

66

- [37] I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128.
- [38] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492.
- [39] K. K. Warner, A note on a theorem of Weyl, Proc. Amer. Math. Soc. 23 (1969), 469-471.
- [40] F. Wolf, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Indag. Math. 19 (1957), 302-311.

tana di Aggi affai salah da Aggi at Aggi at tanan da Aggi at tanan da Aggi at tanan da Aggi at tanan da Aggi a Aggi at tanan da Aggi at

DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE UNIVERSITÉ LAVAL QUÉBEC, QUÉ., CANADA G1K 7P4

> Received January 7, 1993 (3047) Revised version June 9, 1993

STUDIA MATHEMATICA 109 (1) (1994)

Operators preserving ideals in C^* -algebras

by

V. S. SHUL'MAN (Vologda)

Abstract. The aim of this paper is to prove that derivations of a C^* -algebra $\mathcal A$ can be characterized in the space of all linear continuous operators $T:\mathcal A\to\mathcal A$ by the conditions T(1)=0, $T(L\cap R)\subset L+R$ for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W^* -algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of $\mathcal A$.

Notations. As usual, \mathcal{X}^* denotes the dual space of a Banach space \mathcal{X} ; $\mathcal{L}(\mathcal{X}_1, \mathcal{X}_2)$ is the space of all linear bounded operators from \mathcal{X}_1 to \mathcal{X}_2 ; $\mathcal{L}(\mathcal{X}) = \mathcal{L}(\mathcal{X}, \mathcal{X})$; \mathcal{Y}° is the annihilator in \mathcal{X}^* of a subspace $\mathcal{Y} \subset \mathcal{X}$; and $\mathrm{dist}(x, \mathcal{Y})$ is the distance from $x \in \mathcal{X}$ to \mathcal{Y} . Subspaces \mathcal{Y}_1 , \mathcal{Y}_2 constitute an M-pair if

$$\operatorname{dist}(x,\mathcal{Y}_1\cap\mathcal{Y}_2)=\max\{\operatorname{dist}(x,\mathcal{Y}_1),\operatorname{dist}(x,\mathcal{Y}_2)\}$$

for any $x \in \mathcal{X}$; they constitute an L-pair if

$$||x + y|| = \inf\{||x - z|| + ||y + z|| : z \in \mathcal{Y}_1 \cap \mathcal{Y}_2\} \text{ for } x \in \mathcal{Y}_1, y \in \mathcal{Y}_2.$$

In both cases $\mathcal{Y}_1 + \mathcal{Y}_2$ is closed. It is known ([8], Proposition 7) that $(\mathcal{Y}_1, \mathcal{Y}_2)$ is an M-pair (L-pair) iff $(\mathcal{Y}_1^{\circ}, \mathcal{Y}_2^{\circ})$ is an L-pair (M-pair).

The set of all left (right) closed ideals of a C^* -algebra \mathcal{A} will be denoted by left \mathcal{A} (right \mathcal{A}). It was proved in [8] that (L,R) is an M-pair for any $L \in \operatorname{left} \mathcal{A}$, $R \in \operatorname{right} \mathcal{A}$. The bidual space \mathcal{A}^{**} of \mathcal{A} is identified with the universal enveloping von Neumann algebra. A projection $p \in \mathcal{A}^{**}$ is called open if it equals the supremum of an increasing net of positive elements in \mathcal{A} . It is known (see [1]) that openness of p is equivalent to the conditions $\mathcal{A}^{**}p = L^{\circ\circ}$ for some $L \in \operatorname{left} \mathcal{A}$ (or $p\mathcal{A}^{**} = R^{\circ\circ}$ for $R \in \operatorname{right} \mathcal{A}$). We write p^{\perp} instead of 1-p.

¹⁹⁹¹ Mathematics Subject Classification: Primary 47C15.

Key words and phrases: C*-algebra, derivation, reflexivity.

I am indebted to Bojan Magajua for drawing my attention to the results of [5].

An operator $\mathcal{D} \in \mathcal{L}(\mathcal{A})$ is called a derivation of \mathcal{A} if

(1)
$$\mathcal{D}(xy) = x\mathcal{D}(y) + \mathcal{D}(x)y$$

for any $x,y\in\mathcal{A}$. The space of all derivations will be denoted by der \mathcal{A} . More generally, if \mathcal{M} is an \mathcal{A} -bimodule then $\operatorname{der}(\mathcal{A},\mathcal{M})$ is the space of all \mathcal{M} -valued derivations on \mathcal{A} , that is, operators $\mathcal{D}\in\mathcal{L}(\mathcal{A},\mathcal{M})$ satisfying (1). For $\xi\in\mathcal{M}$ the left multiplication operator $l_{\xi}:\mathcal{A}\to\mathcal{M}$ acts by the rule $l_{\xi}(a)=a\xi$.

THEOREM 1. Let A be a unital C^* -algebra and $T \in \mathcal{L}(A)$. If

$$(2) T(L \cap R) \subset L + R$$

for any $L \in \text{left } A$ and $R \in \text{right } A$, then $T = \mathcal{D} + l_a$ where a = T(1) and $\mathcal{D} \in \text{der } A$.

Proof. We may suppose that T(1) = 0 (otherwise replace T by $T - l_{T(1)}$). First of all let us prove that

$$(3) T^*(L^{\circ} \cap R^{\circ}) \subset L^{\circ} + R^{\circ}$$

and

$$(4) T^{**}(L^{\circ \circ} \cap R^{\circ \circ}) \subset L^{\circ \circ} + R^{\circ \circ}.$$

Indeed, (L°, R°) is an L-pair, so $L^{\circ} + R^{\circ}$ is closed and (by the Banach theorem) weak* closed. So to prove (3) it is sufficient to show that

$$(5) (L^{\circ} + R^{\circ})^{\circ} \cap \mathcal{A} \subset (T^{*}(L^{\circ} \cap R^{\circ}))^{\circ}.$$

But since $(L^{\circ}+R^{\circ})^{\circ} \cap A = L \cap R$ and $L^{\circ} \cap R^{\circ} = (L+R)^{\circ}$, (5) is an immediate corollary of (2). The inclusion (4) may be proved in a similar way.

It follows from (4) that $T^*(pA^{**}q) \subset pA^{**} + A^{**}q$ or equivalently

$$(6) p^{\perp} T^{**}(pxq)q^{\perp} = 0$$

for any open projections $p, q \in \mathcal{A}^{**}$ and any $x \in \mathcal{A}^{**}$. But every closed projection is the weak (and hence strong) limit of a net of open projections ([1], Proposition 2.3), so (6) is also true for closed p, q.

Now use the obvious identities

(7)
$$p^{\perp}S(px) - pS(p^{\perp}x) = S(px) - pS(x),$$

(8)
$$V(xq)q^{\perp} - V(xq^{\perp})q = V(xq) - V(x)q,$$

where S and V are arbitrary linear operators in \mathcal{A}^{**} . For $S(x) = T^{**}(xq)q^{\perp}$, (7) and (6) imply

$$T^{**}(pxq)q^{\perp} - pT^{**}(xq)q^{\perp} = 0$$

So for $V(x) = T^{**}(px) - pT^{**}(x)$ we have $V(xq^{\perp})q = 0$, $V(xq)q^{\perp} = 0$ and,

by (8), V(xq) - V(x)q = 0. Therefore

$$T^{**}(pxq) - pT^{**}(xq) - T^{**}(px)q + pT^{**}(x)q = 0.$$

For x=1 we get $T^{**}(pq)=pT^{**}(q)+T^{**}(p)q$ and hence $T^{**}(xy)=xT^{**}(y)+T^{**}(x)y$ for all x,y in the closed linear hull $\mathcal E$ of the set of all open or closed projections. But the spectral projections of hermitian elements of $\mathcal A$ corresponding to open parts of spectra are open; therefore $\mathcal A\subset\mathcal E$ and $T\in\operatorname{der}\mathcal A$.

Following [5] we call an operator $T \in \mathcal{L}(\mathcal{A})$ a local derivation if for any $x \in \mathcal{A}$ there exists $\mathcal{D}_x \in \text{der } \mathcal{A}$ such that $T(x) = \mathcal{D}_x(x)$.

COROLLARY 1. Every local derivation of a C*-algebra is a derivation.

Proof. Let $T \in \mathcal{L}(\mathcal{A})$ be a local derivation. For any $L \in \text{left } \mathcal{A}, R \in \text{right } \mathcal{A}, x \in R$, and $y \in L$ we have

$$T(xy) = \mathcal{D}_{xy}(xy) = \mathcal{D}_{xy}(x)y + x\mathcal{D}_{xy}(y) \in L + R$$

so $T(RL) \subset L + R$ and $T(R \cap L) \subset \overline{T(RL)} \subset L + R$. It follows from Theorem 1 and the obvious equality T(1) = 0 that $T \in \text{der } \mathcal{A}$.

Recall that a subspace $\mathcal{E} \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called reflexive [7] if it contains every operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that $Tx \in \overline{\mathcal{E}x}$ for each $x \in \mathcal{X}$. If \mathcal{E} contains all operators satisfying the more restrictive condition $Tx \in \mathcal{E}x$, then \mathcal{E} is called algebraically reflexive. Corollary 1 may be reformulated as follows: for any C^* -algebra \mathcal{A} the space der \mathcal{A} is algebraically reflexive. But the proof shows the stronger property:

COROLLARY 2. The space der A is reflexive for any C^* -algebra A.

For any subspace $\mathcal{E} \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and any $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, set

$$\delta(T, \mathcal{E}) = \sup_{\|x\| \le 1} \operatorname{dist}(Tx, \overline{\mathcal{E}x}).$$

It is clear that $\delta(T, \mathcal{E}) \leq \operatorname{dist}(T, \mathcal{E})$; reflexivity of \mathcal{E} means that the conditions $\delta(T, \mathcal{E}) = 0$ and $\operatorname{dist}(T, \mathcal{E}) = 0$ are equivalent. If $\operatorname{dist}(T, \mathcal{E}) \leq C\delta(T, \mathcal{E})$ for some C > 0 and all $T \in \mathcal{L}(\mathcal{X}_1, \mathcal{X}_2)$, then \mathcal{E} is called hyperreflexive [6].

THEOREM 2. For any C^* -algebra \mathcal{A} with $H^2(\mathcal{A}, \mathcal{A}) = 0$ the space der \mathcal{A} is hyperreflexive.

Proof. Let

$$0 \to \mathcal{A} \xrightarrow{d^1} \mathcal{L}(\mathcal{A}) \xrightarrow{d^2} \mathcal{L}_2(\mathcal{A}) \to \dots$$

be the usual cochain complex, that is, $\mathcal{L}_n(A)$ is the space of all n-linear

maps from $A \times ... \times A$ to A and for $S \in \mathcal{L}_n(A)$,

$$d^{n+1}S(a_0, \dots, a_n) = a_0 S(a_1, \dots, a_n)$$

$$+ \sum_{i=1}^n (-1)^i S(a_0, \dots, a_{i-2}, a_{i-1}a_i, \dots, a_n)$$

$$+ (-1)^{n+1} S(a_0, \dots, a_{n-1})a_n.$$

The condition $H^2(\mathcal{A}, \mathcal{A}) = 0$ implies that the image of d^2 is a closed subspace of $\mathcal{L}_2(\mathcal{A})$; since Ker $d^2 = \operatorname{der} \mathcal{A}$ we get

(9)
$$\operatorname{dist}(T, \operatorname{der} A) \le C \|d^2 T\|$$

for all $t \in \mathcal{L}(A)$ and some C > 0.

Let now $T \in \mathcal{L}(\mathcal{A})$ and $\alpha = \delta(T, \operatorname{der} \mathcal{A})$. Suppose that T(1) = 0. For any $L \in \operatorname{left} \mathcal{A}$, $R \in \operatorname{right} \mathcal{A}$, $x \in L \cap R$ with ||x|| = 1, and $\mathcal{D} \in \operatorname{der} \mathcal{A}$ we have

$$||Tx - \mathcal{D}x|| \ge \operatorname{dist}(Tx, L + R) = \sup\{|\langle Tx, f \rangle| : f \in Q\}$$

where $Q = \{ f \in (L+R)^{\circ} : ||f|| \le 1 \}$. In other words,

$$||Tx - \mathcal{D}x|| \ge \sup\{|\langle Tx, p^{\perp}fq^{\perp}\rangle| : f \in \mathcal{A}^*; ||f|| \le 1\}$$

where p and q are projections in \mathcal{A}^{**} with $p\mathcal{A}^{**}=R^{\circ\circ}$ and $\mathcal{A}^{**}q=L^{\circ\circ}$. Hence $|\langle Tx, p^{\perp}fq^{\perp}\rangle| \leq \alpha$ for any $x \in \mathcal{A}$, $f \in \mathcal{A}^{*}$ with $||x|| \leq 1$, $||f|| \leq 1$. It follows that

(10)
$$||p^{\perp}T^{**}(pxq)q^{\perp}|| \leq \alpha ||x||$$

for any $x \in A$ and any open projections p, q. Using (7), (8) as in the proof of Theorem 1 we get

$$||T^{**}(pq) - pT^{**}(q) - T^{**}(p)q|| \le 4\alpha$$

and as a consequence,

$$||T(xy) - xT(y) - T(x)y|| \le 4\alpha ||x|| ||y||$$

for any $x \in \mathcal{A}_+$ and $y \in \mathcal{A}_+$. Hence for all $x, y \in \mathcal{A}$,

$$||T(xy) - xT(y) - T(x)y|| \le 16\alpha ||x|| ||y||.$$

In other words, $||d^2T|| \le 16\alpha$; by (9) this gives

$$dist(T, der A) \leq 16\alpha C$$
.

To remove the restriction T(1) = 0 it is enough to notice that

$$T(1) \le \delta(T, \operatorname{der} A) = \alpha$$
,

and

$$\operatorname{dist}(T, \operatorname{der} \mathcal{A}) \leq \operatorname{dist}(T - l_{T(1)}, \operatorname{der} \mathcal{A}) + \|T(1)\|$$

$$\leq 16C\delta(T - l_{T(1)}, \operatorname{der} \mathcal{A}) + \alpha \leq (32C + 1)\alpha.$$

The result may be stated in a form similar to Arveson's "distance formula" [2]. Let p and q be projections in a W^* -algebra \mathfrak{A} ; for $x \in \mathfrak{A}$ put $p \otimes q(x) = pxq$.

COROLLARY 3. Under the conditions of Theorem 2, there exists C>0 such that

(11)
$$\operatorname{dist}(T, \operatorname{der} \mathcal{A}) \leq C \sup_{p,q} \|p^{\perp} \otimes q^{\perp} T^{**} p \otimes q\|$$

for each $T \in \mathcal{L}(A)$ with T(1) = 0.

It was proved in [3] that for any Banach \mathcal{A} -bimodule \mathcal{M} with \mathcal{M}^* weakly sequentially complete (wsc) the usual \mathcal{A} -bimodule structure in \mathcal{M}^{**} may be extended to an \mathcal{A}^{**} -bimodule structure in such a way that \mathcal{M}^{**} is a dual normal \mathcal{A}^{**} -bimodule. This permits extending the previous results to operators from \mathcal{A} to \mathcal{M} .

THEOREM 3. Let A be a C^* -algebra, and M a Banach A-bimodule with M^* wsc. For $T \in \mathcal{L}(A, M)$ the following conditions are equivalent:

- (i) $T(L \cap R) \subset \overline{\mathcal{M}L + R\mathcal{M}}$ for any $L \in \text{left } A$ and $R \in \text{right } A$.
- (ii) $T = \mathcal{D} + l_{\xi}$ for some $\mathcal{D} \in \operatorname{der}(\mathcal{A}, \mathcal{M})$ and $\xi \in \mathcal{M}$.

Proof. In a way similar to the proof of Theorem 1 one can show that

$$T^{**}(L^{\circ\circ} \cap R^{\circ\circ}) \subset \overline{(\mathcal{M}L)^{\circ\circ} + (R\mathcal{M})^{\circ\circ}}$$

where the closure is taken in the $\sigma(\mathcal{M}^{**}, \mathcal{M}^{*})$ -topology. Now for p, q as before we have $(\mathcal{M}L)^{\circ\circ}q^{\perp}=0$ and $p^{\perp}(R\mathcal{M})^{\circ\circ}=0$, hence $p^{\perp}T^{**}(pxq)q^{\perp}=0$. The end of the proof is the same as in Theorem 1.

COROLLARY 4. For \mathcal{M} as in Theorem 3, every local derivation $T \in \mathcal{L}(\mathcal{A}, \mathcal{M})$ is a derivation. Moreover, $der(\mathcal{A}, \mathcal{M})$ is reflexive.

COROLLARY 5. If \mathcal{M}^* is wsc and $H^2(\mathcal{A}, \mathcal{M}) = 0$ then $\operatorname{der}(\mathcal{A}, \mathcal{M})$ is hyperreflexive.

The results of [4] imply that the last conclusion is true for nuclear \mathcal{A} and dual \mathcal{M} with \mathcal{M}^* wsc. The author does not know if the condition on \mathcal{M}^* can be removed.

References

- [1] C. A. Akemann, The general Stone-Weierstrass problem, J. Funct. Anal. 4 (1969), 277-294.
- [2] W. Arveson, Interpolation problems in nest algebras, ibid. 20 (1975), 208-233.
- [3] J. W. Bunce and W. L. Paschke, Derivations on a C*-algebra and its dual, ibid. 37 (1980), 235-247.
- [4] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305-319.

72

[5] R. Kadison, Local derivations, J. Algebra 130 (1990), 494-509.

- [6] J. Kraus and D. R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356.
- [7] A. J. Loginov and V. S. Shul'man, Hereditary and intermediate reflexivity of W*-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 (in Russian).
- [8] V. S. Shul'man, On the geometry of some pairs of subspaces in C*-algebras, in: Spectral Theory of Operators and its Applications, No. 6, Elm, Baku, 1985, 196-216 (in Russian).

DEPARTMENT OF MATHEMATICS VOLOGDA POLYTECHNICAL INSTITUTE 15 LENIN ST. 160008 VOLOGDA, RUSSIA

Received April 27, 1993
Revised version September 19, 1993
(3100)

STUDIA MATHEMATICA 109 (1) (1994)

Compactness of Hardy-type integral operators in weighted Banach function spaces

by

DAVID E. EDMUNDS (Sussex), PETR GURKA (Praha) and LUBOŠ PICK (Cardiff and Praha)

Abstract. We consider a generalized Hardy operator $Tf(x) = \phi(x) \int_0^x \psi f v$. For T to be bounded from a weighted Banach function space (X, v) into another, (Y, w), it is always necessary that the Muckenhoupt-type condition $\mathcal{B} = \sup_{R>0} \|\phi\chi_{(R,\infty)}\|_Y \|\psi\chi_{(0,R)}\|_{X'} < \infty$ be satisfied. We say that (X,Y) belongs to the category $\mathcal{M}(T)$ if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when $(X,Y) \in \mathcal{M}(T)$ and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into $\mathcal{M}(T)$.

1. Introduction. Given two weighted Banach function spaces $X=(X,v),\ Y=(Y,w),\$ and an extra pair of weights $(\phi,\psi),\$ we study boundedness and compactness of the generalized Hardy operator $T_{\phi\psi}f(x)=\phi(x)\int_0^x \psi(t)f(t)v(t)\ dt$ considered as an operator from X to Y. If X and Y are weighted Lebesgue spaces, say, $X=L^r(v)$ and $Y=L^p(w)$, it is enough to consider only the usual Hardy operator $Hf(x)=\int_0^x f(t)\ dt$. For this case, the theory is complete. For example, if $1< p\le r<\infty$, we have the result of Tomaselli [TO], Talenti [T], Muckenhoupt [MU], Bradley [B], Kokilashvili [K] and Maz'ya [M] which states that there is a constant C such that

$$(1.1) ||Hf||_{v,w} \le C||f||_{r,v} \text{for all } f \in X$$

if and only if

(1.2)
$$\sup_{R>0} B(R) = \sup_{R>0} \left(\int_{R}^{\infty} w \right)^{1/p} \left(\int_{0}^{R} v^{1-r'} \right)^{1/r'} = B < \infty$$

$$(r' = r/(r-1)).$$

Research of the second author was supported by the Royal Society of London.

¹⁹⁹¹ Mathematics Subject Classification: 46E30, 47B38, 47G60.

Key words and phrases: weighted Banach function space, Hardy-type operator, compact operator, Lorentz space.