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Continuous linear right inverses for convolution operators
in spaces of real analytic functions

by

MICHAEL LANGENBRUCH (Wuppertal)

Abstract. We determine the convolution operators Tj; := ux on the real analytic
functions in one variable which admit a continuous linear right inverse. The characteriza-
tion is given by meany of a slowly decreasing condition of Fhrenpreis type and a restriction
of hyperbolic type on the location of zeros of the Fourier transform Z(z).

The existence of continuous linear right inverses for convolution opera-
tors Ty, := p* has been studied in many classes of (generalized) functions
on R: The first result for C*°(R) was obtained by Ehrenpreis 5] and the
problem was solved for nonquasianalytic nltradiferentiable functions and ul-
tradistributions by Meise and Vogt [15] and Braun, Meise and Vogt [3]. The
characterization was given through estimates on the location of zeros of the
Fourier transform i of the (ultra)distribution g, similar to that for hyper-
bolic convolution operators (Ehrenpreis [5]}. For convolution operators on
holomorphic functions defined on convex open sets £2 < C the correspond-
ing question was solved in Taylor [25], Schwerdtfeger [24] and Meise [12]
for 2 = C, and in Momm [19, 21, 22| for general convex 2 # C (see also
Korobelnik and Melikhov [8]), again leading to a restriction on the location
of zeros of 7, connected with the angular derivative on the boundary 842 of
the Riemann mapping function for 2.

In the pregsent paper, continuous linear right inverses for convolution
operators on real analytic functions on open or compact intervals will be
studied. Neither necessary conditions nor nontrivial positive examples seem
t0 be known in this case.

Let I C R be an open interval and let A(I) be the space of real ana-
lytic functions on I with its canonical topology. Fix u € A(R)’ and assume
suppu = {0} if I ¢ R. Then p defines a continuous linear convelution
operator

Ty A(I) = A(L),  Tu(f)(z) = {yp, fle —y)).
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We get the following characterization:

THEOREM. Suppose supp i = {0} if I # R. Then T, has a continuous
linear right inverse if and only if there is a function r(z) = o(z) on Ry such
that

() Tzl € 7(|2])  for any z € C with j(z) =0
and for any x € R there is t € C such that
(E) jz —t| <r(z) and [f()| 2 exp(~r(t)).

Under condition (E), convolution operators satisfying (x) are just the
hyperbelic operators in the sense of hyperfunctions, i.e., the convolution
operators admitting hyperfunction elementary solutions E, and E. sup-
ported in [C, 00| (and ]—oo, —C], respectively) for some C > 0 (Kawai [7,
Section 6.2]; condition (E) is condition (S) in [7]).

A condition similar to (*) characterizes the convolution operators ad-
mitting a right inverse on (F)-spaces of nonquasianalytic uitradifferentiable
functions (Meise and Vogt [15]). Condition (#) can be considered as the
generalization of the corresponding condition 4.2.(4) in Braun, Meise and
Vogt [3] to the quasianalytic case w(z) = |z|. Also, (*) can be considered as
the limiting case of the characterization given by Momm [21, Example 4.4]
for convolution operators on holomorphic functions defined on open polyhe-
dral convex sets, if the polyhedral neighbourhoods of I “tend to I”.

Conditions of type (E) were introduced by Ehrenpreis [4] and have been
frequently used to characterize the surjectivity of convolution operators in
many spaces of (generalized) functions. So (E) is also natural in our situa-
tion. (E) is always satisfled if supp p = {0} (see (1.8) below).

Notice that (¥) and (E) are implied by the conditions obtained by Meise
and Vogt [15] and Braun, Meise and Vogt [3]. So any convolution operator
having a right inverse within the classes of functions studied in [15] and [3]
also has a right inverse on the real analytic functions.

The paper is divided into four parts. The first section contains the nec-
essary tools from Fourier theory, functional anslysis and function theory,
and especially a representation of the dual of the kernel of T, as in Meise
[12, 13]. In Section 2 the necessity of (E) is proved by a variant of the cor-
responding proof in Momm [20], while the necessity of () is reduced to the
result of Momum [21]. The sufficiency of () and (E) is proved in Section 3.
The proof is based on the existence of a continuous linear right inverse for
the Cauchy-Riemann operator on sets defined by (*), which is obtained by
an application of the tame splitting theorem of Poppenberg and Vogt [23]
(see Theorem 1.2). In the final section, convolution operators T, on real
analytic functions on compact intervals J are considered (for supp u = {0}).
Again, the convolution operators admitting a continuous linear right inverse
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in this case are characterized by (x). Similarly to the results of Momm [21,
22] the proof relies on the Riemann mapping theorem and the fact that any
continuous linear map between power series spaces of finite type is linear
tame for the canonical systems of seminorms (Vogt [26], Lemma 5.1).

The author wants to thank P. Domaiiski for several interesting discus-
sions on the subject of this paper.

1. Preliminaries. In this section the majn notations used in this paper
are introduced and the necessary tools from functional analysis and function
theory are given. Also, the right inverse problem for convolution operators
are translated (by Fourier transformation) into a left inverse problem for
multiplication operators on certain weighted spaces of entire functions and
a suitable sequence space representation is given for the corresponding quo-
tient spaces.

For an open set U C C let A(U) denote the holomorphic functions on U.
If K is compact in C then

A(K) := limind A(U)
UoK
is the space of holomorphic functions near K. If I C R is an open interval
then
A(l) :=limproj A(J)
JEI
is the space of real analytic functions on I. Here the projective limit is taken
over all compact intervals J contained in I. ‘
For p € A(CY let
Flu)(z) = B(2) 1= (e ™), 25,
be the Fourier transform of .
For a compact convex set K € C let Hy(z) := sup{Im(£z) | ¢ € K} be
the support functional of K.
If 2 is a convex open set in C, then JF is a linear topological isomorphism
from the strong dual A(f2)] onto
Ha = {fe A(C)} 3K & 2: |f(2)] < Cexp(Hy(z)) for any 2 € C}
(Hérmander [6, Section 4.5)). Also, if I < R is an open interval, F defines a
linear topological isomorphism from A(I), onto
Hyw= {f € A(C) | 3J € I ¥n > 1: sup |f(z)) exp(—Hs(2) — |2|/n) < oo}
2E€C

(Hérmander [6, Section 4.5], Meyer [18, Satz 5.9]). M, is an (LF)-space,
namely

Hp o= limind H7,
JgrI
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where the (F)-space
H = {f € A(C) |¥n>1: sggﬁ(z)lexp(—HJ(Z) = 2|/n) < oo}

is via Fourier transformation isomorphic to A(J)y,.

Here and in the following, I (and J) will always denote open (respec-
tively, compact) intervals.,

The results of Sections 3 and 4 rely on the theory of power series spaces
of finite type and linear tame mappings. With values in a Hilbert space,
power series spaces of finite type are defined as follows:

For a sequence oy of positive real numbers tending to oo and a Hilbert
space (E,| |) let

Aol = {(ck) ¢ EM | [(ex)2 = Z lep| 2@/ < o6 for any n > 1}.
ko1

This choice of norms | |, for power series spaces of finite type is fixed for
the remaining part of this paper.

Let (E,| |5} and {F, || ||») be (F)-spaces with fixed increasing systems of
seminorms defining the topology. A linear mapping 1" : (E,| [n) = (F, | |[»)
is called linear fome if there is a > 1 such that for any m» > 1 there is C,
such that

|T(2)ln < Crllan for any z € E.

The spaces (E, | |,,) and (F, || ||,) are called linear tamely isomorphic if there
is a linear isomorphism T" from F onto F such that 7' and 7 are linear
tame. T is then called a linear tame isomorphism. Two seminorm systems
{lln|n>1} and {|| ||n | » = 1} on E are called linear tamely equivalent if
id: (E,| |n) — (E,|| |n) is a linear tame isomorphism.

For J; = [~1,1] the space M’ can also be endowed with the following
system of seminorms:

(1.1) A= [ 1£(2)1 exp(~2un(z)) dz,

where wy, () = (|an Re 2|* + (6, Im 2|*)Y/2 with a, = sinh(1/n) and 6, =
cosh(1/n).

1.1 LEMMA. (H7, [ |lln) is kinear tamely isomorphic to (Ag(k), | |n).
Proof. This has to be proved only for the corresponding sup-norms

(1.2) [ £lln = sup{| £ (2)| exp(—wn(2)) | z € C},

since the systems {| ||n | » > 1} and {||| ||l | » = 1} are linear tamely
equivalent. Let D :={z € C | |2| > 1} and let

AoD) :={f € A(D) | lim f(z) =0}
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be endowed with the norms

9ln == sup{|g(2)] | 2 € Sn = {z € C | || 2 &M/},
Then (Ag(D),| |n) is linear tamely isomorphic to (Ao(k), | |5) by Laurent
series €xpansion.

The mapping ¢(z) := (2 + 1/2)/2 is a biholomorphic mapping from D
onto 0Jy (see Lang [9, Chap. VII, §4, Example 11]) and with v, and 68, as
above we get

P(Sn) = Gy = {z € C| (Rez/8,)* + (Imz/ay)? > 1}.
S0t defines a linear tame isomorphism from (4p(D),! |,) onto
(Ao(CJ1)| |n); where the latter norms are defined by taking suprema
over G,
Now the Fourier transformation, namely the mapping

1 .
&(g)(z) = 5 f gl6le™™*d¢ forzeCandge Ao (CJp)

8G,
defines a linear tame isomorphism of (4g(CJ1),| |a) onto (M7, ]| ||,) (see
Hormander [6, proof of Theorem 4.5.3 for n = 1] and notice that
sup{fe™"*| | £ € 8} = exp(wn(2)) = exp(HLa, (2)).
Notice that for k > n,
(1.3) M7 is dense in My := {F € AC) | |||l < oo}
with respect to {|f |||,

since Ap(CJ1) is dense in Ag(Gy) (use also the Fourier transform & from the
proof of Lemma 1.1).
A sequence

(4) 0= (B,| |n) == (Bl ln) = (G,[ll [[ln) — 0
of (F)-spaces with fixed increasing systems of seminorms defining the topolo-
gies is called linear tamely exact if

C(E ] n) = @) | 1) and @2 (F/(E), || 17) = (Gl [ln)
are linear tame isomorphisms (here || |7 is the quotient seminorm for | ||, )-
The resulty of Section 3 are based on the following splitting theorem of
Poppenberg and Vogl [23]:

1.2. THrROREM. Suppose that the sequence (A) is linear tamely ezact,
and (B,] |,) and (G, ||| ||.) are linear tamely isomorphic to (Hilbert space
valued) power series spaces of finite type. Then the sequence (A) 4s split,
i.e., ¢ has a continuous linear right inverse.

For p € A(R)' let G := conv(supp u). We define the convolution operator
T, on A(I~G) and A(J ~G) by Tu(F)e) i= {yits fle—y)) for f € A(I=G)
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(respectively, for f € A(J — G}). Then
T,:AI-G)— A(I) and T,:A(J-G)— A(J)

are continuous linear operators. Moreover, Fo'T, o F ~1 is the multiplication
operator

M, Hy—Hi-a, M, (f)(2):=j(-2)f(z) forzeC.

By duality and Fourier transformation it is clear that T, : A(l - G) ~ A(I)
has a continuous linear right inverse R: A(I) — A(J - G):

o if and only if M, : H; — H;_¢ has a continuous linear left inverse
L:Hig—Hn

o if and only if M,_H; is a complemented subspace of H;_¢ (if v is a
continuous projection onto M,_Hr, L(f) = «(f)/li(—") is continuous by
the closed graph theorem for (LF)-spaces);

¢ if and only if the sequence

M,_ g
(1.4) 0—Hy — Hy_g —= Hi_g/M,_H; -0
is split, i.e., the quotient map g has a continuous linear right inverse.

The analogous statements hold for the convolution operator T, : A(J —
G} — A(J) and the multiplication operator M, : H’ — R/~ for any
compact interval J.

As a final preparatory step we need a canonical representation for the
quotient in (1.4) if i(—) = F € H1°}. Following the basic papers of Beren-
gtein and Taylor [1, 2| and Meise [12] such representations have been proved
in many situations and we could refer to the corresponding literature after
introducing some necessary notations. For the convenience of the reader,
the main arguments are included. Basically, we need a minimum moduius
theorem (see e.g. Langenbruch and Momm [10, Lemma, 1.11]):

1.3. LEMMA. Let u be subharmonic in |z| < 4D with u(Q) = 0. For each
0<d<D there are C(D/d) and d < v < D with

w() 2 ~C(D/d)sup{u(z) | |z| = 4D}  for any ¢
Let F := fi(~-) € H1%. Then there is a function r on C such that

= T,

(L5) r(z) = r(]2]) = of2)

and such that

(16) |F(2)| <™  onC.

We can assume that

(1.7} | r(2z) < 4r(z) for any z € C.
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Indeed, set o(2) = 245047 *r(252). Then for any & > 0 we get

r(2) < o2) <) elz]27% = 2]z
k>0

for large lz|

by (1.5} and
0(22) =4 " 47Fr(252) < 4g(2).
kol

We now have the following: There is a function R with (1.5) such that
(1.8) for any z € C there Is ¢ € C with |z~ ¢| < R(t) and |F(£)| > e~ (),
To prove this, we assume that F'(0) = 1 and use Lemma 1.3 for n > 1 and
z € Cwith D = (1+1/n)|2|, d = |2| and u = In|F| and obtain, for any
2] < {€] = Tn,p < (14 1/n)l2,
(1.9) 1F(E} 2 exp(~Chr(8]2))) > exp(—64Cur(|2])) > exp(—64C.r(I¢|))
by (1.7). We now choose R with {1.5) such that for some increasing t,,

R(t) = 64C,r(t) for t > t,,

and use (1.9) for £, < 2] < tnya to get (1.8) with R(z) == max{R(|z)), |z|/n}
for tn < |2] < tpya.

We can assume that the functions r in (1.6) and R in (1.8) coincide. Let

S(F,C) = {z€ C||F(2)] < exp(~Cr(2))}
and
Ve :E{zECIF(Z)ZO},

and let {Sy) be the components of S(F, C) such that S N Vi # 0. Fix z;, €
Sk NVF for any k. With C(2) from Lemma 1.3 we get, for C > 4(2C(2)+ 1),
(1.10) Sk C{E |1~ 2| < Br(z)}
Choose 1 for 23 by (1.8) and use Lemma 1.3 for d = |2y, — t| and D = 2d
and u(2) = In{F(ty + z)/F(t)). Then |zp — t| < 7= 7; and
[F(8)] Z exp(—4(2C(2) + 1)r(£))
by (1.5), (1.7) and (1.8). This shows (1.10}. Finally, we have
(1.11) dist (S, N S(F,B5C),05) = exp(~Cir(zg)) for large |2k
with 'y 1= 4(C + 1). To prove this, we take £ € S, N S(F,5C) and 2z € 85,

with |z — £] < 1 and estimate [F(z) — F(¢£)| = jf; F'(t)dt| as usual from
above and below.

for large |zy].

for | — 14} = 7 and large |2

From now on we fix r(z) such that (1.5)-(1.8) hold for r, set C :=
4(2C(2) + 1) as in (1.10) and define S(F,C), Sk and z; as above.
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Let
A™(8k) = {f € A(Sk) | [Ifll% = sup{|f(2)| | z € Sk} < o0}
and
By = A%(S%)/MpA=(S,) with the quotient norm | 4.
Let

K (B): = {(f) e [ Bu| 3/ e Tvn 2 1
sup | il exp(— Hy (s4) = |zl /m) < oo},

KJ(E) = {(f;,) € HEI" ¥n > 1: Sl;p|f;c‘k exp(mﬁ‘](zk) - |zk|/n) < OO}
and
Ka(E): = {(fk) e][B 3K en: sup | Fil exp(—Hre (2x)) < OO}

for 12 C C convex and open. Let
Ok Am(Sk) Rl Ek

be the quotient map and let ¢ be the “restriction operator”
e AC) = [ Bu  olf) = (ex(fls.)).
k
The following lemma is now proved similarly to the corresponding results in
Berenstein and Taylor [1, 2], Meise [12] and Momm [21].
1.4. LeMMA. Let F' € HI% . Then the sequences
(1.12) 0—H HE T &, KI(E) -0,

(1.127) 0 — My 25 Hyp 25 Ki(E) ~ 0,
(1.127) 0—Ha 25 Hy -2+ Kn(E) — 0

are ezact for ¢ (and r and C) defined as above and any open interval I C R,
any compact interval J and any convex open set 2 < C.

P roof. We give the proof for the convenience of the reader, since we need
Lemma 1.4 to prove Lemma 2.4, Let H be any of the spaces HY, Hy or Hg.
The range of My is contained in the kernel of p by definition. On the other
hand, if o(f) = 0 for f € H, then g := f/F is entire. g obviously satisfies
the estimates of W on CS(F,C), hence on 8S(F, ). Now the maximum
principle, (1.10) and (1.7) show that this also holds on S(F,C). So g € H.

To prove the surjectivity of p, we choose ¢, € D(S) such that py = 1
on S; N S(F,5C) and such that

(1.13) [Vior|| < Co exp(Cir(z)).
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This is possible by (1.10). Let I € C be convex and compact. For ([fy]) €
K(E) we can choose gg € A®(S) such that ei{gr) = [fx] and

(L14)  llgelle = sup{[fu(2)] | 2 € Sk} < 2fule < A exp(Hy(21) + R(zp))
for some R(z) with (1.5) and any k. Let

Y= Z(B-ka)gk/F.
Then
(1.15) [ w(2)1? exp(—2H), (2) — 2R(2)) dz < oo

for some radial function R with (L5) (use (1.13), (1.14), (1.10), (1.5)
and (1.7)). We can assume that R is logarithmically convex, hence sub-
harmonic. By Hérmander [6] there is a solution f of ?9—()7) = v also satisfy-
ing (1.15) (with a new R(z)). Then

fi=Y ongy — fF

is entire and also satisfles (1.15) for some R with (1.5). S0 f € H% and
or{fls.) = [fr] for any &, since ,?" is holomorphic near the zeros of F in Sy.
So g is surjective in (1.12)-(1.12").

The exactness of (1.12) is proved in a more general situation by
Meyer [17].

Notice that the mapping ¢ in Lemuma 1.4 is independent of J, I and £2.
This is important for the proof of Lemma 2.4 below.

By Lemma 1.4 and de Wilde’s open mapping theorem (Meise and Vogt
[16, Satz 24.30]) we can (e.g.) identify the quotient H7/MpH7 with K7(E).
Such representations are often referred to as sequence space representations.
The reason is that By is finite-dimensional, since F' has only finitely many
zeros in Sy by (1.10). 8o K’(E) can be considered as a sequence space
(indexed by the zeros of F with multiplicities).

2. Necessity. In this section, I (and J) are always open intervals (re-
spectively, compact intervals) and p € A(R)’ with conv(supp ) =: G.

We will prove that the existence of a continuous linear right inverse for
Ty AL - @) — A(I) implies that u satisfies
(%) Im zf = of|2]) on V), = {z e C|fi(z) =0}
and the following slowly decreasing condition of Ehrenpreis type (Ehren-
preis [4]}: There is a function r(z) defined on C and C' > 0 such that -
(L.5) r(z) = r(jz]) = o(/z]) '
and such that for any = € R with |2| = C there is t € C with
(B) [t —z| < r(z) and |E(E)] > exp(—r(t)).
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Instead of (E}, we could equivalently also use (with Cr(2t) instead of r(t))
(E') |t~ 2| <r(z) and [E(t)] 2 exp(He(t) - r(t).

Since (E) is satisfled also for ¢ > v we can assume that r(z) satisfies (1.7).

The first variant of condition (E) was introduced by Ehrenpreis [4] to
characterize the surjective convolution operators on C*°(RY). Since then
conditions of this type have been frequently used for similar purposes. In
our situation (E) follows by an easy variant of the reasoning of Momm [20]
(see also Meyer [18]), based on the following special case of Momm [20,
Lemma]:

2.1. LEMMA. Fore > 0 let p(z) = e|lm 2| 4 r(|Re z|), where In(1 - |2|) <
r(z) is continuous and increasing on Ry and satisfies (1.5) and (1.7). For
R>0let h:C~ Ry be the continuous function which equals g[Imz| for
|z} > R and is harmonic in 2| < R. Then h is subharmonic and there are
8,C > 0 (independent of R) such that

g6 R~ C < h(0) € max h(z) < Re.
lz| <R

2.2. LEMMA. If T, is surjective, then [ satisfies ().

Proof If 7, is surjective, then T, is open by de Wilde’s open map-
ping theorem (Meise and Vogt [16, Satz 24.30]). So *T, is injective and
M < A(I) is equicontinuous if *T,(M) ¢ A(l — G is equicontinuous.
Since the bounded sets and the equicontinuous sets coincide, by Fourier
transformation we deduce that for any bounded set B ¢ H;_¢ the set
{f € Hr | M,_f € B} is bounded in M; (so far we followed the proof of
Meyer [18, Lemuma 4.13]). We may suppose that

(2.1) {zeR||z|<e}&l for somes > 0.
Choose 0 < ry(z) with (1.5) such that

(2.2) 7i(2)| < exp(Hea(2) + r1(2) — 21n(1 -+ |z|*)),
Let

H={fec A[C)|3C >0:
|f(2)] < Cexp(H_g(z) +r1(2) + ¢|lmz| — 2In(1 + |2]*)%)}.

Then H is a Banach space which is continuously embedded in M r—¢ by (2.1},
So for any bounded set B C H the set {f € Hy | M,_f € BY} is bounded
in Hy, in other words, M : M,_H;NH -+ Hy is continuous. Since H is
complete, we can extend M ;_1 to the closure of M, H; in H. Since My is
an (LF)-space, the factorization theorem of Grothendieck (Meise and Vogt
[16, 24.33]) implies the existence of J & I such that for any m € N there
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are O, = 1 such that for any f € H;,
(2.3) sup s1p |/ (2)| exp(~|z|/m — H;(2) = Cp)
< sup (=2 f(2)| exp(~H_g(z) — ellm 2] — r1(2)).

With & from Lemma 2.1 we can choose »(z) with (1.5) and (1.7) such that
r(z) — 00 as z ~ 0o and

(2.4) ebr(z)/2 2 1§E(Jml/m + Cra)-

For € R we now choose functions f, & H; such that (2.3) fails (for large x)

if on the right hand side only points z with |z -z > r(z)+ 1 are considered.

Using Lemma 2.1 (for B = r(z}) and Hérmander [6, Theorem 4.4.2] as in

the proof of {i)=(ii) of Momm [20, Proposition 1], we get analytic functions

fx such that for suitable A > 0 and any (large) z € R,

(2.8)  |fo(2)] < AL+ |2*)? exp(e|Im ])

(2.6)  |f={2)] < Aexp(4r(2))

and

@7)  1ul@)] 2 expledr(z) - A).

We evaluate (2.3) for fp: fz € My by (2.5) and (2.1). By (2.7) and (2.4) the

left hand side of (2.3) tends to co as £ — oo, while the function on the right

hand side is bounded by A for |z — 2| = r(z)+ 1 (by (2.2) and (2.5)). So we

get for large z, by (2.6),

24 < sup{|A(~2)fa(2)| exp(—H_g(2) = &[lmz| —r1(2)) | |2 — 2| < r(z)+ 1}
< Asup{|B(~2)) exp(4r(2) ~ H_g(2)) | |2 — 2| < r(z) + 1.

So (E’) holds and hence also (E) holds.

for |z — x| > 7(z) +1
for |z — 2| < rlz) +1

1

The next step is a reduction argument of Korobernik and Melikhov [8]
(see also Momm [22, Lemma 8)):

2.3. LEMMA. Suppose V, is infinite. If T, has a continuous linear right
inwverse, then every sequence (zi) C V), of distinet points has a subsequence
(6k) such that (&) = Vi for some F' € HI9 and such that the multiplication
operqtor

Mg 1 Hy—Hy, Mp(f)=Ff forfeHy,

has o continuous linear left inverse.

Proof. (£x) can be chosen such that

F(z) = [](1 — 2/6) € H1OL,

bzl
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Then .
g9(z) = fi(—2)/F(z) e H~
(see Levin [11, Chap. III, Theorem 5]). If L, : H;.¢ — H; is a continuous
linear left inverse for M, _, then
Lp:Hr —Hi,  Lp(f) =Lugf) for feH,,
is a continuous linear left inverse for Mp.

The proof of the necessity of () is now achieved by reduction to the
case of convelution operators on cpen convex sets in €, which was solved
by Momm [21, 22].

24. LemMa. If T, hos a continuous linear right inverse, then
(%) [Im z| = o(|z]) on V,.

Proof. We can assume that 0 € . Suppose that {x) is not true. Then
there is a sequence () C V,,_ of distinct points and § > 0 such that
(2.8) Im 2| > 6|2| for any k € N.

We can assume that [—§,8] C I. Let F be chosen for (z;) by means of
Lemma 2.3 and let (2, := conv(l,il,) € C for I 1= ]—¢,&].
For K @ {2, there are J & I such that

(2.9) §|Im z| < Hy(z)

and 1 < £ such that K C K} := conv(J,il,), i.e.,
(2.10)  Hr(z) < Hy, (2) = max(n|Re z|, H;(2)) = Hy(z) for z € Vp,
by (2.8) and (2.9) if £ < 6%, This implies that

K1(E) = Ko, (E),
where these spaces are defined for F' as explained in the first section (the
definition of 5(F,C) and S, was independent of I and f2!). Since H; is
continuously embedded in Hp, and since p does not depend on I or (2,
the continuous linear right inverse R : K (E) — My for g : Hy — K (E),
existing by assumption and Lemma 1.4, is also a continuous linear right
inverse for ¢ : Hg, — Kq, (E).

Momm [21, Example 4.4] now shows that, for some Cj,

Im 2| < 2¢|Rez| for any z € Vp with |z| > Oy

(the Fourier transformation in Momm [21] is F(f)(iz) in our notation).
Together with (2.8) this implies (for 5 < 6/2) that F' can only have a finite
number of zeros, a contradiction.

3. Sufficiency. It was pointed out by Taylor [25] that the existence of a
continuous linear right inverse for the Cauchy-Riemann operator 8 in suit-
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able weighted spaces implies the existence of interpolation operators (and
also left inverses for multiplication operators) in the corresponding weighted
spaces of entire functions. In the present situation these right inverses ex-
ist only on sets defined by (). This existence result relies on the theory of
power series spaces of finite type and linear tame mappings introduced in
Section 1.

Let § C C be a closed set such that for some r(2) = o(|z]),
(3.1) Imz| <r(lz]) for any z € .
Let
L7(8) = {f e I2.(C) | supp f C § and

= (1P exp(285(2) = 212 m) dz) " < o0 for any n > 1)

and

L' = {f € L{,.(C) | Bf € L7(8),

1£lln 2= (115 + [8F12)*/2 < 00 for any n > 1}. -

3.1. LEMMaA. Suppose S satisfies (3.1) and int(J) # 0. Then the sequence
(3.2) 0=H! 5 L7 2 19(8) =0
is exact and split.

Proof. We can assume that J = [—1,1]. {? is the kernel of 3, since the
sup-norms and the L%-norms define the same space of holomorphic functions.

A second seminorm system defining the topologies of L7 (8) (and L¥) is given
by the norms used on H”’ in Lemma 1.1, i.e., by

HANE = [ 1£(2)]? exp(—2wn(2)) dz

with wn, defined as in (1.1). The & aperator is linear tame by definition for
this seminorm system, and it is surjective by Hérmander’s solution of the
weighted G-problem (Hormander [6]); more precisely, for & > n there is
such that for any f € L7(S) with ||| fl||x < 1 there is g € L7 such that

(3.3) Og=/ and gl <C

by Hérmander’s result. Now H7 is dense in M}, := {f & A(C) | 1]k < oo}
with respect to ||| |||, for k > n by (1.8).

So the Mittag-Leffler argument shows that for k¥ > n there is €' such
that for any 7 € L7(8) with || f]||s < 1 there is g € L7 such that

Jg=F and fgll. <0

So far we have shown that (3.2) is linear tamely exact if M7, L7 and
L7(S) are endowed with the seminorms || ||, Now (M7, || ) is linear
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tamely isomorphic to a power series space of finite type by Lemma 1.1.
Also, on. L7 (§) the seminorm systems {||| [[[» | » = 1} and

1/2
{1fla = ( J 15() exp(-2(8,(2) + lsl/m)) dz) | n 2 1]
are linear tamely equivalent, since we get from (3.1), for suitable C' and C1,
Hy(z)+ |2|/(2Cn) = |Im 2| + [2]/(2Cn)
< Cy+ [2/(Cn) <Cr1+wn(z) foranyze§
and
wen(z) € C1 + [Rezl/n € Hy(z) +z|/n+C1 forany z€ S.
We can assume that

8= U £x +[0,1]%  for some sequence (£x) € Z°.
keN

Then (L?(S),| |) is isomorphic to a (L3([0, 1]*)-valued) power series space
of finite type by a diagonal transformation. So we have checked all assump-
tions of Theorem 1.2 (i.e., the splitting theorem of Poppenberg and Vogt)
and the sequence (3.3) is split.

We now assume that ¢ € A(R) satisfles (E) and
(%) Imz| <r(z) foranyzeV,,

where r(z) satisfies (1.5) and (1.7). We can assume that r(z) in (E} and (x)
are the same. Let F := fi(~). For any z € Vr we can choose t for Rez by
(E) such that

|t —Rez| <r(Rez) and [A(—t)| > exp(—r(t)).
We can assume that also
(3.4) ITi(2)| < exp(Ha(2) +r(z)) forany zeC.

By Lemma 1.3 (i.e., by the minimum modulus theorem) there is C' such that
for any ¢ there is 1 < dy < 2 such that

(3.5) |G(=€) = e C™®)  for any & with |€ ~ £] = 3dyr(z).

Let (Sy) be the components of S(F, ) (defined by r{z) and C from (3.5)
as in Section 1) such that SN Vp # 0 and fix 2z, € Sy N Ve, Then we get by
(¥) and (3.5), with suitable C;,

(3.6) LJS’;c C{zeC||lmz| < Cyr(s)+Ci} = X.
k

Any component § of S(F,Cy) contained in S, for some k satisfies
(3.7) dist(8,0S(F,C)) = exp(—Csr(zy))
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(compare (1.11)). So we can choose g € C°°(C) such that

(3.8) pr=1 on 8N S(F,Ca), suppyy C Sk
and
(3.9) HV Z i exp(—-Cyr(2)) Hm < co.

3

"o prove the existence of a continuous linear right inverse for T, we also
need the following assumption: If I is bounded from above (respectively, from
below), then there is r(z) = o(z|) such that for any z € ¢, (respectively,
for any z € {R_) there is t € C such that

(3.10) [t —z| <r(z) and |G(t)] > exp(He(t) - r(t)).

So fi should grow like its indicator at suitable points near the positive or
negative imaginary half-axis. In fact, it would be sufficient to have this
estimate from below on some half-line in the upper (respectively, in the
lower) half-plane. If supp s =: G = {0}, then (3.10) is satisfied by (1.8). It is
not known if (3.10) is a consequence of the surjectivity of T, : A(J — G) —
A(I) (and eventually of condition ()).

3.2. LEMMA. Suppose that ;1 € A(R)' satisfies (%), (E) and (3.10). Then
T A(I ~ G) — A(I) has a continuous linear right inverse.

Proof. We have to show that M, :Hy — H;_g has a continuous
linear left inverse. With the circles I'; chosen by (3.5), let

Le(f)e) = 5 [ =L

= S L. AN fi
ZW’éPk ﬁ(—f)(Ew—z) df or z € S

and
L(f) = (1= 3 0u) H/A(=) + 3 onLa(F)
k ke

for f € A(CT). Obviously, Ly(f) is holomorphic on Sy, L is linear and
(3.11) LM, f)={.
Let J &I and int(J) # §. If f € H;-g, then
AL(f) e L7(D)
by (3.6)-(3.9).

Let R be a right inverse for & chosen for L7 (£) by Lemma 3.1. Then the
operator

A= ({d—Rod)oL: Hi_g— AC)
i defined, linear and continuous, and it is a left inverse for M,,_ by (3.11).

A(f) satisfies the growth conditions of H; on the real line if f € H;. . This
also holds on the imaginary axis for R o 8 o L(f). Now Lemma 1.3 implies
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the following well known estimate: There is 4 > 0 such that for any z € C
with |z| > A there is 1/4 < d, < 1/2 such that

(3.12) ()] = el for any |€ ~ 2| = dul2|.

This estimate is sufficient for our purposes on the positive (respectively,
negative) imaginary haif-axis if I is unbounded from above (respectively,
from below). On the other hand, Lemma 1.3 and (3.10) imply that there is
B > 0 such that for any ¢ from (3.10) with |¢| > B there is 1 < dy < 2 such
that

(3.13)  |A(-€)| 2 exp(H-g(§) = Br(§)) for any [{ —t| = dyr(2).

The maximum principle, (3.12) and (3.13) now show that also L(f) satisfies
the growth conditions of H; on the imaginary axis. By the Phragmén—
Lindeidf theorem we conclude that A : H;_g — Hy is linear and continuous.
The theorem is proved.

4. Convolution operators in A(J). The aim of this section is to prove
the following theorem, which extends the characterization given in our main
theorem to convolution operators on real analytic functions on compact
intervals.

4.1. TuroreM. Let u € A({0}) and let J be a compact interval. Then
T, : A(J) — A(J) has o continuous linear right inverse if and only if p
satisfies (x).

The sufficiency of {*) has been shown in the proof of Lemma 3.2 already,
since (E) is satisfied for any u € A({0})’ by (1.8).

The necessity of (%) comes for the same reason as the results of Momm
[21] on convolution equations on open convex sets, namely, two natural sys-
tems of bounded sets must fit together in a linear tame way by the theory
of power series spaces of finite type (Vogt [26, Lemma 5.1]).

The argument is as follows: Let again F = fi(—-) and let (5}) be the
components § of S(F,C) with SN Ve £ 0 and fix z; € Sy N Ve, Let

/n) < oo}

T {(er) € CV | Vn 2 L1 [(op)ln o= S&PiCMGXP(*IImZH ~ |2
Let
ler)lo 2= suplea] xp(=sn ()

with wy, as in (1.1). Both norm systems define the topology of A7,
By considering cx € C as a constant function on S, we define a contin-
uous linear injection T': A7 — KY(E). Let T be the continuous operator

T:1 - A TP = (=)
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If R is a right inverse for ¢ : HY — KY(E) from Lemma 1.4 (existing by
assumption), then

RoT (A%, ] ]n) = (M7, i)

is continuous and linear, hence it is linear tame by Vogt [26, Lemma 5.1],
since A” is linear tamely isomorphic to a power series space of finite type
by a diagonal transformation and (H”,]|| |||») is so by Lemma 1.1. Then

T (H7 N ) = (A7, [ln)
is obviously linear tame and therefore the identity mapping
id=ToRoT: (A,][n) = (A%, |Iln)
is linear tame. Thus there is ¢ > 1 such that
[I1(ex)lln € Cnl(ek)lan-
This estimate is applied to the canonical unit vectors e, which gives
(Itm 2] + 26/ (an))? = [ 2z4f? + 2|Tm 225/ (am) + [26]2/ (an)?
< wiz)® + Cl,
< 4Rez|*/n® + (1 + 1/n2)?|lm 2| + C,
< 4zff/n® 4 [Imzi | + G,
since
b, =cosh(l/n) <1+1/n* and ., =sinh(1/n) < 2/n.
This implies for any n,
Im z3| < 2a|zg|/n+ C
So condition () holds and Theorem 4.1 is proved.

for |z} > 1.
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Tauberian theorems for Cesaro summable
double sequences

by

FERENC MORICZ (Szeged)

Abstract. Let (s;3 : 5,k = 0,1,...) be a double sequence of real numbers which
is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under
which (s;;} converges in Pringsheim’s sense. These conditions are satisfied if (sj) 1s
slowly decreasing in certain senses defined in this paper. Among other things we deduce
the following Tauberian theorem of Landan and Hardy type: If (85) is summable (€, 1,1)
to o finite limit and there exist constants ny > 0 and H such that

Jk(sip —8j—1% — Sj—1k + 851 p—1) = —H,
J(sjx —85-14) > —H and klsjy —s5k-1) = ~H
whenever j, k > ny, then (s;;) converges. We always mean convergence in Pringsheim’s

sense. Our method is suitable to obtain analogous Tauberian results for double sequences
of complex numbers or for those in an ordered linear space over the rea! numbers.

1. Preliminary results for single sequences. Let (s : k= 0,1, .. Ny
be a single sequence of real numbers. A classical one-sided Tauberian theo-
rem of Landau [2] asserts that if (sx) is summable (C, 1) to a finite number
s and there exists a constant H such that

(1.1) k(sg —skp—1) > —H (k=1, 2,...),

then (sy) converges to s.

Following Schmidt [5], we say that (sx) is slowly decreasing if for each
£ > 0 there exist n; > 0 and A > 1 such that

(1.2) 8k — 8p, > —€ whenever n; <n <k<n,
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