. Crabb gave a simple example in C?® with a
convenient norm (see [9], pp. 57-58). On the contrary, the class & has nice
properties, in particular we have

LeMMA 2.2. (i) If H is in S then the spectrum of H is real.

(i) If H is in S with degree m then H 2 € 8 with degree less than or
equal to m < 1. '

(lll) IfH.,Hy € S and HiHy = HoH, then Hy 4 Ho € S and HHH: € S.
If m1, mo denote the degrees of Hy, Hy then deg(Hy + Haz) < my +mg and
deg(Hlﬂg) < 2{?’?’.!1 + ma 4+ 1)

Proof. See [5] for details. In that paper the degrees are not explicitly
determined but the estimates follow easily from the calculations. m

This implies, in particular, that if H is hermitian on X, then H 2 is
dissipative and H? € § with degree less than or equal to 1.

We now define the class A of generalized spectral operators on a Banach
space X to be the set of N € B(X) which can be written as N = H -+ iK
where H, K € S and HK = K H. This definition is equivalent to the Colo-
joari-Foiag definition (see [10], Theorem 4.5, p. 160) using spectral distri-
butions, but much easier to handle. The degree of N € A" is by definition
the smallest m +n where m = deg(H) and n = deg(X) for all possible
decompositions of N. Obviously this class contains all normal operators on
X and even polynomials of normal operators.

We now give some terminology and some fundamental yesults on entire
functions of exponential growth. For more details see [7] and [30].

Let f be an entire function on the complex plane and let My(r) =
max| ;)= | f(2)]. We say that f is of finite order if there exists k 2 0 guch
that

(1) My(r)< e

The infimum of all k satisfying this inequality is called the order of f and
is denoted by r(f). - T .

for r large.
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It is easy to verifly that
(2) r(f) = 1imsup£°glogm_%@l_
P00 lOg T

Suppose now that f is an entire function of finite order 7(f). We define

the fype of f, denoted by o(f), to be the infimum of all nonnegative numbers
A such that

(3) Mp(r) < et
Then we have
(4) o(f) = limsupw-)-.
r—0o 7 (f)

In the proof of Theorem 2.5 below we only consider entire functions of
order at most one. In this case we have by [30], p. 84,

(5) o(f) = limsup LB (0)[M®.

The next two results are fundamental tools needed in the proof of The-
orem 2.5.

LEMMA 2.3, Let f and g be entire functions.

() I 7(f) > 7(g) then 7{fg) = 7{f) and o (fg) = o(f).

i) I 7(f) = m(9), 0 < a(f) < 00 and o(g) = 0 then 7(fg) = 7(f) and
o(fg) =o(f).

(i) If r(f) = 7(g), o(f) = c0 and 0 < o(g) < oo then v(fg) = r(f) and
a(fg) = oo

Proof. See [30], Theorem 1.12, pp. 22-24. w
N tLEMMA 2.4 (B. Ya. Levin). Let g be an entire function of finite type such
tha

(i) g(=) # 0 for Im(z) < 0,
(i} h{er) € h{—a) for some a such that 0 < o < 7, where

1 nicy
h{e) = lizasup log lg(re™)] :
'3“‘-—*09 s
Suppose moreover that fis an entire function such that o(f) < o(g) and

LF(t)] < |g(t)] for ¢ real. Then |fW ()| < [g%)(2)| for oll integers k > 0 and
all real 1. co : '

Proof. See [30], Chapter 9, Theorem 11, p. 363. w

_ We are now ready to prove the fundamental inequalities improving Allan
Sinclair’s theorem. s :
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THEOREM 2.5. Let H € & with constant C and degree n, x € X and let
k> n+ 1. Then for A € C we have
(A + H)*z|| < Cllzllpu(r),

where T = r(A + H) and

kk_l "_1 _ k -~ i,
pp(7) =7 + knr* 7 4 ( Jn(n )Tk 2+...+( )’f’k .

21 n

Proof. These inequalities are obviously true for & = 0 so suppose z # 0,
and let w be a bounded linear functional on X of norm one. If X is real, then
X+ H is in S with the same constant and degree so we may suppose without
restriction that A = 1o with & > 0.

Let N = i+ H and set

fl2) = u(e®Nz),  gle) = Cllz]|(1+142)"e 7,

where 8 is some complex number. These two functions are entire. Because
|F{2)] < ||z||e/!'VU, the order of f is at most 1. In this case the type of fis
limsup, _, o |F™(0)[*/"; but |f#(0)] < [|N"z|| so this type does not exceed
limsup,,_, o, |[N™a||'/™ which is 7 = 7,(N), because, by Lemma 2.2(i), the
spectrum of N has empty interior, so N has the uniqueness property for the
local resolvent. We apply Lemma 2.1 to N to get Sp, (ia+H) = ia+Sp,(H),
with Sp, (H) real, so that r,(a) = |a] < rz(N).

We now choose v > 0 such that 8 = o — i satisfies {f] = (V). With
this v the function g is the product of Cllz[/(1 4 iz}™, which is of order 0,
and e~*?, which is of order 1 and type r(N). Thus by Lemma 2.3, g Is of
order 1 and type 7o (N). Consequently, the type of f is less than or equal to
the type of g. It is obvious that g(z) 3£ 0 for Im(z) < 0. Taking o = 7/2, we
have

o i T gl

r—0Q T fiad="] ™

=Y.
Moreover, on the real line we have the inequalities
‘f(t” = |u(e“Nx)| = e—atlu(ehH$)| < e—-—cxtl|€'ith”
< Cllzlle™1 +dt]™ = |g(t)] .

Now applying Levin’s theorem (Lemma 2.4) we conclude that |f7)(t)] <
|g®)(#)] for every real t and k > 1. Hence, in particular,

|£5(0)] = [u(N*2)| < |99(0)].
But by Leibniz’s formula, for & > n + 1.we have

§%0) = Clje] g"! (’“) (jf) (=B
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because the derivatives of (1-+ iz)™ of order k£ > n+ 1 are zero. For given
k z n -+ 1, there exists a bounded linear functional u such that |[u(N*z)| =
| N¥z||, so we get the result.

COROLLARY 2.6. Let H € § with constant C and degree 0, z € X and
k > 0. Then for A € C we have

1A+ H)re| < Ollaljre (A + H)*,
so in particuler ||[(A + H)*| € Cr(A + H)®,

For C = 1 this corollary gives immediately A. Sinclair’s theorem [34].
For A = 0 it gives Theorem 2 of [12].

COROLLARY 2.7. Let H € 8§ with constant C and degree 0 and let X # i

be two distinct complex numbers. Suppose that © ¢ Ker(A — H) and y €
Ker{p — H). Then

|zl < Cllz +yl; -
Proof. We apply Corollary 2.6 to 4 — H and 2 + ¢ with &k = 1 to get
A~ plllel = I(p - H)z| £ Cllz +yllrety (g — H).

But (4 — H)"(z+y) = (p— H)"z = (4 — A)" 50 roiy(pp — H) = [A — pf,
which gives the result. m

This corollary says nothing if A, 4 & Sp(H) C R, but if A, y are sigen-
values of K, then the corresponding kernels are orthogonal for the abstract
orthogonality defined by the relation |jz|| < €|z + y|. This result is cer-
tainly related to the Sinclair-Crabb theorem which says that Ker(H — A)
is orthogonal to R(H — A) if H is hermitian on X (see [10], pp. 24-34});
this has been generalized to normal operators, using a more elementary ar-
gument which avoids Kakutani’s fixed point theorem, by C. K. Fong [22].
Unfortunately, we have not been able to prove this last theorem using the
fundamental inequalities and consequently to extend it to the class §.

THEOREM 2.8. Let N € N, that i, N = H + 1K with HK = KH and
H, K €8. Thenry () = ry(ef) for all z in X. Moreover, 7o,(H) < ry(N)
and 7 {(K) < r(N).

Proof. Suppose without restriction that ||z|| = 1. Because A and K
commute we have et = etVe "X for ¢ real. Denoting by C the constant of
K and by n its degree we get

1 N |1/t H L1/ 2ym/2\L/E (| N L/
d ; HE L .
Tl M S e < (OO YRl
Because the spectrum of e is real this operator has the uniqueness property
for the local resolvent, so r4(e¥) = limsup,_, o, |e*z||*/*, By Folag’s result
mentioned before, IV also has the unigueness property for the local resolvent
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50 ro(eN) = limsup,_, . etV z|'/*. But the above inequalities imply that
the two upper limits are equal, so rz(e™) = ry(e¥).

We know that Sp(H) is real. Replacing H by —H if necessary we may
suppose that max{\ : A € Sp,(H)} = r.(H). By Lemma 2.1, Sp,(ef) =
{et : ¢ € Sp,(H)} so r,(e?) = e"=(#). Applying again Lemma 2.1 to N we
obtain ri(e™) € ¢= (¥}, Consequently,

) 2 (oH) = 1) < 5,

hence 7, (H) < r,(N). Replacing N by N which satisfies the hypothesis of
the theorem we get the last inequality 7, (K) < rz(iN) =r;{N}. =

Lemma 3.5, pp. 106-107 of [15], says that if N € A and is quasi-nilpotent
then it is nilpotent. This result can be extended locally.

COROLLARY 2.9. Let N € N of degree r and let x € X. Then r,(N) =10
implies N" 11z = (.

Proof. By Theorem 2.8 we have r (H) = r,(K) = 0. If m, n denote
the respective degrees of H and X then by Theorem 2.5 we have H™ g =
Kntly =0, 50 Ntz =0.

3. Applications. Let H be a hermitian element of a Banach algebra,
which means that its numerical range V(H) is real. I. Vidav [37] proved
that max V (H) = maxSp(H). This property is in fact equivalent to saying
that ||e®| = r(e®), for H hermitian (see (9], Theorem 5.10, Theorem 3.4
and p. 54), and it is, in some sense, weaker than A. Sinclair’s theorem.

We now extend Vidav’s result locally to the class S.

THEOREM 3.1. Let T' € 8 with degree n and constant C and let x ¢ X,
Then

le¥z]| < 27Clera(e™).

Proof. We apply Theorem 2.5 to k+ 1 where k > n+ 1, to get
(k+T)oz|| < Clla|l{7® + knr®~ 4.+ k(e —1)... (k—n+ Dby,
where 7 = r,(k+T). Dividing by k* and setting o = r,(1+ T/k) we obtain
ok \

H (1+ %) 2| < Clla) (a’“ fngt=tg, 4 BEZL) 'éff“ i ”aM) .

Let k —n <! < k. Using Lemma 2.1 we conclude that Sp,, ((1 + T/k)}) =
{(1+2/k)! : z € Sp,(T)}, hence

smsopr,((1+7) ) < smaelle] - 2 € S (1Y) = o).

ko0
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So
I¢a] < oumm(eT)(l AL 1) .
CorouLaRy 3.2 (I. Vidav). If H is hermitian then r(e®) = [ef].

Proof. We have ' = 1 and the degree of H is zero. So |lefz| <

|| (&), and consequently,
H
. e
“(,H” = gup “ H < suprw(eH) < ?"(EH) < ||6HH m
a0 ||ilfl| w0

From Vidav's result it is easy to conclude that the same property is true
for N normal, that is, N = H + {K with H, K hermitian and commuting.
But if we take N & N with the constants and degrees of H, K denoted hy
Cw,Cr,m,n respectively, then by Theorems 3.1 and 2.8 we have

lle¥all = fe™ull < 2™Crllulira(e™),

where u = e“:K:c. Because H and K commute we have ro,(e?) < r (™).
Moreover, ||e*z| < Cx2"||z|| by the growth condition, and consequently,

|eVz|| £ 2" Oy Crel|zra(e”)

The argument used in the proof of Theorem 3.1 can be used to prove
the following theorem,

THEOREM 3.3. The following properties are equivalent:

(1) T is in the class S with degree n.
(i1} T has real spectrum and satisfies the fundamental ineguality of The-
orem 2.5 for degree n.

Proof. From Lemma 2.2 and Theorem 2.5 we see that (i) implies (ii).

oy y k
Suppose now that (ii) is true. We apply Theorem 2.5 to (f‘—t + T) where 1
is real and k is an integer, k > n -+ 1. So we get

3 &
(=7 -
it

where 7 == r, ($ ++ 7). Dividing by (%‘;)k we abtain

ey R
|0+

< Ozl (a’“ + [t

< Gl (F + ket Lk k(k — 1) (k= n o 1T,

k(k - 1) ' (k - n+ 1) It}nak"‘n) ,
_ _ kn )

where o = 7,(1 + ¢T'/k), As previously, when & goes to infinity, ol =
ra((1 -+ 4tT/k)!) has upper limit at most ry(e’T) if k= n < 1 < k. But
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becanse the spectrum of T is real, the same is true for its local spectrum,
s0 1,(e'’) = 1. Hence
|l < Clla|(L+ 5+ ... + ") < Cllef|(1+ )™ . m

In 1941, I. M. Gelfand [23] proved that if an element T" of a Banach
algebra satisfies Sp(T) = {1} and supyez |T%|| < oo, then T' = I. This
result was generalized by E. Hille (see [24] or [25], Thecrem 4.10.1) who
proved that if Sp(T) = {1} and ||T*| = o{|k]) for k € Z, then T = I.
Nobody noticed that these results come from the weak form of Sinclair’s
theorem. This is the reason why the proof of Gelfand’s result given in [1],
Theorem 1.1, is almost identical with the elementary proof of Sinclair’s result
given by F. F. Bonsall (see [10], pp. 56-57). Just looking at Gelfand’s result,
the condition Sp(T) = {1} implies, by using the holomorphic functional
calculus, that T' = % where 7(5) == 0. The extra hypothesis implies that
sup, g |€%%|| < oo, so S is hermitian for an equivalent norm. Hence r(5) =
|S]=0,s0T=1.

All this suggests that these results can be extended locally.

THEOREM 3.4. Let T ¢ B(X) and z € X. Suppose that ro(T) = 0 and
that —1 s not in the polynomially convez hull of the spectrum of T. Then
Tz =0 for somer > 1 if and only if ||(I + T)*z|| = o(|k|") as |k| — oo.

Proof. It is obvious that in general 7"z = 0 implies ||(f + T)*z| =
o(|k|"). The converse is obviously true if z = 0, so suppose & # 0. By
Lemma 2.1 we have I + T = e, where (5} = 0. For every ¢t € R we have
t=k+s, where k € Z and 0 € s < 1. Because |[e**%z| is bounded when
0 < s < 1 and because |k| £ 1+ || we conclude from the hypothesis that

le®Sa]| = o((1+ [¢)") .
So there exists C' > 0 such that
e z|| < Clle|(1+ |t))" forteR.
By Corollary 2.9 we have §7t'z = 0, so 77"z = 0 because T' = ¥ — 1.
Thus for & > 7 -+ 1 we have
(T + T)*z||

k(k;l)T2w+'-.+k(kml)..;'(kwrwkl)

and consequently 77z = 0. w

T

== O(IMT) )

g+ KTz +

Il we want to get Hille’s result in a Banach algebra using the previous
theorem if is enough to represent the algebra A in B(A4) using the represen-
tation T — Ry where R X = XT.

B. Bollob4s [8] proved that if an invertible hermitian element H satisfies
|| = [|H~1)| = 1 then H = H~, in which case there exists an idempotent
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P such that H = I —2P. This result was generalized by H. R. Dowson [17]

who assumed Sp(T) is real and ||T%| = o(|k|) as k| = co. We now extend
this result locally.

TuroreM 3.5. Let T € B(X), T invertible, and z € X. Suppose Sp(T) is
real and || T%z | =o(|k|") as |k| — co, for some integer r. Then (T2 — I\Tz=0.

Proof. We may suppose that z # 0. From the hypothesis we have
re(T) £ 1, ro{(T1) € 1,80 Sp,(T) © I'NR, where I is the unit circle. Hence
Sp, (T} € {--1,1}, which implies that T2 = I+Q, where r,(Q) = {0}. So ~1
is not in the spectrum of @ and Sp(Q) C R, so —1 is not in a hole of Sp(Q).
By Theorem 3.4 applied to Q, we have Q"z = 0 because |T%*z|| = o(jk|"). w

In 1958, M. Rosenblum gave an ingenious proof of the following result
due to B. Fuglede and C. R. Putnam: if NV is a normal operator on a Hilbert
space M commuting with T’ then N* commutes with T' (see for instance [33],
Theorem 12.16). This result was extended in 1977 by M. J. Crabb and
P. G. Spain [16] in the following way. Let N, Q be two commuting operators
on a Banach space X such that N is normal, that is, N = H++K where H, K
are two commuting hermitian operators, and @ is quasi-nilpotent. Suppose
moreover that (N + @)%z = 0 for some z € X. Then Hx = Kz = 0. It
is easy to see that the Fuglede-Putnam-Rosenblum theorem derives from
the previous one just by taking X = B(H), the inner derivation Ay : § —
N&— 5N which is normal on X because NV is normal on  in the traditional
sense, and @ = 0. By hypothesis we have Anx(T) = 0, so A% (T) =0, and
consequently Ag(T) = Ag(T) = 0, which implies the result. Incidently we
remark that the Crabb-Spain theorem generalizes Theorem 1 of [18].

We now give an extension to the class & of the Crabb-Spaln theorem.

Lemma 3.6. Let N,Q € B(X) and z € X. Suppose that N and Q com-
mute and that @ is quasi-ntlpotent. Then Sp, (N + Q) = Sp,(N), and con-
sequently ro(N + Q) = r(N).

Prool. If z = 0 thers is nothing to prove., g0 suppose £ #* 0. Let A &
Sp (N + @). Then there exists a disk V) centred at A and u analytic on V3,
such that

(z~TYu(z) =z forzeV,, where T'=N+@Q.
Taking the kth derivative of this expression we get
(1) (2 = Ty (2) = —kulFV(2) forzeV, k=1,
We consider the series
0o k) (2)
k
Z @ Skl

k=0
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First we prove that it converges and defines an analytic function on V. Let
0 < r < s be such that the closed disk D(A,s) is included in V). Taking 2
in (), 7) we have by Cauchy's inequalities

k)(z) 1 u(£) My
I A B Afl Wdéu CEDE
where M = sup{||lu(¢)|| : | ~ A| = s}. Given & > 0, beca.ube Q is quasi-

nilpotent there exists ko such that k > ko implies ||Q"|] < ¢k, If we take
£ < (s —r)/2 we conclude that the series converges uniformly on D(xm,
and hence on any compact subset of Vj, so it defines an analytic function
v(z) on V). Moreover, we have

o=} k)
(& = Nole) = 3 e - N)QH kfz)
= i( Qku Z k41“( (Z
k=0
= u(k“l)(z) > u(k)(z) _
—z— kzzjlcg’“————~(k 5y > Q= ==,

because QT = TQ and relation (1) holds. So A & Sp, (V). Replacing N by
N — 2, we get the converse inclusion. w

THEOREM 3.7. Let N,Q € B(X) and z € X. Suppose that Q is quasi-
nilpotent and that N and Q commute. Suppose moreover that N € N, that
is, N = H +iK where H,K € § and HK = KH, and that r,(N + Q) = 0.
Then H™tlg = K™tz = ( where m denotes the degree of H and n the
degree of K.

Proof. Because @ is quasi-nilpotent and commutes with N, by Lem-
ma 3.6 we have r;(N) = 0, We finish as in the proof of Corollary 2.9. =

If H is a self-adjoint operator on a Hilbert space, then for every com-
plex number A, we have Ker(A — H)? = Ker(X — H). This is also true for
any hermitian operator on a Banach space. This results comes from the
Nirschl-Schneider theorem (see [9], Corollary 10.11). It can also be proved
elementarily (see [26]). B. A. Barnes [5] proved in §3 of his paper that the
kernels Ker(A — T} stabilize for k > m, for some integer m, if T € &, the
same being true for the closures of the ranges of the powers (,\ T)*. But
he was not able to determine .

THEOREM 3.8. Let N € A/ of degree r. Given A € C the kernels Ker(A —
N and the closures of the ranges R((A ~ T)*) stabilize for k > r+ 1.
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Proof. In §2 we have seen that if T € (X)) then 7', the adjoint of T, is
in S(X'), where X’ is the topological dual of X, and moreover the closure
of the range of T is the annihilator of the kernel of T”. So the second part
of the theorem follows from the first.

Suppose that (A — N)*z = 0 for k > r + 1. Then ry{A — N) = 0. Let
A= o +iF with o, 4 real. Then by Theorem 2.8, we have ry (o — H) =
(8 — K) = 0. By Theorem 2.5, (o — H)™*!'z = (f — K)"*z = 0 where
m,n are the respective degrees of H and K. By commutativity, we get
(A = Ny Hly = 0, so the kernel of (A ~ N)* stabilizes after r + 1 =
ntm-1 m

By definition the ascent of T' is the smallest integer & such that Ker(T*)
= Ker(T*+1). So the previous theorem says that for N € § and X € C, the
ascent of A — N s less than or equal to r + 1.

For T € B(X), in 1909, H. Weyl introduced what is now called the Weyl
spectrum w(T) of T, which is by definition the intersection of Sp(T + K)
for all compact operators K. If Ag is an isolated point in the spectrum of T,
then we can write the Laurent expansion of the resolvent,

oo
Z (A=Xg)an, for 0<|A— Xl < ¥,

im0

(A-T)" =

where a_g = (T~ X\g)*~'P (k > 1) and P is the spectral projection asso-
ciated with Ap. We say that Mg is a pole of order k& > 1 of the resolvent if
G-k % 0 and g, = 0 for n > k. Using results of M. Schechter about defect
and nullity, K. K. Warner [39] proved that if the ascent of A — T is finite
on a dense subset of C, then w(7") is Sp(7T") minus the poles of the resolvent
of finite order. 1. Istrigescu and V. Istritescu [26] gave a very elementary
proof of the fact that for a hermitian operator T € B(X), w(T) has the same
property, and asked if that is true for normal operators. This last question
can be answered positively using elementary arguments, but all of this is a
particular case of the following resulf.

TurorEM 3.9, Let N € N of degree r. Then any pole of the resolvent of
N has order at mogt v -+ 1, In particular, w(N) is Sp(N) minus the poles of
order less than or equal to r - 1.

Proof. Let Ay be a pole of the resolvent of N, P its spectral projection
and Y the range of P which is N-invariant. We have N = H + iK', where
H K eS8 and HK = KH. Using the elementary argument on the inner
derivation Ay given just before Lemina 3.5 we conclude that P commutes
with H and K so Y is invariant by H and K. Bacause H, K arein §(X)) their
restrictions to ¥, denoted by Hy, K1, are in S(Y') with the same constants
and no greater degrees. So Hy + iKi = Ny, the restriction of N to Y,
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and Ny € N{Y). But Spgyy (V1) = {Ao}, s0 r(Ag ~ Ny) = 0. Hence by
Corollary 2.9, (Hy — )™t = (K1 — fo)**! = 0 on Y, where Ao = o +ifo,
and m = deg(H),n = deg(K). So (N1 — Ag)"*" = 0 on ¥ and this means
that a_, = 0 for n > r + 2. Then we apply Theorem 3.8 and Warner's
theorem. m

Tt is also possible to improve Corollary 1 of [31], which is wrongly stated
because if we have |T%|| = O(lk|") as |k| — oo, for some integer 7 2 1, then
any isolated point of the spectrum of T" is a pole of order less than or equal
to v+ 1 and not r, as easily seen with T = e where H is hermitian, for
which r = 0.

COROLLARY 3.10. If ||T*!| = o(|k|") as |k| — oo, for some integer r > 1,
then any isolated point of the spectrum of T is a pole of order at most r.

Proof If T has no isolated point in its spectrum there is nothing to
prove. The hypothesis implies that the spectrum of T' is included in the unit
circle. Without loss of generality suppose that 1 is an isolated point of the
spectrum of T. Let P be the spectral idempotent associated with 1. Then
the range of P is T-invariant and ro(T — I) = 0 for any = in this range.
So by Theorem 3.4 applied to T — I, whose spectrum has no holes, we get
(T — I)"z = 0 for x in the range of P or equivalently (T — I)"P = 0. This
says that a_, = 0 for,n > r+ 1 in the Laurent expansion, so the order of
the pole 1 is at most r. w
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Operators preserving ideals in C*algebras
by
V. 8. SHUL'MAN (Vologda)

Abstract. The aimn of this paper is to prove that derivations of s C™algebra A can be
characterized in the space of all lnear continuous operators T : A — A by the conditions
T(1) = 0, T(LN R} C L+ R for any closed left ideal L and right ideal R. As a corollary we
get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger
results of this kind are proved under some additional conditions on the cohomologies

of A,

Notations. As usual, A* denotes the dual space of a Banach space A';
L£(X, Xy) is the space of all linear bounded operators from A to A&f;
L(X) = L{X,X); V° is the annihilator in A™* of a subspace V C & and
dist(z, )) is the distance from = € X to ). Subspaces Yy, s constitute an
M-pair if '

dist(z, Y1 N Ya) = max{dist(z, V1), dist(z, Vz)}
for any x € X; they constitute an L-pair if

|z +y| = inf{|ja ~ 2|+ [y + 2] : z€ YN Ip} forzedn, y€ .

In both cases V) + Vs is closed, Tt is known ([8], Proposition 7) that (Y1, s}
is an M-pair (L-pair) iff (¥§,¥5) is an L-pair (M-pair).

The set of all left (right) closed ideals of a C"-algebra A will be denoted
by left A (right A4). Tt was proved in (8] that (L, R) is an M-pair for any
L € left A, R & right A, The bidual space A** of A 18 identified with the
universal enveloping von Neumann algebra. A projection p € A" is called
open if it equals the supremum of an increaging net -of positive elements
in A. It is known (see [1]) that openness of p is equivalent to the conditions
A*p = L°° for some L € left A (or pA™ = R°® for R € right A). We write
p instead of 1 - p. R T :
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