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The separable case of 5.9 reduces via a result of [DT] to the verification
that (@ is an absolute neighborhood retract; it is, however, unclear whether
such a ¢ must be even locally connected in dimension 1.
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Almost everywhere convergence of Laguerre series
by

CHANGPAO CHEN (Hsinchn) and CHIN-CHENG LIN (Chang-i)

Abstract. Let o €Z1 and f e LP(R™Y,1 € p € 0o, Denote by ¢; the inner product
of f and the Laguerre function Lf. We prove that if {c;} satisfies

lim Tim
Alln—oo

Z \Akcj'ljk/z_l/‘lro mnd JCjEjk/2_1/4=o(1) as j — oo
n< i< hn .

for some & € N, then the Laguerre series 3 ¢; L3 converges to f almost everywhere.

1. Introduction. Let L} (¢) denote the nth Laguerre polynomial of order
aon R,

1 dn

Lo(t) = —t7%e! o ("),

- e a>-1,n=0,12,...,

or, equivalently,
7
~1* /n+a
=3 G0
k=0 '

The Laguerre polynomials form a complete orthogonal system in L2(R*,
t*e"*dt) and satisfy the summation formula [13, p. 102)

a>-1,n=012...

(1) S Lg0) = L),
fo==()

It is well known (cf. [9, p. 348]) that
|La ()| = O(eﬁ/2t_m/2w1/4na,/2»1/4) ]
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Let
!

L3 (t) = Tt

e~ t2e /210 (4)
be the corresponding Laguerre functions. Then {£2(t}}2%, is an orthonor-
mal basis in L2(R*, dt); moreover, |£2(£)| = O(n~t/4¢~1/4),

The problem of the mean convergence of Laguerre expansions has been
studied by many authors in the last four decades. The most celebrated result
in this direction was given by Askey and Wainger [1]. They proved that for
a > 0, the partial sums of the Laguerre expansion with respect to the system
{£4(t)} of a function f € LP(R*) converge to f in the L? norm if and only
if 4/3 < p < 4. Muckenhoupt [6-8] extended this result to all @ > —1 and
weighted LP; he also proved the almost everywhere convergence of Abel’s
means for expansion with respect to the system {LZ({)} of a function f €
L2(R*, t%e~dt) for a > —1.

Recently, Dlugosz [4] investigated mean convergence as well as almost
everywhere convergence of Riesz summability method for Laguerre series,
Her result is

THEOREM 1. Let o € Z* =N U {0}. For f € LP(R") we have

.\ N
. J ra _
Jm 3 (1-2) ez = s
JSw
almost everywhereif L <p<ocoand N > 10, and in TP normif 1 € p < o0
and N > 4, where c; = (f,£3) = [g~ F(£)L3(2) dt.

The proof of Theorem 1 is based on the fact that the Laguerre functions
of an integral order a = 0,1,2,..., appear (nearly) as eigenfunctions of
the sublaplacien acting on the space of functions on the Heisenberg group.
Later on, basing on Dlugosz’s idea, Stempak [10-12] not only filled out the
gap from @ € Z* to @ € R* by using a construction of generalized twisted
convolution, but also extended it to the Laguerre systems {L%(¢)}%%., and
{E?‘L(t) :o=0'

For the sake of convenience, we use ¢; to denote the inner product of f
and L}, '

b= (5,03 = [ FOE) dt,
0

and
AOCj =G5, Aij = Ak_lcj - Ak~1cj+1 forkeN.

The ptirpose of this paper is to establish the following result.
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THEOREM 2. Let a € Z% and f € LP(RY),1 < p < oo. If {c;} satisfies

‘(2) { limy ity 3, 4 <an | AFCs|#/2=1/4 = ¢
ey | jh/2=1/4 o(l) asj— o0

for some k € N, then 3527 ¢, £9(8) = f(t) almost everyuwhere.

The approach we use is rather straightforward, and relies only on elemen-
tary calculation, which was first given by the first author [2, 3] for trigono-
metric series. In the next section we review some properties of Cesiro means
and Riesz means, and in Section 3 we give the proof of Theorem 2. Finally,
we mention that ' will be used to denote a constant, C,,, ¢ the constant
dependent on a, 4, ¢, and so on. All of these constants are not necessarily
the same at each occurrence,

2. Preliminaries. For oo > ~1, define the nth (C,a) mean of the se-
quence {s,(t)} by

ey N AaT Ay
on(t) =3 i=tei(t) =y leiLs),
j=0 m §=0 n
where :
Aaﬂ(r&-l—a)__ Pn+a+l)  n°
" n Fn+DMa+1) ~ Tla+1)
and

8 (t) = Z ij,;(t) .
=0

The sum o3 (t) is called the nth Ceséro mean of {s, (1)} of order cv. Whenever
@ is a positive integer, ¢3(¢) can be rewritten as

a,f;(t):i(lm;ﬁ-«i) (1—n12)...(1-nia)cjcg(t).

o)

We say that 3777, ¢; L7 (t) is summable (C, @) to s(t) if lim, .o o (2) = s(t).
For each o and n, off can be regarded as a linear operator acting on the
sequence {sm, (f)}. In this sense, we write o5 ({8, (£)}) instead of o2(t). It is
well known that :
an({oh(t)}) = 4, el({on()}) — 4,
are equivalent (cf. [5, Chapter 5)),
The Riesz typicol means with respect to L3 of order k € ZT are defined

by
PN
R0 =3 (1-1) e,

JZw

and o2TP(t) — A
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where w > 0. In this notation, the first part of Theorem 1 can be written as

(8) lim RY(t)=f
W —r OO

Tt is known that the almost everywhere convergence of the Riesz means of

an order k > 0 is equivalent to the almost everywhere convergence of the

Cesaro means of the same order (ef. [5, Chapter 5]). Furthermore, we have
the following result.

LEMMA 3. Let k € Zt. If ¢; = o(j1/4), then
lim (o By —RE) =0 forall t € RT.

Proof. Fix ¢t € RT. Since [C4(t)l = O(j7H*4471/*), we have ¢;£4(t) =
o(1) as § — oc. It follows from the deﬁnltlons of ok and RY that

|oi(t) - B5(2)]

(t) almost everywhere if 1 < p < oo and N > 10.

£ () (o) oo
< SH((-2) - (-mim) () o
=101
i=0

Using induction on k, we get

loB(t) — RE()] < (%+-"i~;—l++%) Zlcjll?(t)l
]ﬂ+1 ( ijﬁa )

-~ 0 asn— 00,
COROLLARY 4. If ¢; = o(j*/*), then
: @ el o : By s
Jm ocf({Rin()}) =4 and  lm RET(H) = A
are equivalent for all nonnegative integers o, 3.

3. Proof of the main result. Throughout this section, we assume
a €ZT. Fory > w >0,

(-3 -2 (- (-3)
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Multiplying by ¢;£3(¢) on both sides and summing over 0 < J < w,
we get

and hence

W Lw(T- %

j N
)(1—-) & L2 ()
isy w<jgy Y

mzcjﬁﬂ +Z( )( *1)_333,(1&).

2 ()E-)

o E (e o
e (1R ) - ey - = (1-2) sz0)
- ( PN

> et - 110) + (i (M(2-1) o= s03).

Let A > 1. We set w = m € N, y = Am, and take the operator ¢2 on both

On the other hand, we multiply the equality

= (T (1)

by f(t) to obtain

Y
) R

The equation (4) minus (5) leaves
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sides of the above equality to get

(6)

(A_—%) ! [ag({Rfm(t)%f(t)})'Ug ({ > (1“?\%) ch & (t)m

m<F <A
= o0(t) - +Z( ) ~ 1) (R - 1))

Consider f € LP(RT),1 < p < o0, and N > 10, By (3),

hm {R L) = F()} =0 almost everywhere,

and hence for almost all t € R,

Tn({RAm() — f()}) > 0 asn—oo.

For 1 < s < N, we have 9+ 5 > 10. Thus, for almost all £ € R*, Corollary
4 and (3) yield

an({Re(t) = F(O)}) = on({B7,(O)}) -

Taking limit superior on both sides of (6), we obtain

f(t) — as m — 0.

LeMMA 5. Let f € LP(RY), 1 < p < o0, and N > 10. Then, if ¢; =
o(§1/4), for X > 1,

@ Em |- 1)

AN —
=(,\—ri> s

holds almost everywhere.

5, () o))

m<iLAm

A

Next we are going to estimate the right hand side of (7). Set

Then, for y > w > 0,

oy Y N
® Y (1-l) o L3(t) = et/ 3 (1—1) b L2(1).
w<F<y v Wity v

Formula (1) and summation by parts yield
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@ 3 (1~%)NDJ-L§?
IV
S (=2 b -z

i

WISy
N N
= , +1
= 3 A{(lm-) bj}L;'H (1 (4] ) bl
weljay
w] + 1\ ™
(l g )t
j N N
= 3 (1““5) Ab; LI+ M A(L—i) by LET!
wf sy weily Y

[y] + 1\~ ol [w] + 1)V .
“p <1-T b[y]+1L[y] (1_- ” ) b[u]+1L[¢j]_l‘

Applying the mean value theorem to f(z) = (1 — 2)", we obtain

(-4 -5

<
Plug in (9) and get’

v
j N
2 (2)s

Wity
VY N
<| > (1.._..) AL LET 4+ = Y by LA
wjy 4 w<FSY
+ By s Lo+ By |"1L[w]
<

5 (1 - i) Aby L
WSy 4

Replace by by Ab;, A%by,...

N+2) max b LY.
TN gy b T

, ARby, etc, Finally, we get

oy N .
> (1m§> RN (1~—§) Arby L

we i<y w<i Sy

(10) + &, (),

where
=1
Byo(t) = (N +2 max  |A% LOTHL)).
W)= (W )g;{w]sjs[yl" iy )
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There exists a constant ¢, independent of ¢ and j, such that

iy, a-itl b Lq+¢+1 ¢
At LT < € max LT 0)
k! (a+id1)/2—1/4
max C
- C“’tj+1_<_rc<i+j+1 (k+ a)! | bl

<O max 16;0}?6“/2""1/4

Gl kL i1

for all 0 < ¢ < p — 1, which implies

< u/2-1/4 )
(11) [@oy (0)] < Cue mas (lelf )
Leibniz’s rule gives
AR A¥ 7t
(12) | j"! - (‘? n a)!cj
; !
[ORaDL Ay
(§ - p+ a)!
-1 ( Y
p-—’i J +!')' . i,
+ZD() Gritayl Al
Using the inequality 1 — T —y < y for y € [0, 1], we obtain
i i i i
o) e ) =
(7 +e)! (74 a)! jta+1 (G+a)ljt+a+l’

which leads to

a( (gi'a>)(<c“'vcji!a>!j+z+l

< aC’,J,j"”'/‘O‘"l forl<k<u.
Both inequalities (12) and (13) imply
PPN MDY (414t
< G ’ e

< /2 AL f—a/2-1 Ny
< Cou(§ 75| A4 + § s lexl)

(13)

This leads to
; N
(14) Z (1-;) A“bjL?*"‘(t)‘

w<iLy
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Y- N
<(B=2) %l e
w<jsy

N
-
S Ou,ﬂ,,c(y )
Y

x[ Z | Aty i/ 314 Z i max  |ep|)iH 1/4]

" i<k
Wiy w<iSy kS itu—1

N
—
< O\'J'}Ma"; (y“““"“)
Y

<[ 30 1t (5D 7 ma e

we sy w<iLy

N
Yy —w
SO,J( )
Oy fh Y

fep |40/2=174 ¥, w2174
x| 3 1avg#4 og Lo /2305

wLisy
It follows from (8), (10), (11), and (14) that

5 (-3 sen

Wiy

Sca',w(y“w) [ Z |A”c 13;:/2 1/4+1og

¥ WISy

o1
s /2114

+ O II[la]x (|c;c}.’c“/2 ]/4)

Let w = m, y = Am, and then take o7 on both sides. Thus we get

({2, (-5 wae})

L e

gaa,“,t(t;i)hfo«;’:({ S (A}

mLjEAm

-1\ B
+Oa'=~,ﬂ( 3 ) 10%*'0ﬁ({§crlzﬂr§(16klk”/2 )

o wi2—1/4
+ C}J,tan({k?ﬁlﬂck‘k )}):

which implies
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. N
({5, (5) e}
m<fEAm
N
o)

- LT /21
+ C’a,“:t( 5 ) log A nhm (%?,}fickm )

lim
—00

Z |A"‘cj|j“/2‘l/4)

rJLAn

e pl2—1/4
+ Cps i ( max |eslk )

for all 4 € N, Hence we have verified the following result.

LEMMA 6. Let g, N € N. If |e;|#/3"2/4 = o(1) as § — oo, then

A({ © ( —fé—)%ﬁ;(t)})‘ sca,p,t(i—}i)]vwx

m<jL<am

lim.
n—+0C

where t & RT,a >0, A > 1, and

T . —1/4
¢u(A) = Im S Ak e
n<fL€An

Proof of Theorem 2. Let ¢,(}X) be defined as in Lemma 6. Then
condition (2) implies limy}; ¢x(N) = 0 for some k& € N. For A > 1, it follows
from Lemmas 5 and 6 that for almost all £ € R,

T [o3(2) - £(5)
A({ S (1-55) wmo)

()’
A=1/ noes m<i<am
Taking limy |y on both sides, we obtain

< Oa,kz,t ';bk ()‘) .
Jm |03 (t) = f(t)] S Caype 1}111165:«()\) =0.

Therefore, oy (¢) — f(t) almost everywhere and hence RS (t) — f(t) almost
everywhere as w — 00,

Adopting the argument before Lemma 5, we obtain

T 1080 - 760
-2 mpe({ g () el
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Combining this with Lemma 6, we conclude that aﬁ(t) — f(t) almost
everywhere. Consequently, R, () — f(¢) almost everywhere. Repeating the
above argument, we see that R7 (1) — f(t) almost everywhere, RS () — f(¢)
almost everywhere, and so on. Finally, we conclude that E?io ey L;‘ ()= f(¥)
almost everywhere.
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