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Reflexive Orlicz spaces have uniformly normal structure

by

SHUTAO CHEN and HUIYING SUN (Harbin)

Abstract. We prove that an Orlics space equipped with the Luxemburg norm has
uniformly normal structure if and only if it is reflexive.

Let X be a Banach space. We say that X has (weak) normal structure
if for any nonsingleton (weakly compact) bounded closed convex subset '
of X, there exists 2 € C such that

ra(z) = sup{|lz — y|| : y € C} < diam €' = sup{|ju —v|| : u,v € C}.

If, moreover, there exists h < 1 such that for each nonsingleton bounded
closed convex subset C, there exists x € C such that ro(z) < hdiamC,
then X is said to have uniform normal structure and the infimum of such h
is denoted by N(X).

The above concepts are introduced as powerful tools in fixed point theory,
for instance, if X has weak normal structure, then it has fixed point property,
i.e.,, any nonexpansive self-mapping defined on a weakly compact convex
subset of X has a fixed point. Moreover, if X has uniformly normal structure,
then for & < N(X)~V?, every k-Lipschitzian self-mapping of a bounded
closed convex subset of X has a fixed point (see [1], [2] and [3]).

In 1984, T. Landes [7] found a criterion for sequence Orlicz spaces en-
dowed with the Luxemburg norm to have (weakly) normal structure. Using
it, it is easy to establish the corvesponding results for function Orlicz spaces.
It was not until 1991 that Tingfu Wang and Baoxiang Wang [9] obtained nec-
essary and sufficlent conditions for sequence Orlicz spaces endowed with the
Orlics norm to have (weakly) normal structure. Shutao Chen and Yanzheng
Duan [4] then solved the problem for function Orlicz spaces. In this paper,
we establish a criterion for sequence and function Orlicz spaces endowed
with the Luxemburg norm to have uniformly normal structure.
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We first recall the concept of Orlicz spaces.

Let (@, X, 1) be a complete measure space, and let M : R — R satisfy
(i) M is even, convex and continuous; (if) M(u) = 0 iff v = 0 and (iii)
M(u) — oo as u — 00. For a p-measurable function z(¢) on G, we define its
modular by

om(m) = [ M(x(t))dt.
a

Then the Orlicz spoce
Ly = { : eps(Az) < oo for some A > 0}
endowed with the Luzemburg norm
ol = inf{A > 0 oarl(e/) < 1}
is a Banach space.

In the following, we only consider the case that G is nonatomic and
pG < eo. For the cases (i) G is nonatomic and pG = oo, or (ii) G = N =
{1,2,3,...} and u{n} =1, n=1,2,..., our main result still holds and the
proof will be a little easier.

We say that M satisfies condition Ao, ox simply, M € A,, if there exist
u' > 0 and K > 1 such that M(2u) < KM (u) for all u > o',

The condition Az plays an important role in the theory of Orlicz spaces.
Yor instance, an Orlicz space Ly is reflexive iff M € Ay and M* € A,
where M*(v) = sup, cp{uv — M(u)} is the complementary function of M.

THEOREM 1. Lys has uniformly normal structure iff it is reflexive.
To prove the theorem, we need the following lemmas.
LemmA 2. The following are equivalent:
(2) M € Ay, |
(b) for any w' >0 and 1 > 1, there exists £ > 0 such that
M1 +e)u) <IM) (uzu),
(c) for any v’ > 0 and o € (0,1), there exists § > 0 such that
(%) M*(av) < a(l - §)M*(v)  (v=').
Proof. (a)=+(b). By (2) and [6], there exists K > [ such that M(2u) <

KM(u) for all u > o', Let & = (I~ 1)/(X —1). Then by the convexity of M,
for all w > v/, we have

M1 +eyu) = M((1 - e)u+ 2eu) < (1~ )M (u) +eM(2u)
S(1—e)M(u) + KM (u) = IM(u).

(b)=>(c). By [6], we have (i) if M1 (u) = aM (bu) {a,b > 0}, then M} (v) =
aM*(v/(ab)) and (i) if M(u) > Ma(u) (w > ' > 0), then there exists
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o' = v'(u') > 0 such that My (v) < M§(v) (v > v') and v/ — 0 as u' — 0.
Hence, to verify (), it suffices to find some § > 0 such that
1
a1l — §)
for the previously given ' > 0.
Pick & in (0,1/2) such that
M((L+eh) <a™ M)  (u>o/2)
and let § = 1~ 1/(1+¢) € (0,1/2). Then
M(l L 6u) < «‘;M(u) < E—(—fl_—gj-M(u) (ws/2).

Replacing 4 by (1 — §)u in the above inequalities and observing that 1 — &
> 1/2, we find

M((1-68)u) = M) (u>u)

1
L
M) < o
(¢c)=>(a). By the same reason as in (b)=-(c), it suffices to find K > 1
such that

M((1-8u) (w=d).

%M*(%‘”) zM*(v) (v2v)

for given v’ > 0.
By (¢), there exists § > 0 such that
M*(v/2) < L1 - 6M*v) (v>0),
ie,
11~ 8M*(2v) = M*(v) {v=0'/2).
Taking an integer n > 1 such that (1 — §)™ > 2 and using the above

inequality repeatedly, we derive
27l M (2M) B 271 — §)P M (27) = M*(v) (v =)
By setting K = 2"*!, we complete the proof. m

LeMMA 3. Suppose M & Ag. Then for any 8 > 1 and € > 0, there exists
K > 2 such that for oll 2 & Ly,

om(Br) < Kom(z) +e.

Proof, Let o > 0 satisfy M(Bo)uG < e, Then since M & As, there
exists K > 2 such that M(Bu) < KM (u) for all w > «. Given z & Ljy, set
F={teG:|z(1)| 2 a}. Then '

om{Bz) = om(Ba|r) + om(Bzla\r)
< Kou(slr) + M(Bo)u(G\ F) < Kou(z) + €
where |4 (t) = x(t) fort € Aand = O when t € G\ A. »
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LEMMA 4. Assume M € Ay and M* € Ay. Then for any o > 0, there
exist ¢ > 1 and 6 > 0 such that

M(“j”) < 220 aatu) + M)

whenever [u| > o and either |u| > clv| or uv < 0.

Proof. By Lemma 2, there exist 7 > 0 and £ € (0,1/2) such that
w 1
— ) <

M((1+ ) < o= M(w) (| 2 0).

Setc=1/g and § = 1—-(2—27)/(2—7). Then if [u| > « and either |u| Z c|v|
or uv < 0, we have

M(“;”) sM(”;_lu) < 1-;TM((1+ —i—)u)
< 12T 2 < P0G + M) m
Lemma 5 ([5], [10]). If M € Ay, then

(a) or(@n) = 0 & ||lzn| =0,
(b) on(2n) =1 & [zn]| =1 (n— c0).

) (wlza)

and

LeMmmA 6. If a Banach space X does not have uniformly normal siruc-
ture, then for eachn € N and € > 0, there exists {z;: 1 <i <n+1}in X

such that
lesdl <1, |zi—z)l <1 (1<i<j<n+1)

and

1 m
Tl m;:ﬁi >1l—-¢ {m=1,...,n).

Proof. By the agsumption, there exists a bounded closed convex subset
C of X such that for each z & C, there exists ¢ & C satisfying |z — z|
> (1 — &)diam C. Without loss of generslity, we may assume 0 € C and
diamC = 1, i.e., 2| <1 and ||z — y|| < 1 for all ¢,y € C.

Pick any z; € C. Then by the hypothesis, there exists x5 € C such that
|zz — z1]| > 1 —&. Since C is convex, 27! (z1 + z2) € C, therefore, there
exists 23 € C such that [jx3 — 271 (@1 + x3)| > 1 —e. By induction, we finish
the proof. w

Proof of Theorem 1. Since all Banach spaces with uniformly nor-
mal structure are reflexive (see [1]), we only need to show the sufficiency.
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By Lemmas 3 and 4, there exist X > 2, 5> 0, ¢ > 1 and 6§ > 0 such that

(1) om(2z) < Koy (x)+1/8  (z € Ly,
(2) M®)pG < 1/(8K),

and

(3) M(“;“”) < 220 M)+ M)

(lu] 2 0, and |u| > ¢lv] or uv < 0).

Select an integer p > 16c2K? and let n = 8p. If Ly does not have
uniformly normal structure, then Lemma 5 and M € A, yield the existence
of {@;} in Lps such that

(4) om{zi) <1, emlzi~2z) €1l (1<€ig<ji<n+1)
and

)
(3) 12z QM(SGmH—-—Z%) e

i=1
We first introduce some notations. Set
ui(t) = onpa(t) — 2lt) (i <n)
and for each ¢ € G, rearrange {u;(t)}icn Into {ys{t) = us,,, (t)}sga such
that y1(t) < ... < yu(t). It is not difficult to check that each y,(¢) is
u~-measurable. Moreover, define

n

wot) = = 3 hu(d)],

ge=l

I(t) = {i < n: | () > cfz(t)| or elui(t)| < |2(t)] or us(t)z(t) < 0},

z(£) = 27 [yap () + vapr1 (1],

A= {t € G: I(t) contains at least 4p elements}, B=G\A.
Then
(6) 2(2)] < max{jya(t)], lyapss (D)} < zolt) -
Moreover, (1), (4) and the convexity of M imply
{7) on (o) € KQM( Z J22;] ) + =
K& 1
< = i K+-
<% Z u)+ < K+

=1 v 8
For the first step, we show that

() Jou(2072 0 ws 2
B
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Since (4) and (1) give
2,

7 & T 1
~ — <K el
5 <1- g <em(z o) QM( 5 )+8,

Le., o ((z1 — 22)/2) > 3/(4K), to verify (8) it suffices to show
.’Bl(t) .7,'2( ) 1
f M(_——~2 dt < 55

A
For this purpose, we first check that ¢ € A implies

s ()] > elyaprs(B)] or clys(t)] < yapss (D) o ya(t)pap+s() <0

for each s < 4p. In fact, if there exist some j < 4p and £ € A4 such that none

of the above three inequalities holds, then either

¢ Wapi s (8) < wi(t) € cyaprs(t) or el mupas () 2 y5(8) 2 cyap; (2)-

Since z(¢) is between y; (%) and yap.;5(£), we derive
c'z(t) < ys(t) <cex(t) or e la(t) > yo(t) > cx(t)

forall s = 3,5 +1,...,4p -+ 4, which contradicts the definition of A.
Hence, if we define, for each s < 4p,

A(s) = {t € A max{|ys()], [yap+s(£}]} > b}
then (3) and the convexity of 3 imply

1)
1— o) K<9M(n+1_"z )

i=1

:QM( Zys+y4p+3) ZQ (ys+y4p+q)

5=]

,;. (M (s (£)) + M(yapas(t))] dt

=%‘ QM U “—'Z f IM ys t))+M(y4pl~8( ))]di'

] s=1 4(s)
It follows from (4) that

4p
(9) ; ) (f | [M (s () + M (yapas(8))] dt < ZJ%E < a—iif _
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Now, we defllne
Di={tcd:jw@)|>b} (i=1,2),
Bi(s)={t € A: w{t) = y;(t) or Yapra(t)} (1=1,2).
Then from (2), (9) and the fact that

Ap
UBilsy =4, Dinbi(s)c As) (i=1,2),

e

we derive

. 2
$300 [ M)+ Ml )] i+ MO

11 1
“§K TBE "Ik’
This ends the prool of inequality (8).
For the second step, we set, for each i = 3,...,n — 1,

G(i) = {t € B lz.(t) — m(t)| £ §|w(t)| for some s with 1 < 8 < n} .

Then

Y

=3
In fact, for any t € B = G \ A, by the definition of A, there exist at least
five u;(t) such that their distance from each other is no more than cjz(t)|/p,
and thus, there exist 4, §, 3 < < j < n, such that
|ui(t) — u; (8)] < ele(®)i/p,
ie., t € G(7). This proves (10). '
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Now, we define
D(3)=G(3), D()=G®)\ U Gk), i=4,...,n—1.

Then {D(i)}; are dLS_]Olnt and U=y D(i) =
Let, for each i = .n-—1and each t € D(i)

i) =1, z‘”(t) =max{k < n:|zg(t) — z;(t)] < cjz(t)|/p}.

Then #/(£) and i"(t) are well defined, by the definition of G(i), and ¢'(¢) <
2" (1).

Next, we construct two y-measurable functions as follows:

n—1 n—1
2(t) =Y zopBxpn), ') = > 2w Oxnm ).
g3 =3

Then by (6) and the definition of i'(t) and #"(t),
(11 |='(t) — " (8)] < clz(t)]/p < cxo(t)/p.
Since (8) and the convexity of M imply

1
3 f [M (2" () = @1 (2)) + M(2" (t) — z5(t))] dt
B
z1{t) — za(t) 1
> o S—. A -
> [ M( 5 at > o=,
B
without loss of generality we assume

(12) [ M) - (@)t > S
B

K-

Finally, let
E={te B :|z"(t) - xy(t)| > max{b, c®zy{t)/n}}.
Then by (11), £ € F implies
2" (t) — 21()] 2 Pao(t)/p 2 |2'(2) ~ 2" (1)
It follows from (3) that t € E implies

(13) M(fv”(t) ~2/(t) -; o(£) — ml(t))

<! 5 M (2" (1) — o' () + M (" () — 21(8)]
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and moreover, (12), (3), (1), (7) and the inequalities ¢*/p < 1/(16K?) and
K > 1 imply that

(14) [ M) - (b)) dt
B

= [ M@ -m@)d- [ M@0 - o) dt
B B\E
1

= [ fM(cgm;(t))dt+M(b)#(B\E)]

B\E
2

=

35— [ foo(t)dMgl-jf}

R Y PUE AU D U U S
2ok |\ \" T3/ TEK| 2K 8K 8K 4K~

In view of (13) and the convexity of M, for all t € E, we have

>ou( 3 (ot - (1)

m=2 PES
1 m=-1
I S { ack(t)))
2<m<n (mm L vt
met (1)

1 i
e D MO RE0)

<k (¢) -1

ki (1)
”(t)—- ( )+ 1" )—271('&)
P LA 2:"' D
1
: z<§<n M(m L L(mm(t) _wk(t)))
'rn;é't”(t)
1 "
e Mz -
* () ~ 1 [qum 0 -a
Joi! (£)

+ ZM(m”(t) — /(%) -12— z"(t) - wl(t))]



206 S. Chen and H. Sun

n m—~1

<Y = 1 D M(a"(t) - zs(®))

re=2 k=1

8
M%‘”(t)_—l (t)"'ml(ﬂ”'

Combining this with (5), (14) and i"/(¢) — 1 < n— 1, we find

-1
1-— n2K 1 ZQM(mm”“m%"_”"]:'Zxk)

k=1
1

nﬂlszQM mm"'xk

m=2

6 neey
a;—ﬁgWMw<w

(M(z"(t) — ' (t)) + M(z"

# (1)) + M(2"(t) - 21(2))] dt

b
4n?K -’
This contradiction completes the proof. w

<1l-

By Lemmas 3 and 4, if M € Ay and M* € Ay, then there exist K > 2,

b>0,c>1and ¢ >0 such that

M(2u) < KM(u) (u>h), SKEM(®uG<1,

and

2

whenever |u| > b and either |u] > cfv] or wv < 0.
For such K, ¢ and 8, we have

M(“ ‘H’) < 20ty + M)

COROLLARY 7. If Lis s reflexive, then
L N
1429 17c2 K4

Proof From the proof of Theorem 1, we see that for any convex set ¢
in Ly with diam C = 1,

N(Iy) <1 =1 -8

b

w Trags = Y

15 inf _ _
(15) infsup g (@ - y) <1
and that

om(2z) < Kon () +1/8 < 2K

icm
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provided that gar(z) <1

e
(__1_
"(mn

which yields ||z|| < 1 — &’ and hence, N(Lp) < 1 — &' follows from (15). m

. Hence, ops(2) <1 — 6" and ||z|| > 1/2 imply
1- -
e ( liely 211,
Bl
1
ot ( ot

——1)2K+1-m5",

A 1A
ll—‘ a8
I

To end this paper, we provide an application of our main theorem to the
Hammerstein integral operators.

Let G be a bounded closed subset of R™. The operator P defined by

Pa(t)= [ K(t,5)g(t,x(s))ds
G

is called a Hammerstein operator, where K(t,s) is a measurable function
on G x G and g : G x R™ — R satisfies the Carathéodory condition, i.e.,
for almost all t € G, g(t,5) is a continnous function of s on R™, and it is a
measurable function of ¢ on G for every s € R™.

Define

Hu(t) = g(t,z(t)), Az(t)= [ K(t,s)(s)ds

G

Then, clearly, A is a linear integral operator and Pz = AHz. Moreover,
from [8], we have

LEMMA 8. Let M € Ay and H : Lyr — Ly, Then
H:i{ze€ly:lz| £r}—Ln
is a k-Lipschitzian operator provided that there exists k > 0 such that for all
B> /v, we hove
1
(16) M(%g(ﬂ, s-+1) - glt, s)) < M(;s) + M {(pl) + eu(t)
where v, () is a nonnegative measurable function satisfying Joeu(t)dt < 1.
By Corollary 7, Lemma 8 and [3], we have

COROLLARY 9. If Ly is reflexive, the Hammerstein integral operator
P: Ly — Ly is a self-mapping on e bounded closed conver subset of Lag,
H is a k-Lipschitzian operator satisfying (16}, and EJA[ < (1 — &' y=1/2,
then P has o fized point in the subset.
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Pointwise ergodic theorems for functions in
Lorentz spaces Ly, with p# oo

by

RYOTARO SATO (Okayama)

Abstract. Let = be a null preserving point transformation on a finite measure space.
Assuming r is invertible, P. Ortega Salvador has recently obtained sufficient conditions
for the almost everywhere convergence of the ergodic averages in Lpg with 1 < p < o0,
1 < g < oo. In this paper we obtain necessary and sufficient conditions for the almost
everywhere convergence, without assuming that v is invertible and only assuming that

B F 00,

1. Introduction. If r is an invertible null preserving transformation on
a o-finite measure space (X, F, 4}, then A, ,, and M will denote the ergodic
averages and the maximal operator, respectively, defined by -

Anmf@) = = 3 flr's)

and
Mf= SUPOAn,mEfi .

Ty
In [6], Ortega studied the good weights W for M to be bounded in
Loo(Wdp) (1 < p < o0, 1 <g < 00), under the additional assumption that
T is measure preserving. Among other things, he proved that | M f||pgwas <
C|\# lpgiwap if and only if sup,, >0 [|Anmfllpecswan < Cllf|pgwap, € being
a positive constant, not necessarily the same at each occurrence. Applying
this result he then considered a null preserving 7 on a finite measure space
and proved that if sup, o [[Anmfllpes £ C|lfllpq, where 1 < p < oo and
1 < ¢ < oo, then for any f in Lue(u) the ergodic averages Ao f converge
almost everywhere as n - co. It seems to the author that this condition
for the validity of the pointwise ergodic theorem is too strong. In fact, as

1991 Mauthematics Subject Classification: Primary 47A35; Secondary 28D05.
Key words and phrases: pointwise ergodic theorems, Ly spaces, null pregerving trans-
formations, measure preserving transformations, positive contractions.on Ly spaces.



