66 - [37] I. Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121-128. - [38] P. Vrbová, On local spectral properties of operators in Banach spaces, Czechoslovak Math. J. 23 (1973), 483-492. - [39] K. K. Warner, A note on a theorem of Weyl, Proc. Amer. Math. Soc. 23 (1969), 469-471. - [40] F. Wolf, Operators in Banach space which admit a generalized spectral decomposition, Nederl. Akad. Wetensch. Indag. Math. 19 (1957), 302-311. tana di Aggi affai salah da Aggi at Aggi at tanan da Aggi at tanan da Aggi at tanan da Aggi at tanan da Aggi a Aggi at tanan da Aggi at DÉPARTEMENT DE MATHÉMATIQUES ET DE STATISTIQUE UNIVERSITÉ LAVAL QUÉBEC, QUÉ., CANADA G1K 7P4 > Received January 7, 1993 (3047) Revised version June 9, 1993 ## STUDIA MATHEMATICA 109 (1) (1994) ## Operators preserving ideals in C^* -algebras by ### V. S. SHUL'MAN (Vologda) Abstract. The aim of this paper is to prove that derivations of a C^* -algebra $\mathcal A$ can be characterized in the space of all linear continuous operators $T:\mathcal A\to\mathcal A$ by the conditions T(1)=0, $T(L\cap R)\subset L+R$ for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W^* -algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of $\mathcal A$. Notations. As usual, \mathcal{X}^* denotes the dual space of a Banach space \mathcal{X} ; $\mathcal{L}(\mathcal{X}_1, \mathcal{X}_2)$ is the space of all linear bounded operators from \mathcal{X}_1 to \mathcal{X}_2 ; $\mathcal{L}(\mathcal{X}) = \mathcal{L}(\mathcal{X}, \mathcal{X})$; \mathcal{Y}° is the annihilator in \mathcal{X}^* of a subspace $\mathcal{Y} \subset \mathcal{X}$; and $\mathrm{dist}(x, \mathcal{Y})$ is the distance from $x \in \mathcal{X}$ to \mathcal{Y} . Subspaces \mathcal{Y}_1 , \mathcal{Y}_2 constitute an M-pair if $$\operatorname{dist}(x,\mathcal{Y}_1\cap\mathcal{Y}_2)=\max\{\operatorname{dist}(x,\mathcal{Y}_1),\operatorname{dist}(x,\mathcal{Y}_2)\}$$ for any $x \in \mathcal{X}$; they constitute an L-pair if $$||x + y|| = \inf\{||x - z|| + ||y + z|| : z \in \mathcal{Y}_1 \cap \mathcal{Y}_2\} \text{ for } x \in \mathcal{Y}_1, y \in \mathcal{Y}_2.$$ In both cases $\mathcal{Y}_1 + \mathcal{Y}_2$ is closed. It is known ([8], Proposition 7) that $(\mathcal{Y}_1, \mathcal{Y}_2)$ is an M-pair (L-pair) iff $(\mathcal{Y}_1^{\circ}, \mathcal{Y}_2^{\circ})$ is an L-pair (M-pair). The set of all left (right) closed ideals of a C^* -algebra \mathcal{A} will be denoted by left \mathcal{A} (right \mathcal{A}). It was proved in [8] that (L,R) is an M-pair for any $L \in \operatorname{left} \mathcal{A}$, $R \in \operatorname{right} \mathcal{A}$. The bidual space \mathcal{A}^{**} of \mathcal{A} is identified with the universal enveloping von Neumann algebra. A projection $p \in \mathcal{A}^{**}$ is called open if it equals the supremum of an increasing net of positive elements in \mathcal{A} . It is known (see [1]) that openness of p is equivalent to the conditions $\mathcal{A}^{**}p = L^{\circ\circ}$ for some $L \in \operatorname{left} \mathcal{A}$ (or $p\mathcal{A}^{**} = R^{\circ\circ}$ for $R \in \operatorname{right} \mathcal{A}$). We write p^{\perp} instead of 1-p. ¹⁹⁹¹ Mathematics Subject Classification: Primary 47C15. Key words and phrases: C*-algebra, derivation, reflexivity. I am indebted to Bojan Magajua for drawing my attention to the results of [5]. An operator $\mathcal{D} \in \mathcal{L}(\mathcal{A})$ is called a derivation of \mathcal{A} if (1) $$\mathcal{D}(xy) = x\mathcal{D}(y) + \mathcal{D}(x)y$$ for any $x,y\in\mathcal{A}$. The space of all derivations will be denoted by der \mathcal{A} . More generally, if \mathcal{M} is an \mathcal{A} -bimodule then $\operatorname{der}(\mathcal{A},\mathcal{M})$ is the space of all \mathcal{M} -valued derivations on \mathcal{A} , that is, operators $\mathcal{D}\in\mathcal{L}(\mathcal{A},\mathcal{M})$ satisfying (1). For $\xi\in\mathcal{M}$ the left multiplication operator $l_{\xi}:\mathcal{A}\to\mathcal{M}$ acts by the rule $l_{\xi}(a)=a\xi$. THEOREM 1. Let A be a unital C^* -algebra and $T \in \mathcal{L}(A)$. If $$(2) T(L \cap R) \subset L + R$$ for any $L \in \text{left } A$ and $R \in \text{right } A$, then $T = \mathcal{D} + l_a$ where a = T(1) and $\mathcal{D} \in \text{der } A$. Proof. We may suppose that T(1) = 0 (otherwise replace T by $T - l_{T(1)}$). First of all let us prove that $$(3) T^*(L^{\circ} \cap R^{\circ}) \subset L^{\circ} + R^{\circ}$$ and $$(4) T^{**}(L^{\circ \circ} \cap R^{\circ \circ}) \subset L^{\circ \circ} + R^{\circ \circ}.$$ Indeed, (L°, R°) is an L-pair, so $L^{\circ} + R^{\circ}$ is closed and (by the Banach theorem) weak* closed. So to prove (3) it is sufficient to show that $$(5) (L^{\circ} + R^{\circ})^{\circ} \cap \mathcal{A} \subset (T^{*}(L^{\circ} \cap R^{\circ}))^{\circ}.$$ But since $(L^{\circ}+R^{\circ})^{\circ} \cap A = L \cap R$ and $L^{\circ} \cap R^{\circ} = (L+R)^{\circ}$, (5) is an immediate corollary of (2). The inclusion (4) may be proved in a similar way. It follows from (4) that $T^*(pA^{**}q) \subset pA^{**} + A^{**}q$ or equivalently $$(6) p^{\perp} T^{**}(pxq)q^{\perp} = 0$$ for any open projections $p, q \in \mathcal{A}^{**}$ and any $x \in \mathcal{A}^{**}$. But every closed projection is the weak (and hence strong) limit of a net of open projections ([1], Proposition 2.3), so (6) is also true for closed p, q. Now use the obvious identities (7) $$p^{\perp}S(px) - pS(p^{\perp}x) = S(px) - pS(x),$$ (8) $$V(xq)q^{\perp} - V(xq^{\perp})q = V(xq) - V(x)q,$$ where S and V are arbitrary linear operators in \mathcal{A}^{**} . For $S(x) = T^{**}(xq)q^{\perp}$, (7) and (6) imply $$T^{**}(pxq)q^{\perp} - pT^{**}(xq)q^{\perp} = 0$$ So for $V(x) = T^{**}(px) - pT^{**}(x)$ we have $V(xq^{\perp})q = 0$, $V(xq)q^{\perp} = 0$ and, by (8), V(xq) - V(x)q = 0. Therefore $$T^{**}(pxq) - pT^{**}(xq) - T^{**}(px)q + pT^{**}(x)q = 0.$$ For x=1 we get $T^{**}(pq)=pT^{**}(q)+T^{**}(p)q$ and hence $T^{**}(xy)=xT^{**}(y)+T^{**}(x)y$ for all x,y in the closed linear hull $\mathcal E$ of the set of all open or closed projections. But the spectral projections of hermitian elements of $\mathcal A$ corresponding to open parts of spectra are open; therefore $\mathcal A\subset\mathcal E$ and $T\in\operatorname{der}\mathcal A$. Following [5] we call an operator $T \in \mathcal{L}(\mathcal{A})$ a local derivation if for any $x \in \mathcal{A}$ there exists $\mathcal{D}_x \in \text{der } \mathcal{A}$ such that $T(x) = \mathcal{D}_x(x)$. COROLLARY 1. Every local derivation of a C*-algebra is a derivation. Proof. Let $T \in \mathcal{L}(\mathcal{A})$ be a local derivation. For any $L \in \text{left } \mathcal{A}, R \in \text{right } \mathcal{A}, x \in R$, and $y \in L$ we have $$T(xy) = \mathcal{D}_{xy}(xy) = \mathcal{D}_{xy}(x)y + x\mathcal{D}_{xy}(y) \in L + R$$ so $T(RL) \subset L + R$ and $T(R \cap L) \subset \overline{T(RL)} \subset L + R$. It follows from Theorem 1 and the obvious equality T(1) = 0 that $T \in \text{der } \mathcal{A}$. Recall that a subspace $\mathcal{E} \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$ is called reflexive [7] if it contains every operator $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that $Tx \in \overline{\mathcal{E}x}$ for each $x \in \mathcal{X}$. If \mathcal{E} contains all operators satisfying the more restrictive condition $Tx \in \mathcal{E}x$, then \mathcal{E} is called algebraically reflexive. Corollary 1 may be reformulated as follows: for any C^* -algebra \mathcal{A} the space der \mathcal{A} is algebraically reflexive. But the proof shows the stronger property: COROLLARY 2. The space der A is reflexive for any C^* -algebra A. For any subspace $\mathcal{E} \subset \mathcal{L}(\mathcal{X}, \mathcal{Y})$ and any $T \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, set $$\delta(T, \mathcal{E}) = \sup_{\|x\| \le 1} \operatorname{dist}(Tx, \overline{\mathcal{E}x}).$$ It is clear that $\delta(T, \mathcal{E}) \leq \operatorname{dist}(T, \mathcal{E})$; reflexivity of \mathcal{E} means that the conditions $\delta(T, \mathcal{E}) = 0$ and $\operatorname{dist}(T, \mathcal{E}) = 0$ are equivalent. If $\operatorname{dist}(T, \mathcal{E}) \leq C\delta(T, \mathcal{E})$ for some C > 0 and all $T \in \mathcal{L}(\mathcal{X}_1, \mathcal{X}_2)$, then \mathcal{E} is called hyperreflexive [6]. THEOREM 2. For any C^* -algebra \mathcal{A} with $H^2(\mathcal{A}, \mathcal{A}) = 0$ the space der \mathcal{A} is hyperreflexive. Proof. Let $$0 \to \mathcal{A} \xrightarrow{d^1} \mathcal{L}(\mathcal{A}) \xrightarrow{d^2} \mathcal{L}_2(\mathcal{A}) \to \dots$$ be the usual cochain complex, that is, $\mathcal{L}_n(A)$ is the space of all n-linear maps from $A \times ... \times A$ to A and for $S \in \mathcal{L}_n(A)$, $$d^{n+1}S(a_0, \dots, a_n) = a_0 S(a_1, \dots, a_n)$$ $$+ \sum_{i=1}^n (-1)^i S(a_0, \dots, a_{i-2}, a_{i-1}a_i, \dots, a_n)$$ $$+ (-1)^{n+1} S(a_0, \dots, a_{n-1})a_n.$$ The condition $H^2(\mathcal{A}, \mathcal{A}) = 0$ implies that the image of d^2 is a closed subspace of $\mathcal{L}_2(\mathcal{A})$; since Ker $d^2 = \operatorname{der} \mathcal{A}$ we get (9) $$\operatorname{dist}(T, \operatorname{der} A) \le C \|d^2 T\|$$ for all $t \in \mathcal{L}(A)$ and some C > 0. Let now $T \in \mathcal{L}(\mathcal{A})$ and $\alpha = \delta(T, \operatorname{der} \mathcal{A})$. Suppose that T(1) = 0. For any $L \in \operatorname{left} \mathcal{A}$, $R \in \operatorname{right} \mathcal{A}$, $x \in L \cap R$ with ||x|| = 1, and $\mathcal{D} \in \operatorname{der} \mathcal{A}$ we have $$||Tx - \mathcal{D}x|| \ge \operatorname{dist}(Tx, L + R) = \sup\{|\langle Tx, f \rangle| : f \in Q\}$$ where $Q = \{ f \in (L+R)^{\circ} : ||f|| \le 1 \}$. In other words, $$||Tx - \mathcal{D}x|| \ge \sup\{|\langle Tx, p^{\perp}fq^{\perp}\rangle| : f \in \mathcal{A}^*; ||f|| \le 1\}$$ where p and q are projections in \mathcal{A}^{**} with $p\mathcal{A}^{**}=R^{\circ\circ}$ and $\mathcal{A}^{**}q=L^{\circ\circ}$. Hence $|\langle Tx, p^{\perp}fq^{\perp}\rangle| \leq \alpha$ for any $x \in \mathcal{A}$, $f \in \mathcal{A}^{*}$ with $||x|| \leq 1$, $||f|| \leq 1$. It follows that (10) $$||p^{\perp}T^{**}(pxq)q^{\perp}|| \leq \alpha ||x||$$ for any $x \in A$ and any open projections p, q. Using (7), (8) as in the proof of Theorem 1 we get $$||T^{**}(pq) - pT^{**}(q) - T^{**}(p)q|| \le 4\alpha$$ and as a consequence, $$||T(xy) - xT(y) - T(x)y|| \le 4\alpha ||x|| ||y||$$ for any $x \in \mathcal{A}_+$ and $y \in \mathcal{A}_+$. Hence for all $x, y \in \mathcal{A}$, $$||T(xy) - xT(y) - T(x)y|| \le 16\alpha ||x|| ||y||.$$ In other words, $||d^2T|| \le 16\alpha$; by (9) this gives $$dist(T, der A) \leq 16\alpha C$$. To remove the restriction T(1) = 0 it is enough to notice that $$T(1) \le \delta(T, \operatorname{der} A) = \alpha$$, and $$\operatorname{dist}(T, \operatorname{der} \mathcal{A}) \leq \operatorname{dist}(T - l_{T(1)}, \operatorname{der} \mathcal{A}) + \|T(1)\|$$ $$\leq 16C\delta(T - l_{T(1)}, \operatorname{der} \mathcal{A}) + \alpha \leq (32C + 1)\alpha.$$ The result may be stated in a form similar to Arveson's "distance formula" [2]. Let p and q be projections in a W^* -algebra \mathfrak{A} ; for $x \in \mathfrak{A}$ put $p \otimes q(x) = pxq$. COROLLARY 3. Under the conditions of Theorem 2, there exists C>0 such that (11) $$\operatorname{dist}(T, \operatorname{der} \mathcal{A}) \leq C \sup_{p,q} \|p^{\perp} \otimes q^{\perp} T^{**} p \otimes q\|$$ for each $T \in \mathcal{L}(A)$ with T(1) = 0. It was proved in [3] that for any Banach \mathcal{A} -bimodule \mathcal{M} with \mathcal{M}^* weakly sequentially complete (wsc) the usual \mathcal{A} -bimodule structure in \mathcal{M}^{**} may be extended to an \mathcal{A}^{**} -bimodule structure in such a way that \mathcal{M}^{**} is a dual normal \mathcal{A}^{**} -bimodule. This permits extending the previous results to operators from \mathcal{A} to \mathcal{M} . THEOREM 3. Let A be a C^* -algebra, and M a Banach A-bimodule with M^* wsc. For $T \in \mathcal{L}(A, M)$ the following conditions are equivalent: - (i) $T(L \cap R) \subset \overline{\mathcal{M}L + R\mathcal{M}}$ for any $L \in \text{left } A$ and $R \in \text{right } A$. - (ii) $T = \mathcal{D} + l_{\xi}$ for some $\mathcal{D} \in \operatorname{der}(\mathcal{A}, \mathcal{M})$ and $\xi \in \mathcal{M}$. Proof. In a way similar to the proof of Theorem 1 one can show that $$T^{**}(L^{\circ\circ} \cap R^{\circ\circ}) \subset \overline{(\mathcal{M}L)^{\circ\circ} + (R\mathcal{M})^{\circ\circ}}$$ where the closure is taken in the $\sigma(\mathcal{M}^{**}, \mathcal{M}^{*})$ -topology. Now for p, q as before we have $(\mathcal{M}L)^{\circ\circ}q^{\perp}=0$ and $p^{\perp}(R\mathcal{M})^{\circ\circ}=0$, hence $p^{\perp}T^{**}(pxq)q^{\perp}=0$. The end of the proof is the same as in Theorem 1. COROLLARY 4. For \mathcal{M} as in Theorem 3, every local derivation $T \in \mathcal{L}(\mathcal{A}, \mathcal{M})$ is a derivation. Moreover, $der(\mathcal{A}, \mathcal{M})$ is reflexive. COROLLARY 5. If \mathcal{M}^* is wsc and $H^2(\mathcal{A}, \mathcal{M}) = 0$ then $\operatorname{der}(\mathcal{A}, \mathcal{M})$ is hyperreflexive. The results of [4] imply that the last conclusion is true for nuclear \mathcal{A} and dual \mathcal{M} with \mathcal{M}^* wsc. The author does not know if the condition on \mathcal{M}^* can be removed. #### References - [1] C. A. Akemann, The general Stone-Weierstrass problem, J. Funct. Anal. 4 (1969), 277-294. - [2] W. Arveson, Interpolation problems in nest algebras, ibid. 20 (1975), 208-233. - [3] J. W. Bunce and W. L. Paschke, Derivations on a C*-algebra and its dual, ibid. 37 (1980), 235-247. - [4] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305-319. 72 [5] R. Kadison, Local derivations, J. Algebra 130 (1990), 494-509. - [6] J. Kraus and D. R. Larson, Reflexivity and distance formulae, Proc. London Math. Soc. 53 (1986), 340-356. - [7] A. J. Loginov and V. S. Shul'man, Hereditary and intermediate reflexivity of W*-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 1260-1273 (in Russian). - [8] V. S. Shul'man, On the geometry of some pairs of subspaces in C*-algebras, in: Spectral Theory of Operators and its Applications, No. 6, Elm, Baku, 1985, 196-216 (in Russian). DEPARTMENT OF MATHEMATICS VOLOGDA POLYTECHNICAL INSTITUTE 15 LENIN ST. 160008 VOLOGDA, RUSSIA Received April 27, 1993 Revised version September 19, 1993 (3100) ## STUDIA MATHEMATICA 109 (1) (1994) # Compactness of Hardy-type integral operators in weighted Banach function spaces by DAVID E. EDMUNDS (Sussex), PETR GURKA (Praha) and LUBOŠ PICK (Cardiff and Praha) Abstract. We consider a generalized Hardy operator $Tf(x) = \phi(x) \int_0^x \psi f v$. For T to be bounded from a weighted Banach function space (X, v) into another, (Y, w), it is always necessary that the Muckenhoupt-type condition $\mathcal{B} = \sup_{R>0} \|\phi\chi_{(R,\infty)}\|_Y \|\psi\chi_{(0,R)}\|_{X'} < \infty$ be satisfied. We say that (X,Y) belongs to the category $\mathcal{M}(T)$ if this Muckenhoupt condition is also sufficient. We prove a general criterion for compactness of T from X to Y when $(X,Y) \in \mathcal{M}(T)$ and give an estimate for the distance of T from the finite rank operators. We apply the results to Lorentz spaces and characterize pairs of Lorentz spaces which fall into $\mathcal{M}(T)$. 1. Introduction. Given two weighted Banach function spaces $X=(X,v),\ Y=(Y,w),\$ and an extra pair of weights $(\phi,\psi),\$ we study boundedness and compactness of the generalized Hardy operator $T_{\phi\psi}f(x)=\phi(x)\int_0^x \psi(t)f(t)v(t)\ dt$ considered as an operator from X to Y. If X and Y are weighted Lebesgue spaces, say, $X=L^r(v)$ and $Y=L^p(w)$, it is enough to consider only the usual Hardy operator $Hf(x)=\int_0^x f(t)\ dt$. For this case, the theory is complete. For example, if $1< p\le r<\infty$, we have the result of Tomaselli [TO], Talenti [T], Muckenhoupt [MU], Bradley [B], Kokilashvili [K] and Maz'ya [M] which states that there is a constant C such that $$(1.1) ||Hf||_{v,w} \le C||f||_{r,v} \text{for all } f \in X$$ if and only if (1.2) $$\sup_{R>0} B(R) = \sup_{R>0} \left(\int_{R}^{\infty} w \right)^{1/p} \left(\int_{0}^{R} v^{1-r'} \right)^{1/r'} = B < \infty$$ $$(r' = r/(r-1)).$$ Research of the second author was supported by the Royal Society of London. ¹⁹⁹¹ Mathematics Subject Classification: 46E30, 47B38, 47G60. Key words and phrases: weighted Banach function space, Hardy-type operator, compact operator, Lorentz space.