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Tauberian theorems for Cesaro summable
double sequences
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FERENC MORICZ (Szeged)

Abstract. Let (s;3 : 5,k = 0,1,...) be a double sequence of real numbers which
is summable (C,1,1) to a finite limit. We give necessary and sufficient conditions under
which (s;;} converges in Pringsheim’s sense. These conditions are satisfied if (sj) 1s
slowly decreasing in certain senses defined in this paper. Among other things we deduce
the following Tauberian theorem of Landan and Hardy type: If (85) is summable (€, 1,1)
to o finite limit and there exist constants ny > 0 and H such that

Jk(sip —8j—1% — Sj—1k + 851 p—1) = —H,
J(sjx —85-14) > —H and klsjy —s5k-1) = ~H
whenever j, k > ny, then (s;;) converges. We always mean convergence in Pringsheim’s

sense. Our method is suitable to obtain analogous Tauberian results for double sequences
of complex numbers or for those in an ordered linear space over the rea! numbers.

1. Preliminary results for single sequences. Let (s : k= 0,1, .. Ny
be a single sequence of real numbers. A classical one-sided Tauberian theo-
rem of Landau [2] asserts that if (sx) is summable (C, 1) to a finite number
s and there exists a constant H such that

(1.1) k(sg —skp—1) > —H (k=1, 2,...),

then (sy) converges to s.

Following Schmidt [5], we say that (sx) is slowly decreasing if for each
£ > 0 there exist n; > 0 and A > 1 such that

(1.2) 8k — 8p, > —€ whenever n; <n <k<n,
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bility (,1,1), (€,1,0) and (C,0,1), one-sided Tauberian condition of Landan and Hardy
type, slow decrease, ordered linear space. -
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or equivalently

lim liminf min (s —8.) 2 0.
Al n—oc aghk<An

Clearly, (1.1) is a particular case of (1.2). .
Hardy [1, Theorem 68| proved that if a sequence (s) is summable (C,1)
to a finite number s and (sx) is slowly decreasing, then (s)) converges to s.
In a recent paper [4], we proved the following necessary and sufficient
Tauberian conditions, under which convergence follows from summability

(C,1):
. lim sup lim inf (8 ~ 81 20
(1 3) 1 o p o0 Am ,n<k.25,\ﬁ 3 n
and
1.4 lim sup lim inf (8, — 5K) 2 0,
( ) M1 P -0 T An An<kLn "
where A, := [An] and [] denotes the integral part. Both conditions are

clearly satisfied if (sy) is slowly decreasing.

The symmetric counterparts of conditions (1.3) and (1.4) are those when
“limsup” and “liminf” are interchanged on the left-hand sides, while “2”
is changed for “<".

Next, let (s5z) be a sequence of complex numbers which is summablg
(C,1) to a finite limit. As is known, Landau’s theorem remaing valid if

condition (1.1) is replaced by
klsy —sp—1| < H (k=1,2,...)

(see, e.g., [6, Vol. 1, p. 78]). In [4], we proved that (s)) converges if and only
if one of the following conditions is satisfied:

1
lim inf lim sup 3 z (85 — 8n)| =0,
All — 00 n—™Nn n<k<hn
hmlnfhm sup (8, — 85| = 0.
Tl r 00 T i An(ks'n

In the general setting of an ordered linear space (X, <) over the real
numbers, the notions of convergence and slow decrease were introduced by
Maddox [3]. He extended Hardy’s theorem to this case. In [4], we also proved
a more general Tauberian theorem for ordered spaces.

2. Definitions for double sequences. Our goal is to extend the above
results from single to double sequences. We use the convergence notion in
Pringsheim’s sense. More exactly, we say that a double sequence (s;; : j, k =

icm
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0,1,...) converges to a finite number s if 54 tends to s as both j and & tend
to 0o, independently of one another. (See, e.g., [6, Vol. 2, pp. 302-303).)
We define the means (C,1,1) of (s;) by

11

“’W‘“”““’:W;Zm (m,n=0,1,...).

The means (€, 1,0) and (C,0,1) are defined respectively by

1 n
P I

Dl
i 8in and o, =
mn m + 1 Z Jn n

We say that (s;) is summable (C,1,1) to a finite limit s if the means ol

converge to s. The notion of summability (€,1,0) or (C,0,1) is deﬁned
analogously.

We say that (s;x) is slowly decreasing in sense (1,1) if for each £ > 0
there exist ny; > 0 and X > 1 such that
Sk — 8mk — Sin +3mn 2 —&
whenever ny<m<j< A, andn; <n<k<A,.

An equivalent reformulation is the following;

2.1 lim lim inf min Sik = Sk — 8in + § > 0.
( ) ALL mym—ro0 m<j£/\m,n<k51\n( Fk mk in mn) ft

Obviously, (2.1) implies

2.2 lim lim inf min Smn — 8jn — Smk + S5%) > 0
(2.2) A?1m.,n~—>oa,\m<j5m,An<kgn( mn = Sjn = Smk + 8k} 2 0,

and vice versa.

We say that (s;x) satisfies Landau’s condition in sense (1,1) if there exist
constants n; > 0 and H such that
(2.3) jk‘(sj-;g — 8je1k — 85 k-1 Sj—l,k~1) > —H whenever 34,k >n;.
Clearly, (2.1) is a consequence of (2.3).

Furthermore, we say that (s;z) is slowly decreasing in sense (1,0) if

2.4 lim liminf min (s, — s ~ 0
( ) All m-”“’mm<j5)\m( Fre 'nm) = Uy

and that (s;4) satisfies Landau’s condition in sense (1,0) if there exist n; > 0
and H such that

(2.5) J(84n — 8j-1,n) = —H whenever j,n > ny.

Again, (2.4) i3 an easy consequence of (2.5).

The slowly deereasing property as well as Landau’s condition in sense
{0,1) are defined in an analogous manner. In particular, we say that (s5k)
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satisfies Landau’s condition in sense (0,1) if
(2.6) E{Smk — Smk—1) = —H whenever m, k> ny.

3. Main results. In Sections 3 and 4, we assume that (s;%) is a dou}ale
sequence of real numbers. We will prove the following one-sided Tauberian
thecrems.

THEOREM 1. If (s;%) is summable (C,1,1) to a finite limit s, then the
limnit
(8.1) jj}ciinw 8k =8 erists

if and only if

Am An
1
. lim sup lim inf E E (85k — 8mn) = 0
(32) m;u P e (Am = m)(An — 1) Fe=ml k=nt1

and

1 m n S 0.
3.3) limsup liminf D" (s — s50) 2 0;
(3.3) L manesoo (M — A ) (T — An) j=§+1 W

in which case we necessarily have

A An
(3.4} lim = Z Z (8% — Smn) =0

m,a—00 (Am — m)(An — 1) Je=m-l k=ntl

forall A> 1, and

m,n—+e0 (m — Am (n — }\'n) Z Z (Sm'n. - Sjk) =0

1 m
(3.5) lim )
F=Am A1 k=An+1

forallD< A< 1.
A few comments are appropriate here.

(i) Conditions (3.2) and (3.3) can be reformulated as follows: For all
e >0 and A > 1 there exist ny > 0 and A, 1 <€ A < Ay, such that for all
m,n > n, we have
A An

(3‘6) (/\m - m:; (/\'n - n) Z Z (Sjk - Smn) 2 E

F=m+1 k=en-t1
and possibly with another A, L < A < Ay, we have

1 ™m n .
0 _(mw\;l)(nw\;‘).z 2 (omn = o)

F=ARIHL k=AT 41
> —¢, where A.l:i=[A"'m].
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(if) Conditions (3.2) and (3.3} are satisfied if (s;) is slowly decreasing
in senses (1,1), (1,0) and (0,1). This follows immediately from the repre-
sentation

Am An

1
(3.8) Con =) (s =) Z Z (855 = Smn )

J=metl ke=nt]

1 A An

" D m)(A, — n) Z Z (8 — Smk — 8jn + Smn)

F=m+1 k=n-1

A A
1 m 1 n
+ Am —m Z: (Sjn‘“smn)+ )\n—'n. Z (S'mk —Smn)-
d=ma1 kmert1

Thus, the following two corollaries of Theorem 1 are obvicus.

COROLLARY 1. If (s;z) is summable (C,1,1) fo a finite limit and (si1)
is slowly decreasing in senses (1,1), (1,0) and (0,1), then (s;1) converges.

COROLLARY 2. If (s;1) is summable (C,1,1) to a finite limit and con-
ditions (2.3), (2.5) and (2.6) are satisfied, then (s;1) converges.

PROBLEM 1. We guess that there exists a double sequence (3;5) which
is summable (C',1,1) to a finite limit, conditions (2.3) and (2.5) are satis-
fied, but (2.6) is not satisfied and (s;%) fails to converge. We are unable to
construct such an example.

(iii) The symmetric counterparts of conditions (3.2) and (3.3} are the
following:

X 2
e 1 - =
(3.9) 111:1\1l11nf lim sup G T s w— Z Z (il — 8mn) <0

m,n—oo ] b

and

1 e n
3.10 lim inf lim su Smn — 8i1) < 0,
(3.10) ATl m,%c}i (m—Am)(n~ An) jm-gﬂ k=§+1( mn = $jk) S

Assume that (sjz) is summable (C,1,1) to a finite limit s. Analogously
to Theorem 1, one can prove that condition (3.1) is satisfied if and only
if (3.9) and (3.10) are satisfied. Consequently, if conditions (3.2), (3.3) are
satisfied, then conditions (3.9), (3.10) are also satisfied, and vice versa.

PROBLEM 2. It seems likely that conditions (3.2) and (3.3) are not re-
lated to each other. Nevertheless, we are unable to construct an example
of a double sequence (s;x) which is summable (C,1,1), condition (3.2) is
satisfied, but (3.3) is viclated, and consequently (8;%) fails to converge.
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THEOREM 2. If (s;1) is summable (C, 1,0) o a finite imit s, then s
converges to s if and only if

A

1 m

(3.11) lim sup Hm inf Z {8jn — Smn) 20
AL o0 A =ML S
and

1
— &) = 0
(3.12) IIII;TSHP l&rgini m— a§+1(5rnn, 3.771) = My

in which case we necessarily have

(3.13) lim Z (Sjn S'mn =
M, N—+00 ,m — J m+1
for all A > 1, and
1 ki)
(3.14) R .MAZH(SW ~ 8in) =0

forall 0 < A< 1.

Comments analogous to those made after Theorem 1 ave appropriate
here, as well. We only state the following two corollaries of Theorem 2.

COROLLARY 3. If (s;%) is summable (C,1,0) to o finite limit and (s;5)
is slowly decreasing in sense (1,0), then (s;i) converges.

COROLLARY 4. If (s;1) is summable (C,1,0) to a finite limit and con-
dition (2.5) is satisfied, then (s;) converges.

PROBLEM 3. Again, it seems likely that conditions (3.11) and (3.12) are
not related to each other. But we are unable to present a counterexample
(cf. Problem 2).

The symmetric counterparts of Theorem 2 and Cotollaries 3, 4 are also
valid, when we consider summability (C,0,1) instead of (C,1,0).

4. Proofs of Theorems 1 and 2. We begin with two representations
of the difference sy, — Timp, interesting in themselves.

LEMMA L (i) If A> 1, Ay > m, and Ay > 1, then

A+ D An + 1
(41) Smn — Tmn = ((,\ L ))((An - ,,,3) (aAmvx:An = Tamm ™ Tm, Ay + amn)

Am +1 Ap 1
by (JAm,n C"mn) '|" =
m

(C"m,)\n - 6“'m'n)
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A7’1’.’. ﬂ.
T O ()\ ~n) Z Z Sik ~ Smn).
je=m+l k=n-t1

(i) FO<A<1, A <m, and A\, < n, then

(P + DA + 1)
(m—=Am)(n— A )(Um” = T = Omdn O 2y
|- ’\m +1 An + 1

L— (Fsn ~ Tam,n) + m(amn — CrmAn )

(42) Smn ™ Omp =

1 m 3

e w s w D DRED DI CREEINE

F=Am+lk=A41

Proof. (i) By definition,

Odm,An — TXpayn — T, An + Tmmn

B m n . 1 i
= ZZSJk((’\m-Fl)()\n—I-l) -

(Am + D(n+1)

_ 1 1
it DO+ 1) mF T 1))

Am n
8 ! 1
+3§-MZD ”((/\ + 1) +1) (Am+1)(n+1))

™m An
8q 1 — 1
+§0k§;,1 F\Om + D0 +1) (m+1)()\n+1))

1 Am

An
TP I DO ED > D s

Je=m—41 k=n4-1

_ P =m)(A —mn) Ap — 7
(Am + 1){An +1) T (Am +1)(An +L(n+1 Z Z ik
J“m-l-lk 0
)\m - L) A
(/\m+1)(>\n+1 m+ 1) 2. D
J=0k=n-+1
1 X Am

oy I DD DT

j=m+1 k=nl

Hence
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(Am + 1D (0 +1)
Am — mY(An — 1)

(JAmnAn . O.Amxn — Tm, Ay + ﬂ'mn)

1 A n
=0Omn — (Am*m)(n+1) Z Zsﬂﬂ

j=m+1 k=0

(4.3)

m

1 an
ST & 2

F=0 k=n-+1

1
" (Am = M)}~ ) Z > sk

je=met-1 ks=n+l

In a similar way, we obtain

Am n
Am + 1 1
4.4 n = Omn) = —CTmn + 8k
(4.4) Am_m(a)\m. mn) mn (Amﬁm)(n+1)j=§|-1kz~_mj
and
A
An+1 1 T
4.5 - Tmdn = Oma) = —Omn + —————7 34k
(8) SrmRloman — o) = ot o 2 2

Combining (4.3)—(4.5) yields

(A + (A +1)
(Am —m}(An — 1)

(C’J\m,An — OAmmn — Omdn T Umn)

Am + 1 An +1
+ )‘:—_m(mm,n — Cmn) + m(ﬂ'm,,\n ~ Omn)
A'l‘l'l A’ll\

1
= Tt T 2, 2

j=mtl hent1

which is equivalent to (4.1).
(ii) The proof of (4.2) is similar.

Proof of Theorem 1. Necessity. If (s;;) is summable (C,1,1) to a
finite limit s and (3.1) is satisfied, then

(4.6) lim (8mn — Omn) = 0.

TN+ 00
It is plain that for all A > 1 and n large enough,
A Ant1 2\

RS T W i &

Analogous inequalities hold for A, with m large enough. Consequently, for
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each fixed A > 1, we have

- (A + L, + 1)
(47) nr.,l’ﬂilﬂoo{ ()\'r: - m)()\: _ Tb) (C"'Am,)\n — Oxmn = Cma, + omn)
Am +1 A &1
+/\:"' Tn(o-'\m’n = Iin) + Ap — n(o-m,)«n - O'mn)} = 0.

The same is true for each fixed 0 < A < 1. Now, (3.4) (resp. (3.5)) follows
from (4.1) (resp. (4.2)), (4.6) and (4.7).

Sufficiency. Assume the fulfillment of (3.2) and (3.3). From (3.2) it fol-
lows that there exists a sequence Ag | 1 such that

Adm Atn

1
4.8 lim lim inf z - >
) t=soomn—00 (Agm — m)(Aen ~ 1) jﬂ%}vl k=n+1(-‘3m ) 2.0

where Agn, 1= [mAg] and A i= [nAy] for £,m,n =1,2,... By (4.1),
lim sup(8mp — Fmn)

| { (Aem + D) Apn + 1)
(At — MY (Agn — n)

< lim lim sup
£00 e 00

(Orempen —.--)+...}

Agm Afn
1
-+ lim limsu {-— E E 8k ~ Smn }
{00 m‘n._.,olg ()\gm - m) (Agn — n) Py k:-n.i.l( ik m )

Taking into account that (s;;) is summable {C,1,1) to a finite limit, and
(4.7), (4.8), we hence get

(4.9)  limsup(Smn — Tmn)

T, Tt 00
1 )\tm )\En
< ~ lim liminf Sik— 8 < 0.
L0 T, Mt 0O (/\Em —_ m)(}‘ﬂn — n) j::%u h;n.“( J mn)
From (8.3) it follows that for some sequence A¢ T 1 we have
1 m %
lim lim inf Yo Y (smn =) 20,

ey 00 L, T 00 (m o /\gm)(n ke /\\l’.ﬂ.) G oL hismAem -1

whence, in a similar way, we obtain
(4.10)  liminf (8mn — o)
Tty Thmt 190

"y n

1
> lim liminf (8ran — $j5) = 0.
¢mroo im0 (1 = Agm) (1 = Aen) jmhzgﬂ kn)\zﬁ;-ﬂ i

Combining (4.9) and (4.10) yields (4.6), which is equivalent to (3.1) due
to the fact that (s;4) is summable (C,1,1) to s.
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In order to prove Theorem 2, we start with the following two represen-

tations of the difference spmy, — olo .

LemMMA 2. (i) If A > 1, Ay >m, and n = 0, then

/\m
A "l" 1 10 1
(411) S _03’;’?"1 = ( Am, - 'n.) - _ Z (Sj"’l Smn)
" A -m " )\m m F=m+1
(i) If 0 <A<, Ay <m, and n > 0, then
(4.12)  spp — cr},?n
in
_ Amt1 1
(U Am,n) + Z (Smn - Sjn)-
T AT m—Am Pttt

Proof It is modelled after the proof of the corresponding lemma for
single sequences in [4]. We do not enter inte details.

Proof of Theorem 2. We only sketch it.
Necessity. If (s;) is summable (C,1,0) to a finite limit & and (3.1) is
satisfied, then

(4.13) Hm  (Syun — 020 ) = 0.

M — 00
On the other hand, for each fixed A > 0, A 5 1, we have

) Am + 1 :
lim ( )\m,n JJr?n) =0.

m,n—00 A

Due to representations (4.11) and (4.12), hence (3.13) and (3.14) follow
immediately.

Sufficiency. Assume the fulfillment of (3.11) and (3.12). By (3.11), there
exists a sequence Mg | 1 such that

)\Em
(4.14) Eliirgo}&rginog Mo — ;}-](sm — 8mm) 2 0,
where again Agm := [mAg], for £,m =1,2,... By (4.11),
(4.15)  limsup (8;n — o)
M Tt 0O
A 1
< lim limsup ~ﬂn—ui_——( Memym ™ 10

~00 m nesoe Atm — M

A,
1
<+ lim limsup{ - m Z (8jn — Smn)}
.

£ —_
o8 m,n—o00 Gl

Atm
1
= — 11m lim inf m Z (Sjk —_ Sm-n) S 0,

e MRS A T
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due to (4.14} and the fact that (s,;) is summable (C,1,0) to a finite limit.
In a similar way, for an appropriate sequence Ay T 1, we have

(4.16)  lim mf(rfm,, S o

I, T 06 mn

2 lim liminf ——
Ly o0 MHM—O0 7 —

Z (Smﬂ S_;:n =

j—)\Em‘l'l

Combining (4.15) and (4.16) yields (4.13), which is equivalent to the
convergence of (s;5) to a.

5. Extensions. We formulate Tauberian theorems for sequences of com-
plex numbers, and for those in an ordered linear space. In Theorems 3, 4

and Corollaries 5, 6, we assume that (s;x) is a double sequence of complex
nurmibers,

THEOREM 3. If (s;1) is summable (C,1,1) to a finite limit, then (s;x)
converges if and only if either

'm
lm;llnf lim sup Z z (856 ~ 8mn)| =0
Ty T OO0 (/\m”‘
_1 =l km=n4l
or
limmfhmsup (8ymp, — 8
ATl m’n—roo( n )"n Z Z e jk)

Fem A A1 kA +1
in which case we necessarily have (3.4) for all A > 1, and (3.5) for all
0<A<l.

The proof of Theorem 3 also relies on representations (4.1) and (4.2),
and closely follows that of Theorem. 1. We omit it, but mention the following
interesting

COROLLARY B. If (s5%) is summable (C,1,1) to a finite limit and there
exist constants ny > 0 and H such that

(B1)  Jhlsjr ~ 851k = 8jhe1 + St pt| S H  whenever §,k > my,

{5.2) 840~ 8jw1 0l S H whenever j,n>ny,
and
(5.3) klsmk ~ 8mp-1| < H whenever m, k> ny,

then (s;x) converges.

It is instructive to compare conditions (2.3), (2.5) and (2.6) with (5.1)—
(5.3), respectively.
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THEOREM 4. If (s;) is summable (C,1,0) to a finite limit, then (s;x)
converges if and only if either

Am
lim inf lim sup Z (Sj'n, - Spnn)| = O
ML gmypesos | Am — T jemml
or
1 ™m
liminfhmsup (Sm,n, - Sjn) = 0;
A ™,n— 00 —Am L
Fe=Am L

in which case we necessarily have (3.13) for all A > 1, and (3.14) for all
0<Acl.

The proof of Theorem 4 also relies on representations (4.11) and (4.12),
and closely follows that of Theorem 2. We omit it.

COROLLARY 6. If (s;i) ts summable (C,1,0) to a finite limit and there
exist constants n; > 0 ond H such that condition (5.2) is satisfied, then
(8jk) converges.

Finally, let (X, <) be an ordered linear space over the real numbers, in

which we denote by o the zero element and by p a given nonnegative element.
In the sequel, we assume that (s;5) is a double sequence of elements in X,

We begin with a few definitions. We say that (s;) converges (in Pring-
sheim’s sense) to s relative to p € X if for all £ > 0 there exists ny > 0 such
that

—&p € 8, — 8 S ep  whenever m,n > ny.

We say that (s;) is slowly decreasing in sense (1,1) relative top € X if for
all € > 0 there exist ny > 0 and A > 1 such that

Sjk — Smk — Sjn + Smn = —EP

whenever my <m< i< Apandn <n <k <Ay
and slowly decreasing in sense (1,0) if
Sjn — Smn = —EP Whenever ny <m <7 <Ay and n <n;

and slow decrease in sense (0,1) is defined analogously.

THEOREM 5. If (0mn) converges to 8 € X relative to p € X, then (sjx)

converges to s relative to p if and only ¢f for oll € > 0 and A1 > 1 there
exist nq > 0 and A, L < A < Ay, such thet for all m,n > ny we have

Am An

1
(54) ()\m _m)()\n - TL) }: 2 (3jk h Smn) = —Ep,

j=mt1 fo=n}- 1

icm
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and, possibly with another 1 < X < Ay, we have

™ n
> D (Smn~sj) = —ep,

F=An 1 b=2g 1

(5.5)

1
(m =~ AmM(n — A

where

Al = [\"tm]  and A7t = A1)
in which case the double sequences occurring on the left-hand sides of (5.4)
and (5.5 (for all A > 1) necessarily converge to o relative to p, as m,n — oc.

Cornents analogous to (i) and (iil) made after Theorem 1 are appro-
priate here, as well,

. QOROLLARY 7 If (omn) converges to s € X and (s;)) is slowly decreas-
ing in senses (1,1), (1,0) and (0,1) relative to p € X, then (3;x) converges
to s relative lo p.

We note that Corollary 7 is the extension of a theorem of Maddox [3]
from single to double sequences.

THEOREM 6. If (079,) converges to s € X relative to p € X, then (85)

converges to s relative to p if and only if for all € > 0 and A, > 1 there
extst ny > 0 and A, 1 < A < Ay, such that for all m,n > n; we have

1 &
(3.6) N —m Z (8jn — 8mn) = —ep,
Je=ml
and, possibly with another 1L < A < Ay, we have
1 m
(5.7) m Z (Smin = 8jn) 2 —€p, where ALl :=[A"lm);

F=AR L
in which case the double sequences occurring on the left-hand sides of (5.6)
and (5.7) (for all X > 1) necessarily converge to o relative to p, as m,n — oo.

COROLLARY 8. If (o)) converges to s € X and (s;x) is slowly de-
creasing in sense (1,0) relative to p € X, then (s;,) converges to s relative
to p. :
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When is there a discontinuous homomorphism from a7
by

VOLKER RUNDE (Saarbriicken)

Abstract. Let 4 be an A*-algebra with enveloping C*-algebra C*(A4). We show
that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is
continuous if and only If its restriction to A is coutinuous. We apply this result to the
question in the title,

Introduction. One of the central questions in automatic continuity is
the following: For which Banach algebras A is there a Banach algebra B and
a discontinuous homomorphism 6 : A — B? _

A fundamental result obtained independently by H. G. Dales and J. Es-
terle (see [Dal] for a streamlined exposition) asserts that if X is a locally
compact Hausdorff space and if the continuum hypothesis holds, then there
is a discontinuous homomorphism from Co(X) into a Banach algebra if
and only if X is infinite. Surprisingly, this result cannot be proved within
the confinements of Zermelo-Fraenkel set theory and the axiom of choice
(D-W1]). In this note, we shall not delve into these set theoretic intricacies
and assume throughout that the continuum hypothesis holds.

In [A-D], E. Albrecht and Dales conjectured the following non-commuta-
tive version of the Dales~Esterle theorem:

CONJECTURE A. Let A be a C*-algebra. Then there is a discontinu-
ous homomorphism from A into a Banach algebra if and only if there is
n € N such that A has an infinite number of inequivalent, n-dimensional,
irrecducible “-representations. ' '

Albrecht and Dales were able to prove the “if” part of their conjecture
and to confirm the “only if” part for so-called AW *M-algebras, a class of
C*-algebras containing all commutative C*-algebras and all closed ideals of
AW*-algebras. -
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