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Operators preserving ideals in C*algebras
by
V. 8. SHUL'MAN (Vologda)

Abstract. The aimn of this paper is to prove that derivations of s C™algebra A can be
characterized in the space of all lnear continuous operators T : A — A by the conditions
T(1) = 0, T(LN R} C L+ R for any closed left ideal L and right ideal R. As a corollary we
get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger
results of this kind are proved under some additional conditions on the cohomologies

of A,

Notations. As usual, A* denotes the dual space of a Banach space A';
L£(X, Xy) is the space of all linear bounded operators from A to A&f;
L(X) = L{X,X); V° is the annihilator in A™* of a subspace V C & and
dist(z, )) is the distance from = € X to ). Subspaces Yy, s constitute an
M-pair if '

dist(z, Y1 N Ya) = max{dist(z, V1), dist(z, Vz)}
for any x € X; they constitute an L-pair if

|z +y| = inf{|ja ~ 2|+ [y + 2] : z€ YN Ip} forzedn, y€ .

In both cases V) + Vs is closed, Tt is known ([8], Proposition 7) that (Y1, s}
is an M-pair (L-pair) iff (¥§,¥5) is an L-pair (M-pair).

The set of all left (right) closed ideals of a C"-algebra A will be denoted
by left A (right A4). Tt was proved in (8] that (L, R) is an M-pair for any
L € left A, R & right A, The bidual space A** of A 18 identified with the
universal enveloping von Neumann algebra. A projection p € A" is called
open if it equals the supremum of an increaging net -of positive elements
in A. It is known (see [1]) that openness of p is equivalent to the conditions
A*p = L°° for some L € left A (or pA™ = R°® for R € right A). We write
p instead of 1 - p. R T :
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An operator D € L{A) is called a derivation of A if
(1) D(wy) = 2D(y) + Plz)y
for any z,y € A. The space of all derivations will be denoted by der A.
More generally, if M is an A-bimodule then der(.A, M) is the space of all
M-valued derivations on A, that is, operators D € L{A, M) satisfying (1).
For ¢ € M the left multiplication operator I : A — M acts by the rule
l{(a) = GE.

THEOREM 1. Let A be a unital C*-algebra and T € L(A). If
(2) TENRYCL+R

for any L € left A and R € right A, then T = D + |, where ¢ = T(1) and
D ederA.

Proof We may suppose that 7(1) = 0 (otherwise replace T by T ~
lp(y)- First of all let us prove that

(3) T*(L°NR°) c L° + R®
and
(4) T**(LOO m ROO) C LOO + ROO .

Indeed, (L°,R°) is an L-pair, so L® + R° is closed and (by the Banach
theorem) weak* closed. So to prove (3) it is sufficient to show that
(5) (L°+ R°)°*NAC (T*{L° N R%))°.
But since (L°+R°)°NA = LNR and L°NR° = (L+R)°, (5) is an immediate
corollary of {2). The inclusion {4) may be proved in a similar way.

It follows from (4) that T*(pA**q) C pA** + A**g or equivalently
(6) P (peg)gt =0

for any open projections p,g £ A*™ and any z € A, But every closed
projection is the weak (and hence strong) limit of a net of open projections
([1], Proposition 2.3), so (6) is also true for closed p, g.

Now use the obvious identities

{7 L»‘5"(1:"1?) pS(p*e) = S(pe) — pS(z),
@& - Vieglg" ~ Vizg g = Vizg) - V(z)g,

where S and V are arbitrary linear operators in A**. For S(z)

= T (wg)q™
(7) and (6) imply
T (pwg)gt — pT** (mg)g™ = 0.

So for V(z) =T px) — jaT“,**(cc) ‘we have V{zq+)g =.D V(zq)gt = 0 and,
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by (8), V(xq) ~ V(x)q == 0. Therefore
T (peq) — pI™"(2q) ~ T (pw)q + pT**(z)g = 0.

For z = 1 we get T (pg) = pT**(q) + T™**(p)g and hence T**(zy) =

T (y) +T**( @)y for all u, y in the closed linear hull £ of the set of all open
or closed projections. But the spectral projections of hermitian elements of
A corresponding to open parts of spectra are open; therefore .4 C £ and
T & der A. :

Following [5] we call an operator T € £{A) a local derivation if for any
z € A there exists D, € der A such that T(z) = Dy(2).

COoROLLARY 1. Every local derivation of o C*-algebra is o derivation.

Proof Let T € L(A) be a local derivation. For any L € left A, R €
right A, z € R, and y € L we have

T(wy) = Day(zy) = Dy (2)y + szy(y) €L+ R,

so T(RL) ¢ L+ R and T(RN L) C
Theorem 1 and the obvious equality T'(1

T(RL) € L+ R. It follows from
) =0 that T € der A.

Recall that a subspace £ C L{X,Y) is called reflexive [7] if it contains
every operator 1 € £(X,Y) such that Tz € £z for each z € X, If £ contains
all operators satisfying the more restrictive condition Tz € £z, then £ is
called algebraically reflexive. Corollary 1 may be reformulated as follows: for
any C*algebra A the space der .4 is algebraically reflexive. But the proof
shows the stronger property:

COROLLARY 2. The space der A s reflexive for any C*-algebra A.
For any subspace & C £(X,)) and any T € L(X,)), set

§(T,E) = sup dist(Tz,&x).
[f=)l 1

It is clear that 6(7, &) < dist(T', £); reflexivity of £ means that the conditions
§(T, &) = 0 and dist(T, &) = 0 are equivalent. If dist(T,£) < C§(T,£) for
some (' > 0 and all 7' € L(X;, Ap), then £ is called hyperreflezive [6].

THEOREM 2. For any C* calgebm A with H2(A, A) = 0 the space der A
is hyperreflezive.
Proof. Let
1 f‘ﬂ
0 — A S £{A) Lo L2(A) —

be the wsual cochain complex, that is, £.{.A) is the space of all n-linear
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Ato Aand for § & Ly(A),

aan) = aOS(ala" “ a"n.)

maps from A x ... %
dﬂ+IS(Go,...

n .
+ (=1)'S(ag,. .. Bim2) Giv18i, - O)

i=1
+ ('—l)n'i-lS(ag, A

The condition H?{A, A) = 0 implies that the image of d? iy a closed subspace
of £3(A); since Ker d* = der A we get

(9) dist(T, der A) < C!|d*T||

for all t € £L{A) and some C > 0.
Let now T € L{A) and o = §(T, der A). Suppose that T'(1) = 0. For any
L eleft A, R eright A, 2 € LN R with |z]| = 1, and D € der A we have

Tz — Pz|| > dist(Tz, L + R) = sup{|{Tz, /)| : f € @}
where @ = {f € (L+ R)° : || f]| £1}. In other words,
1T — De|| = sup{{{Tz,pfa"}i: f € A% |f S 1}

where p and ¢ are projections in A** with pA** = R°® and A**q = L°.
Hence |(Tz,p-fg-)| < aforany z € A, f & A* with [lz]] <1, ||f| S L It
follows that

(10) lp* T (pzq)a™ | < |z

for any z € A and any open projections p, g. .Using {T), (8) as in the proof
of Theorem 1 we get

1T (pa) — #7(a) — T ()l < dx
and as a consequence,
IT(zy) — 2T (y) — T(x)y|l < 4ol ]|y
for any ¢ € A, and y € Ay Hence for all z,y € A,
IT(wy) - =T(y) - T(a)y] < 16a]a]ly].
In other words, [|4°T|| < 16c; by (9) this gives
digt(T, der A) < 16aC .
To remove the restriction 7(1) = 0 it 'is enough to notice that
T(1) < 6(T,der A) = o,

1)

and
dlst(T der A) < dist(T — I7(1), der A) + | T(1)]|
R IR R T < 160‘5(T lT(l),dEI‘A) o+ O _<_ (320 4= 1)&’
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The result may be stated in a form similar to Arveson’s “distance for-
mula” [2]. Tet p and ¢ be projections in a W-algebra A; for z € % put
p® gq(z) = pry.

COROLLARY 3. Under the conditions of Theorem 2, there exists C > 0
such that
{11) dist (T, der A) € Csup |p™ @ ¢* T*p @ q||

P
for each T & L(A) with T(1) = 0.

It was proved in [3] that for any Banach A-bimodule M with AM* weakly
sequentially complete (wsc) the usual A-bimodule structure in M** may
be extended to an A*"-bimodule structure in such a way that M** is a
dnal normal A**-bimodule. This permits extending the previous results to
operators from A to M.

THEOREM 3. Let A be a C*-algebra, and M a Banach A-bimodule with
M* wse. For T € L{A, M) the following conditions are eguivoelent:

() T(ILNR) C ML+ RM for any L & left A and R € right A.
(ii) T'= D + l¢ for some D € der(A, M) and £ € M.
Proof In a way similar to the proof of Theorem. 1 one can show that
T**(LOO n ROO) C (ML)OO + (RM)OQ
where the closure is taken in the o(M**, M*)-topology. Now for p, g as
before we have (MUL)*°¢g+ = 0 and p*(RM)°° = 0, hence p-T**(pzq)gt
= 0. The end of the proof is the same as in Theorem 1.

CoRrOLLARY 4. For M as in Theorem 3, every local derivation T €
L{A, M) is a derivation. Moreover, der{ A, M) is reflezive.

COROLLARY 5. If M* is wsc and H?*(A, M) = 0 then der(A, M) is
hyperreflexive.

The results of [4] imply that the last conclusion is true for nuclear .A and
dual M with AM* wse. The author does not know if the condition on M*
can be removed.
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Compactness of Hardy-type integral operators
in weighted Banach function spaces

by

DAVID B BEDMUNDS (Sussex), PETR GURKA (Praba)
and LUBOS PICK (Cardiff and Praha)

Abstract. We consider a generalized Hardy operator T f(z) = ¢#{z) f; fu. For T to
be hounded from a weighted Banach function space (X, v) into another, (¥, w), it is always
necessary that the Muckenhoupt-type condition B = suppy.q xR0 1¥ X0, m 27 <
oo be satisfied. We say that (X,Y) helongs to the category M(T) if this Muckenhoupt
condition is also sufficient. We prove & general criterion for compactness of T from X to
Y when (X, ¥) € M{T") and give an estimate for the distance of T from the finite rank

operators, We apply the results to Lorents spaces and characterize pairs of Lorentz spaces
which fall inte M7,

1. Introduction. Given two weighted Banach function spaces X =
(X,v), ¥ = (Y,w), and an extra pair of weights (¢,), we study bound-
edness and compactness of the generalized Hardy operator Tyyf(z) =
d(x) f; w(t) f(t)v(t) dt considered as an operator from X to Y. If A and ¥
are weighted Lebesgue spaces, say, X = L7(v) and ¥ = LP(w), it is enough
to consider only the usual Hardy operator H f(z) = fox f(¢) dt. For this case,
the theory is complete. For example, if 1 < p < r < co, we have the result of
Tomaselii [TO], Talenti [T], Muckenhoupt [MU], Bradley [B], Kokilashvili
K] and Maz'ya [M] which states that there is a constant C' such that

{1.1) NH fllpw S Cllfllpp  forall feX
if and only if
o Fid

(1.2) sup B{R) = sup ( j "‘”)”p( f
A

oL/
Tl ) =1 < oo
Rl R0 0

(' =p/(r-1)).
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