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Calderén-Zygmund operators and
unconditional bases of weighted Hardy spaces

by

J. GARCIA-CUERVA and K. S. KAZARIAN {Madrid)

Abstract. We study sufficient conditions on the weight w, in terms of membership
in the Ap classes, for the spline wavelet systems to be unconditional bases of the weighted
space HP(w). The main tool to obtain these results is a very simple theory of regular
Calderén—Zygmund operators.

0. Introduction. The purpose of this article is twofold. First of all, we
present (in Section 2) a very simple theory of regular Calderén—Zygmund
operators, based upon the notion of weighted atom and a general extra-
polation principle. The whole theory develops almost immediately from the
basic estimate in Theorem 2.3 below. This estimate containg almost all the
information about the boundedness properties of the operator.

Secondly, as an illustration and an extension of the theory, we find (in
Section 3) sufficient conditions on the weight w, in terms of membership
in the A, classes, for the systems of m-splines to be unconditional bases
of H?(w}. Only the unweighted case has been treated so far in the litera-
ture. For this problem, the operators to be studied are different from the
Calderén-Zygmund operators of Section 2, but the basic estimates they sat-
isfy turn out to be the same. This unity makes the theory transparent, The
first estimates for the basic m-splines appear in the work of Z. Ciesielski.
We improve the estimates which were obtained in [St] to deal with the un-
weighted case. Moreover, we show that the high-dimensional case, which is
treated in [St] in a way far from satisfactory, is not essentially different from
the one-dimensional case.
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We make no effort to get the weakest sufficient conditions on w outside
the A, classes. With our same proof, it is obvious that one can formulate
weaker conditions of the type of those appearing in [S-T]. We have not
included these refinements in the present paper, since we mainly want to
illustrate the general philosophy.

We shall address the problem of necessity elsewhere and we shall also
consider the case p > 1 on another occasion. However, we have felt the need
to establish a comparison with the dyadic case, that is, the case associated
with the Haar system and dyadic martingales. We treat it in Section 4.

1. Basic facts. Let E be a separable F-space (i.e. a complete invariant
metric topological vector space). A sequence of vectors {ex}z2, is called a
(Schauder) basis of E if for every e € E there exists a unique sequence of
numbers {&k}z‘;l such that the sequence of partial sums

N
Swie) =Y &uex
kezl

converges to e in the metric of £.

The following theorem was proved by S. Banach (see [B]) for Banach
spaces, but it is also true for general F-spaces because the only tool used in
the proof is the open mapping theorem which holds for F-gpaces as well.

THEOREM (Banach). Let E be a separable F-space and let {ex}ie., be a
sequence of vectors of B. Then {ex}32, is a basis of K if and only if the
following conditions hold:

(1) The system {ex}32, is complete in E, i.e. the linear span of the
vectors {ex )32, is dense in E.

(2) There evists o system of functionals {e}}3%, belonging to the dual
space E* such that e, (ex) = 6mx, the Kronecker & ({e}}§, 48 called the
biorthogonal or conjugate system).

(3) The partial sum operators

are uniformly bounded in I,

A basis {e,}§2, of E is called unconditional if it remains a basis after
every rearrangement of its elements.
. The following theorem is well known for Banach spaces (for that case it
is due to Banach and Orlicz, see [W1]) and it can be proved analogously for
F.gpaces.
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THEOREM. Let E be a separable F-space and let {er}2, be a sequence
of vectors of E. Then {ex}32., is an unconditional basis of E if and only if
the conditions of the Banach theorem hold and also the operators Sy . or
Sy given by -

N
and Sy, = ane}“c(e)ek
kzl

are uniformly bounded in E, where ¢ = {,}52, is any sequence of +£1°s and
n= {Np}ie, 8 any sequence of 0’s and 1's.

N
SN,E(E) = ZE,&;E;(E)&}@
A==l

We shall mainly be concerned with the spaces LP(w), 1 < p < oo, and
H?(w), 0 < p £ 1. We always work on R™, and we only make a few comrz;lents
on how the theory works in other contexts, like T = [0,1] or the torus T.

Our weights w will mostly belong to the class Ao, which is the union of
all the clagses Ay, 1 < p < oo. We give the definition of Ap in R®. A weight
w > 0 is said to belong to A, for 1 < p < oo if

p~1

(Ap) (,%igw(m) dw) (TCI?T C{ w(z) =P dm) <C

with C finite independent of the cube Q.
The clags A, is defined by letting p — 1, namely

1
(4) (% / (o) de ) [ 1) < O

with C finite independent of Q.

These classes were introduced by Muckenhoupt in [Mu], and their theory
was further developed in [C-F]. See also [G-R].

ExamPLE. On the torus T, the trigonometric system {e"*},,cz is a basis
of LP(T,w), 1 < p < oo, if and only if w satisfies the (4,) condition (the
analogue for T). This is just a restatement of the well known theorem of
R. Hunt, B. Muckenhoupt and R. Wheeden [H-M-W]| about the boundedness
of the conjugate function on weighted L? spaces.

' However, it follows from a theorem of Gaposhkin (see [K]) that the
trigonometric system can be an unconditional basis of L?{w) only for p = 2.

DrriNrrioN 1.1, Given a weight w > 0 on R™, we shall denote by

HP (w) the space of those f € &'(R™) (tempered distributions) for which the
maximal function

¢*(f)(z) = 31;10)[% * f(2)] € L (w)

where ¢ € S(R™) is a fixed Schwartz function with [, ¢ # 0.
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Under mild conditions on w (in particular for w € A ), the definition
does not depend on the choice of ¢ (see [S-T]) and we can write

[ Fllzrm ) = 9" (F) e
obtaining a norm if p > 1 and a p-norm otherwise.
We shall always assume w € A, and define

g =inf{g > 1:w € Az},

the eritical indez of w.
Also for 0 < p € 1 we write

i.e. the largest integer < n(qw/p—1).

DeFINITION 1.2. CGiven 2 weight w > 0 on R", and a number p with
0 < p < 1, a p-atom with respect to w will be a function a supported in a
cube @, and such that

(1.3) lallo < w(@)V/P
and

(1.4) f z%(z)de =0 for every multi-index o with |a| < Np(w).
R'ﬂ.

These p-atoms with respect to w are the basic building blocks of H?(w),
as stated in the next proposition, whose proof can be seen in [G] and [S-T].
In those references our p-atoms are called (p,oco)-atoms, since other
(p, q)-atoms are also considered there, which we shall not need in the present
paper.

PROPOSITION 1.5. Let w € Ay be a weight in R™, and let 0 < p £ 1.
A tempered distribution f on R™ belongs to H?(w) if and only if f can be
written as a series

(16) £= 3 he

conuvergent in the sense of distributions, where each a; is a p-atom with
respect to w and the coefficients A; satisfy

(1.7) SN < 0.

g
Moreover, the infimum of the sums (1.7) over all decompositions (1.6) is
equivalent to the p-norm |if|[5.,,-

Next, we define m-splines on R. Let m be an integer > 0. Let Vp =
{f € L*(R) N C™ Y(R): the restriction of f to each interval ]n,n + 1[is a
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polynomial of degree < m}, where we denote by C"(R) the class of functions
on R whose derivatives of order  are continuous and by C~(R) the class
of piecewise continuous functions on R.

Then we get a multi-scale analysis {V;};ez of L?(R) in the sense of
S. Mallat [Ma] and Y. Meyer [Me], simply by defining V; ¢ L*(R) in this
way:

(1.8) F2e) eVigr & flz)eV;.

That {V;}jez is a multi-scale analysis means that the V;’s are an increasing
sequence of closed subspaces of L2(R) satisfying (1.8) and also the following
properties:

(1.9) ﬂ Vi = {0} and U V; is dense in L*(R);
JEZ j€2
(1.10) fle)eVo & flz—k)eVoVk €Z;
(1.11)  there is g € V such that {g(@ — k)}rez is a Riesz basis of Vp, i.e.
for some C,
i/2 1/2
~1 2 _ 2
()" S te -, 26 ()
keZ keZ kEZ

Actually, g can be taken to be

(1.12) g=x%*...%x (m+1 times),

where ¥ is the characteristic function of [0,1]. This multi-scale analysis is
m-regular, in the sense that, with the choice made in (1.12),

(113) | D%()| < Onall +|2))™"
foralawith0 <o <mandall N € N.
In (1.13), the derivatives are to be understood in the sense of distributions.
Note that, actually, the one of order m is only L°°.
Every time we have an m-regular multi-scale analysis, we can find an
analyzing wavelet, that is, a function ¢ € Vi, 9.LVy, such that {¢(z~k)}rez

is an orthonormal basis of Wy, the orthogonal complement of Vi in V7. See
[Me] and [D]. Since

L2R) = D W;,
JjeZ
it turns out that the system
bin(z) =2 Y(Fe - k), ke,

is an orthonormal basis of L2(R). Also, when the multi-scale analysis is
m-regular, it is possible to choose 1 such that it satisfies the same conditions
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(1.13) as g above. Then from (1.13) for ¢, one obtaing
(1.14) | =*yle)dz =0,

i
In R™ one can define m-splines by starting with the space
WRHY=1o...0V

The only difference is that when n > 1, one analyzing wavelet is not enouglh;
but we can always find 2" — 1 functions 0, #n € E = {0,1}"\ {0}, such that
each v, satisfies
(1.18) 0% ()] < C,all+ |2

for all e with 0 < o] £mand all N € N,

0<a<m.

(n times) .

and the system
Pyiule) =202, (e - k), neB, jeZ kel

is an orthonormal basis of L#(R™). The details are given in [Me] and [D].

For the particular case of m-splines, the construction of a wavelet basis
was first done by J. O. Stromberg [St], some five years earlier than the
systematic development of wavelets, by Y. Meyer [Me|, and can also be
found in [D].

To present the main problem, let us go back to the one-dimensional cage;
the case of higher dimensions is sssentially the same but requires a different
notation.

Given a function f, its wavelet expansion will be

> by eddie.
J,ked
" We are actually interested in the partial sum operators
Tof(z)= Y (fiye)wiu(z)
(hk)en
for 2 C Z? finite; or even in the operators

(1.16) Toef(@)= Y epu{fiviuitiale),
(4,h)Een
where ¢, = £1. Since
Tﬂ sf f KQ& m ?J)f(y)d’y:

where

Koe(o,y)= Y eutyr(@)dinly),

: : (4.k)en
by (1.13) we obtain
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PROPOSITION 1.17. The kernels Ko (z,y) associated with the multi-
scale analysis by m-splines (or with any m-reqular multi-scale analysis) in
R satisfy the estimates

‘DQKQE:(.'L‘,T})‘<I{E-~ fﬁl"a, 0<asm.

Proof We simply estimate K . by using the estimates for 1,k which
we obtain from (1.13) by dilation and translation. We get

| B 2,6 {

ZZ 2112 27/2
SET ke 20271 |z — B/2A)Y 24N (275 4 |y — k/2 PN

In order to estimate this sum we fix 2,y € R, # # y. First we consider those
7's such that |@ — y| < 277-1, For each such § we have

Z...gazj(u L ! .):ng‘.

Ty eI L
aN iN
ez 2 8
Then, summing over all such 5’s, we get
> S50 Y Pste-y
|a—y|<2=i—1 kEZ |a—y|<2-7-1

If [z —y| > 27771, we first sum over & as before, obtaining

S octe (el Ve P
= T WV e-y¥ av 3N ) T T 2N g — N

and summing over § we again arrive at
z L0l —y
|z—y»2-i-t
This is what we wanted for @ == 0. For the derivatives we proceed in the
same fashion starting from the estimate
| Dy K aae(, )]
0i/2 0i/2

< X - - T . : .
%MZ,Z N + [w ~ b/P)N TN (2T 4 [y kj2 [N

We obtain
1Dy Kae(z,y)] < Cle —y| ™1 7%,
ag desired, m

Of course we also have the corresponding result in higher dimensions,
which is obtained in the same way.

ProrosiTiON 1.18. The kernels Kag(x,y) associated with the multi-
scale analysis by m-splines (or with any m-regular multi-scale analysis) in
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R™ satisfy the estimates

02K pe(z,y) < Clz—y™™1®,  0<|al<m.

2. Calderén—Zygmund theory for regular singular integrals. Mo-
tivated Dy the estimates obtained in the previous section, we make the fol-
lowing

DEFINITION 2.1. CGiven a kernel K (z,y), ¢ € R*, y € R®, x # y, and
given v € R, v > 0, we say that K is y-regular with respect to y if:

(1) K has continuous derivatives 85 K (z,y) for every multi-index o with
|| < v and they satisfy

|85 K (2, 1) € Clo - y|“”"’f‘*‘ .
(2) For highest order derivatives, that is, those corresponding to vy —1 <
\a| < 7, we have
e gy | Y12
02K (2,) — 8K (my/) < LY 2
provided 2Jy — ¥'| < |z —y|.
Of course, there is a parallel notion of y-regulerity with respect to z

which amounts to saying that the dual kernel K™*(z,y} = K(y,z) satisfies
the conditions above.

Observation. If v < o and K(z,y) is v/-regular with respect to y,
then K (z,y) is also y-regular with respect to y.

DEFINITION 2.2, We shall say that T is a singuler integral operator
with kernel K (z,y) if for every L function f with bounded support, and
for almost every z in the complement of that support,

= [ K(z,9)f)dy
o

For example, the operators Ty . associated with the wavelet expansion
by m-splines, or in general, with the expangion in wavelets corresponding
to an m-regular multi-scale analysis, are singular integral operators with
m-regular symmetric kernels.

The starting point for the Calderdn-Zygmund theory is the following
simple estimate.

THEOREM 2.3. Let T be a singular integral operator with kernel K{z,y)
~y-reqular with respect to y. Let f be an L™ function supported in a cube @
with center yy such thal

f fl@)a®de =0  for every multi-indez o with o < y.
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Then for almost every z & Q, the 2v/n-dilate of Q, we have

14+ /n
Tf() Sc(ﬁ%w .
Proof. We have
Tf@) = [ K(zy)fy)dy
Q
= [{Kwn- T 5o -wr}ima
Q \ﬂv|<'r

Using Taylor’s theorem and condition (2) in Definition 2.1, we get

T f(z)| < OM

— |n+7 Hf”oo »

COROLLARY 2.4. Let T be a smgula'r integral operator with kernel K (z,y)
y-regular with respect to y. Let f € L(Q) (that is, f is an essentiolly
bounded funciion supported in the cube Q and with moments vanishing up
to order N). Then for a.e. ¢ € Q,

!Tf | c |Q} 1+min(N+1,7)/n

) € el 00 -
@)l <o) 150
Proof If y < N+ 1, we have

f f@)z®dz =0 for all & with |o] < v

and the conclusion of the theorem holds.

IfN+1 Ly then K ig N + L-regular and the conclusion holds with
N+1inplace of 7. =

CoroLLARY 2.5, Let T be a singular integral operator with kernel K (=, y)
y-regular with respect to y. Let w € A, and let f be o p-otom with respect

to w, supported in o cube Q. Suppose 0 < p < 1 is such that qu/p < 1+7v/n.
Then

[ 1TH@)Pw(z)de < C
R™N\G
with C' a constant independent of f.
Proof. The atom has vanishing moments up to order N = Np(w) =
[n(gw/p—1)] at least, s0 that N+1 > n(g,/p—1). Also, by hypothesis, this

inequality holds with « in place of N+ 1. Thus 1+min(N +1,v)/n > qu/p.
By setting ¢ = p(1 + min(N + 1,v)/n) > gu, we obtain from the previous
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corollary
el \* =
rrar <o) sl frse g @,
|z —yol™
But, since w € 44, we have
[ rs@pamasc f (
R™\Q R™\G
< Cuw(@)|fII5 -

DEFINITION 2.6, A singular integral operator which is bounded in
Lre(R™) for some pp such that 1 < pp < oo will be called a Culderdn-
Zygmund operator.

q
-J@~)mmmum

|z~ yoi™

ProrosiTION 2.7. Let T be o Calderdn—Zygmund operator bounded in
LPo(R™) for some py such that 1 < py < oo. Suppose that T has a kernel

which is ~y-regular in y. Then for every w € Ay N AYre maps H(w)
boundedly into L' (w).

Proof. Let f be a l-atom with respect to w. By applying Corollary 2.5
with g, = 1 and p =1, we have

[ T4

IR"\Q

Yw(z)de < C.

We need a similar estimate over . We shall get it by using the boundedness
of T on LP°(R™) plus the fact that wP & A,. Note that this is equivalent
to saying that w satisfies a reverse Hblder inequality with exponent pf, (see
[S-W] or [J-N]). Then

[ ITf@lw@ s < ([ mrapeds)”™ ([ wds) "™
q 5 5

<c ()11@(@l

Now we can put together in a single statement all the boundedness prop-
erties of regular Calderén~Zygmund operators. We shall use the following
extrapolation theorem of [G1].

THEOREM (Extrapolation). Let T be an operator, either linear or sub-
linear; in the second case suppose that Tf = 0 for every f.

(1) If T is bounded from wL® to BMO(w) for every w € A% and some

a such that 0 < o < 1, with norm depending only on the Ay constant of
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w'/®, then T is bounded in LY (w) for every g > 1/a and every w € Ag,.

(2) If T' is bounded from H*(w) to L' (w) for every w € Ay, with norm
depending only on the Ay constant of w, then T is bounded in L?(w) for
every p such thai 1 < p < oo and every w € A,

Part (1) is Corollary 1.15b) of [G1] and part (2) is Corollary 2.7 of [G1].

THEOREM 2.8. Let T be o Calderdn-Zygmund operator with kernel
y-regular in y ond e-regulor in .

() If L<p<oo and w € 4, then T is bounded in LP(w).

@) If 0<p<1andwe Ay are such that g /p < L+ y/n, then T is
bounded from H¥ (w) to L¥{w).

In oll cases the norm of T' depends only on the constants for the kernel
and the weight.

Proof. By applying Proposition 2.7 to the dual operator T*, we see that
T* is bounded from H'(w) to L*{w) for every w € 4; N A2, and some o,
0 < a < 1. In particular, 7" maps H'(w) boundedly into L1(w) for every
w € Af, This implies that 7' is bounded from wL*> to BMO(w) for every
w € Af. Then part (1) of the extrapolation theorem above can be used to
conclude that T is bounded in L9(w) for every ¢ > 1/ and every w € A,,.

Let us prove (2) first. We assume 0 < p € 1 and w € Ay such that
qu/p < 14 v/n. If fis a p-atom with respect to w having support in a
cube @, we know that

[ 1T f(z)Pwiz)dz < ©.
R™\G

We need a similar estimate over é We shall get it by taking g so large that
ag > gy. Then w € A.q and, consequently, T is bounded in L9(w). Thus

f [T f{x}|Pw(z) dz

g
B fle ) Pw (@) T (2) P/ da
a
= ( f T/ (2)| w(z) d“‘")p/q( fw (1-p/a)(a/p)’ )VWP)'

@
SOM@”MQWMQ“W=O-
This completes the proof of (2).
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Note that this implies, in particular, that T is bounded from H'(w) to
LMw) for every w € A;. By part (2) of the extrapolation theorem, this
implies (1). w

3. H? — H? estimates. As a consequence of the Calderén—Zyground
theory developed in Section 2, we see that the modified partial sum opera-
tors T . associated with the expansion in m-spline wavelets are uniformly
bounded from H?(w) to L*(w) provided qu/p < 1+ m/n. We are going to
see that they are actually bounded in HP(w) with the same restriction on
the indices. We shall explain the details for the l-dimensional case using the
specific wavelet basis constructed by J. O. Strémberg in [St]. Now instead
of looking at the modified partial sum operators

T.st Z :{: f?qulﬂ)'t/);l, ( )
(4,k)en

we have to look at the operators

3" (Taef)) < Y {diale (in)(z).

(k)en

Consequently, we shall estimate ¢*(t;,5) and also the wavelet coefficients
(f, ;%) of suitable functions f, say atoms. Since ¢* commutes with trans-
lations and dilations, we start by looking at ¢*(32), where ¢ is the analyzing
wavelet associated with m-splines in R.

PROPOSITION 3.1.
¢

Proof.
bexpie)l = | [ iz - 1)) dy] < sup ol [ el
jit] R

C :
SCSW if |z] <1,

So, we just need to consider jz| > 1 and to prove, in that case,

C
| # ()| < Tamie

For 0 < t £ 1, the estimate is trivial:

| % (z)] < f!w— Noew)idy = [

lyl<lz|/2

ody+ f dy.
ly|>1=|/2
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But
f Yl [¢e(y)ldy < sup || - f|¢t|S C'(IX;)’
Iyl <l /2 Blwlzl/2) 5 ||

and we can take NV = m + 2. Also,

[ it —9)16ely) dy < [ 1wty

|yl /2

1
w3 |a:/(z]§>w

C
N-1 YN
= C1 HN_ON

£ IN
and again we can take N =m + 2.
Now we assume ¢ > 1. It is in this case that we use the vanishing moments

of ¢ in (1.14) and we get an estimate depending essentially on m. We have

ERRE { Za,qst (z)(y — =)° }dy’
=0
f W =) e Byl =)o)y
c , (meny [ &1 by(z — 3) - mel
<C [ 10w~ )y 60 (ZEBE I, gy
K
gc( [ o+ ...dy),
[w~y] <|n|/2 |z—y(>|wl/2
with 0 < 6, < 1. But fm yl>lelja -3 < CfJz|™ and we can take N =
m + 2. Also,
cdys [ -yl ly - o™
w~y|<|e|/2 o~y <|e|/2
1 C
X - dy < .
R T N I
S ra—
After translating and dilating we get
COROLLARY 3.2.
C9il?

‘?5*(’:[’;7',&)(97) < zj(m+2)(2—j e Im - k/zj,)mw '

Our next objective is to estimate the coefficients {f, 4 ) for appropri-
ate f.
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PROPOSITION 3.3. Let f be an L™ function supporied in an interval T
centered at g and such that

ff(:c)m“dmz() forallo withd0<a<m-1,
R

[Flloe On 27”1
|y seh] < 20N (2=1 4 (|ag — k/29| — |I]/2)4 )7
and, when 277 > {1},

[ oo O 23172 et
{f, Tf’jdﬂ)l = PN (27 4 |z — k/?jl)N
Proof. The first estimate is almost immediate:

(5] = | [ Fa)bsule)da] < 1Floe [ 1
I I

. |fleeCr2/21]
= SINET + (w0 - K2 — T2

Now if 277 > |I| we can asswme that |k/27 — zg| > |I|. We can also assume
that there is a node z; of the spline v; 5 such that z; € I. Of course, there
can be at most one such node. Then

bl =| [ F@)is) da
I

/ ) iule) - TZVQ: 2(2) vatante -z} as
f HE

< ol ™

dix

( ) Bip(m1 + 0z — 21))(z — 21)™

C 29 (m+1/2)
2IN(270 + |wg — K/2I)N

where 0 < f; < 1. m
CoroOLLARY 3.4. Under the conditions of Proposition 3.3,

-1
S Wbl 0 < O( ) e

PR |m

Proof. We shall split the sum into three pieces:

Yoo= > ot 3 Y

i kEZ ka1 > [m—m| /2 S| T <23 <|zmag /2 ikia=d <|1|
- . . "3 N ~ - A= S— -,,m-J
ZI EII' ZII!
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Now we estimate each of these sums separately as in the proof of Proposi-
tion 1.17:

| FllooCy 24172 1
205 2 S i

J127i>|e—~mg|/2 KER

y Cod/2
2 (m+2) (94 4 | — k /27 [ym+2
1

< | Z C’{l+2—1\,~+ T +. }Q:f{m+l)|flm+1“f”w
Jidip|aemg|/2

IIJ -1l
< p
<o) e,
Next,

mA+1/2) rim+1
< - 1f loo Cay 20 (m+172}) 1|
R 2 2 2N (277 + |y — k /29 [)V

Gl <28 < |mmun | /2 BER

C1/2
X e . -
2J(m+2)(2—3 + |z~ &/ ym+2
As usual, we sum first over k for § fixed. We split the sum in two. For the
nodes k27 which are closer to 2 than to z, we get

. Qi (m-1) 1 i
£ m--1,
;SG“J‘”W‘II zj(m'}-z)‘ﬂ?“WDlm+2{l+2—N+3—N+“'}

II|m+1 -«-j
{’E - Ty jm-{-? !

= Ol flleo

and for those nodes closer to » than to zy we just get the same estimate if
we take N = m -+ 2. Therefore

¥ A -7
2oy SOl ey 30 27

P <2 Lla—wo | /2

1 ™ cpf ™
<0l (=) s o( ) e
Finally,

1 las O 2721
LS D D ST (e T

$12d <)) had

C2i/2
x 20(mt2) (2-7 + |z = k /20 [ym+2
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Let us sum first over k over those nodes belonging to T , the 2-dilate of I,
For fixed j, there will be no more than 2|71/2~7 of them. We get

s n 2 II{ — _“’——"—‘”—'_E_—z .
E = 25(m+2)‘wwmqlm+2 QJmimmmolm

B
The remaining nodes will be either closer to zg or to z. In any case, we

obtain
|| £]]eeC2/ || 1 1
Z = 2(m+2) [ — go|m+2 1+ om42 + qm+3 T
P
which is an even better estimate. Now

C sl
ZIII < Z

e 20m g — g2
5:2-i<|If

< ol (! )Wso|ifnm(|$f'wo1)m“...

|z — |
The corresponding estimates in higher dimensions are as follows:

PropogITION 3.5. Denote by ¥ any of the 2™ — 1 analyzing wavelets
associated with m-splines in R™. Specifically, consider the system oblained by
tensor product from the one-dimensional wavelets constructed by Strémberg
in [St] (see also [Me]). Then

: c
* < S —
¢ (’l,b)(.’):) = (1 * lml)m+1+n
Next write v = (f, ke, ..., ka) = (j, k) € Z x Z" and set jv| = 277, Define
Yo(z) = 27 2(Px — k).

Then, if f is an L™ function supported in a cube Q centered at xg and such
that

[ f@)etde =0 forallo with0 < el <m—1,
Rn
we have

£ loo ¥ ~"/21Q| O
=M (vl + (oo — 2-7k] = ca| Q™) )N

[(fin)] <

and if [v] > |Q/",

[P el N
E(f’q/jl')‘ = !yl‘N(|V|+’$0“2ijDN

This leads to the following estimates for the mazimal operotor of the modified
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partial sums of f
T of 1@\
* ] <
o(Tache) < ()

This is exactly the same estimate as that in Theorem 2.3. By arguing as
in the proofs of Corollaries 2.4 and 2.5, we get
COROLLARY 3.6. Let w € Ao in R™ and let [ be a p-atorn with respect

to w, where 0 < p < 1. Denote by T the medified partial sum operators
associated with the wovelet expansion in m-splines, m > 1. Then if
o o142
P n
we have the bound

f [9* (T f)(@)[Fu(z) de < C  independent of f.
R™\G
Note that we also have an estimate on Q simply by using the fact that
¢" o Tp,c is {uniformly) bounded in L9(w) for ¢ > g,:

J 18" (Tae)(@)Pu(z) do
a

»/

< ([ 16 Tne)@loute) ds) w@rie < .
5

In order to obtain the main result, we need the characterization of the
dual spaces. The atomic decomposition immediately leads to the following
characterization of the duals (see [G], [S-T}).

PROPOSITION 3.7. Suppose w € 4., 1 <7 < 00 and 0 < p < 1. Then for
every A € (HP(w))* we can find o function g such that

! 9(z) ~ 99
) (w(c»Qf 5

wniformly for cach cube Q where gg 18 the unfique" polynomial of degree <
Ny(w) having over Q the same moments as g up to order Np(w) and s0 that
for any linear combination f of atoms,

(3.9) Afy= [ fla)g(z)dz.
o

7 /¢
w(z) dm) < Cw(@)VP~,

Conversely, any function g satisfying (3.8) gives rise by means of (3.9) to a
continuous lineor functional A € (HP (w))*. :

We thus arrive at the main resuli:
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THEOREM 3.10. For m > 1, m-spline woavelets in W constitute an un-
conditionol basis of:

(1) LP(w) for 1 < p< oo and w € Ap,
(2) H?{w) for 0 <p <1 and w € Ay, such that gy /p <1 - m/n.

For example, Strémberg’s modified Franklin system {m = 1, n = 1) ig
an unconditional basis of H*(w) provided ¢, < 2, that is, provided w € 4.

The history of the discovery by B. Maurey [Mau] of the fact that H* has
an unconditional basis, and the subsequent construction of concrete bases
by L. Carleson [Ca] and P. Wojtaszczyk [W], can be found in [Me]. For
the spline bases in the unweighted case, after the research of Z. Clesielski
(see [C1] and [C2]) and S. V. Bochkarev (see [Bo]), we have to cite [St] and
further work by A. Chang and Z. Ciesielski [C-C] and also by P. Sjélin and
J. O. Strémberg [S-S].

4. The Haar system and dyadic martingales. In the previous part
we have ounly discussed the case m > 1. When m = 0 we get completely
different results. We treat this case in terms of dyadic martingales and dyadic
martingale H? spaces. Denote by Ay the collection of cubes of side length 1
in R" whose vertices have integer coordinates and let Ay be the collection
of cubes obtained from those of 4¢ by dilation with center at the origin and
ratio 27%. The conditional ezpectation £ f is the function constant on each
cube of Ay, whose value on I € Ay, is the mean value of f on I. A dyadic
martingale is a sequence F' = {fy} of step functions with each f, being
almost everywhere constant on the cubes of Ay and & f; = fi whenever
E<

Now we are able to define weighted dyadic Hardy spaces H cﬁ’y(w) for
weights w € A%Y. The class AY is the union of all the classes A¥, 1<
p < o0, the latter being obtained by considering only dyadic cubes in the
conditions (A4,) or {A;) given at the beginning of Section 1. Denote by
MF(z) = supyey | fr(z)| the dyadic maximal function. Defining H dy(w) as
the space of dyadic martingales F = {f.} such that M# € LP(w) one can
similarly obtain the analogue of Proposition 1.5. Atoms in this context are
defined as follows.

DEFINITION 4.1. A dyadic p-atom ¢ with respect to w € A% is a function
with support contained in some dyadic cube T such that ||a| e < w(I)~Y?
and [a{z)dz =0.

For a given locally integrable function # one can always form the mar-
’ tingale { fi} with fy = &, f. Now one can formulate the analogue of Propo-
sition 1.5 for a martingale F € H fy(w) and w € A% In this formulation
dyadic atoms appear instead of ordinary ones and convergence in the sense
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of distributions is replaced by convergence of a sequence of martingales In
the sense that for every fixed k the functions standing in the kth place
converge in the L% metric,

The atomic decomposition immediately leads to the following character-
ization of the duals similar to Proposition 3.7.

PROPOSITION 4.2. Suppose w € AV, 1 <r < oo and 0 < p <1, Then
for every A & (Hffy(w))* we con find a function g such that

1 gle) = gr|”
(43) ('w(l’) !J w(i)

uniformly for each dyadic cube I where gr = |Ii™1 [, g(z) dz, and so that
for any linear combination f of atoms,

(44) Af) = [ Flag()da.
o

’ L/v!
w(m)dw) < Cuw(I)He—1

Conversely, any function g satisfying (4.3) gives rise by means of (4.4} io
a continuous linear funciional 4 € (HJ (w))*.

Define _
1 for0<z <1/2,
O (z) = {—1 for1/2<z <1,

0  otherwise.

This is an analyzing wavelet for the multi-scale analysis by 0-splines on R.

The corresponding wavelet basis is the Haar system ¥ = {wjm;z (z) =

2/29((293 — k)}; ez on the real line. Similarly on R™ we have the
n-dimensional Haar system ¥" generated by dilation and translation from
2" — 1 analyzing wavelets which are tensor products of some ¥(©) (at least
one) and x (defined as in (1.12)) in the remaining coordinates (see [Me]
or [D]). Then the following theorem holds.

TororEM 4.5. The n-dimensional Hoar system is an unconditional basis
of Hy (w) for cvery0 < p <1 and everyw € A% | Tt is also an unconditional
basis of LP(w) for 1 < p < o0 and w € AY.

Proof The proof is simpler than that of Theorem 3.10, although it
comes from the same idea. In order to keep the notation as simple as possible,
we give the proof only for n =1,

Let T&E be the operator defined by (1.16) for the Haar system. We start
with p = 1. Let f be a dyadic 1-atom with respect to w and let us show that
HT%,Ef||ij(m) < C with C' a constant independent of f, 2, &, or equivalently

NM(TP?,sf)HLl(w) <C,
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Now a very interesting feature of this situation is that if f is supported
in a dyadic interval I, the same is true for Tn f and M(TH of)- We firgt

assume that w € (A%)'/2) that is, w? € A%. As mentioned in the proof
of Proposition 2.7, this is equivalent to saying that w satisfies the reverse
Holder inequality

1 1/2 1
— | w(x zdm) < C' x) dr
(7 J v a4 )
with € independent of the dyadic interval [. Consequently, we have

1M (TG Pl 2y = f| (T9 F) (@) |w(z) dz
I

(] part o) f woras)”
! I

<o [ 1@ids) ),
I

[A

We used the boundedness of the maximal function in L?, the orthogonality of
the Haar system and the reverse Holder inequality. Next we use the condition
|7(z)| € w(I)™! to get the desired inequality \]M(Tg)sf) 1wy £ C with €
independent of f, £2,¢. Thus we have shown that the operators TP) are uni-
formly bounded in Hj (w) provided w € (A%)"/?. The operators T§ , ate
symmetric. Therefore they are uniformly bounded from wL™ to BMOdy( w)
provided w € (Agg)lf %, In particular, this holds for w € (A{¥)/2, and we
can use the dyadic version of the extrapolation theorem (see Section 2) to
conclude that the Tf , are uniformly bounded in L9(w) for 2 < ¢ < o
provided w & Ady

Now we shall use this fact to prove the general result forD < p gl
Take w € AY. For ¢ large enough, we have w € A% a72 and by what we

have already proved, the T, are uniformly bounded in L¢(w). Now we fix

2, 0 < p £ 1, and show that the operators TF‘, are uniformly bounded
in HY, y(w). In order to do that, we take a dyachc p-atom f with respect
to w and prove that || Tg Ef”HF () € C with C independent of f, 2, or
equivalently ||M (T3 . f)|ze (w) <c.

We proceed as before with two differences. First, instead of using the
Cauchy-Schwarz inequality, we write w(z) = w(z)? 9w (z)'~?/7 and use
Hélder’s inequelity. Second, instead of using an L? estimate we use an L(w)
estimate. Thus we deduce that the T3  are uniformly bounded in H% ,(w) for
every 0 < p < 1 and every w € A%, In particular, this holds for H, cly(w) and

every w € A Y. This implies, by extrapolation, that the Tn . are uniformly
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bounded in IP(w) for l<p< o and we Aga’_ "
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Closed subgroups in Banach spaces
by

FREDRIC D. ANCEL {Milwaukee, Wis.),
TADEUSZ DOBROWOLSKI (Norman, Okla.)
and JANUSZ GRABOWSKI {Warszawa)

Abstract, We show that zevo-dimensional nondiscrete closed subgroups do exiat in
Banach spaces E. This happens exactly when E contains an isomorphic copy of cy. Other
results on subgroups of linear spaces are obtained.

1. Introduction. For a topological vector space B, we are interested
in closed additive subgroups G of E. In case F is finite-dimensional, the
structure of G is well known; namely, @ is a product of a linear subspace
of F and a discrete subgroup. The case when E is infinite-dimensional, in
general, is far from being so simple. _ .

Obviously, a (topological-group) isomorphism classification of groups G
would provide, in particular, a classification of elosed linear subspaces of
E; hence, in general, it is out of our reach. Therefore, to avoid dealing
with linear spaces, we shall mostly consider subgroups ¢ which contain
no nontrivial linear space. Such groups we shall call line-free. Note that the
maximal linear subspace V' contained in a group G is closed and the quotient
space G/V is a line-free group. ' _

If £ is a Banach space, then the topological classification of & reduces
to the line-free case as follows. Write k : B — E/V for the quotient (linear)
map. By a result of Bartle and Graves (see [BP2, p. 86]), there exists an
(in general, nonlinear) map « : E/V — E such that a0 & = idg. It follows
(see [BP2, p. 86]) that h(z) = (k(z),2 — & o (x)), z € B, establishes a
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