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When is there a discontinuous homomorphism from a7
by

VOLKER RUNDE (Saarbriicken)

Abstract. Let 4 be an A*-algebra with enveloping C*-algebra C*(A4). We show
that, under certain conditions, a homomorphism from C*(A) into a Banach algebra is
continuous if and only If its restriction to A is coutinuous. We apply this result to the
question in the title,

Introduction. One of the central questions in automatic continuity is
the following: For which Banach algebras A is there a Banach algebra B and
a discontinuous homomorphism 6 : A — B? _

A fundamental result obtained independently by H. G. Dales and J. Es-
terle (see [Dal] for a streamlined exposition) asserts that if X is a locally
compact Hausdorff space and if the continuum hypothesis holds, then there
is a discontinuous homomorphism from Co(X) into a Banach algebra if
and only if X is infinite. Surprisingly, this result cannot be proved within
the confinements of Zermelo-Fraenkel set theory and the axiom of choice
(D-W1]). In this note, we shall not delve into these set theoretic intricacies
and assume throughout that the continuum hypothesis holds.

In [A-D], E. Albrecht and Dales conjectured the following non-commuta-
tive version of the Dales~Esterle theorem:

CONJECTURE A. Let A be a C*-algebra. Then there is a discontinu-
ous homomorphism from A into a Banach algebra if and only if there is
n € N such that A has an infinite number of inequivalent, n-dimensional,
irrecducible “-representations. ' '

Albrecht and Dales were able to prove the “if” part of their conjecture
and to confirm the “only if” part for so-called AW *M-algebras, a class of
C*-algebras containing all commutative C*-algebras and all closed ideals of
AW*-algebras. -
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Let G be a locally compact, abelian group. Then L'(G) is a Bauach
function algebra whose character space can be identificd with &, the dual
group of G. From the general normability theory of complex algebras ([Dal,
Chapter 5]), it follows that there is a discontinuous homomorphism from
LYG) if and only if G is infinite.

This fact and the Albrecht-Dales conjecture motivate the following con-
jecture, which was stated in [Run].

CoNJECTURE B. Let G be a locally compact group. Then there is a
discontinuous homomorphism from L1(G) into & Banach algebra if and only
if there is n € N such that G has an infinite number of inequivalent, n-
dimensional, irreducible unitary representations.

In [Run}, we verified the “if” part of this conjecture for groups G having
an open subgroup H € [FIA]™ such that [G: H] < .

Let G be a locally compact group. If both Conjecture A and Conjecture
B are correct, then there is a discontinuous homomorphisin fromn LY(G) if
and only if there is one from C*(G). This leads to the following question;
Given a discontinuous homomorphism 6 from C*(G) into a Banach algebra,
is §|L}(@) also discontinuous?

In this note, we investigate this question from a more abstract point of
view: Let A be an A*-algebra with enveloping C"*-algebra C*(A), and let
6 be a discontinuous homomorphism from C*(A) into a Banach algebra. Is
8] A discontinuous? We prove a fairly general theorem which asserts that for
many A*-algebras A a homomorphism 8 from ¢ *(A) into a Banach algebra
is continuous if and only if 44 is continuous. We use this theorem to confirm
the “if” part of Conjecture B for certain groups G. In particular, we obtain
a generalization of [Run, Corollaxy 5.2].

.1. Homomeorphisms from A*-algebras. A (™-norm on a *-algebra
A is an algebra norm | - | on A satisfying

o*al = |a*  (a€ A).

A Banach *-algebra endowed with a C*-norm is called an A"-algebra. The
most prominent examples of A*-algebras are ¢*- and group algebras. Every
A*-algebra A has a largest C*-norm. When writing | - ]ﬁ we &lweiya mean this
largest O"-norm; we denote the original Banach algebra norm on A by |-l
The completion of A with respect to |- | is called the enveloping C*-algebra
of A and denoted by C*(4). In case A = LYG) for a locally compact group
G, we have C*(A4) = C*(Q).

Let A be an A*-algebra. We let Prim, (4) denote the collection of the
kernels of the (topologically) irreducible *-representations of 4; Prim. (A) is
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naturally endowed with the Jacobson topology. In case A is a C*-algebra,
Prim.(A4) can be identified with Prim(A), the space of primitive ideals of A.
Recall that A is said to be

o hermitian if o 4(a) C R for all self-adjoint a € 4,

o *-regular if the map Prim(C*(4)) 3 P — PN A is a homeomorphism
between Prim(C*(A)) and Prim, (A),

o locally regular if there is & dense subset S of the set of self-adjoint
elements of A such that for all a € § the Banach subalgebra of 4 generated
by a is regular,

Remarks. 1. The question whether the map Prim(C*(A4)) 2 P
P A is a homeomorphism seems to have been investigated for the first
time in [B-L-Sch-V] (in the context of group algebras).

2. Local regularity was introduced by B. A. Barnes in [Bar 1]. It implies
*-regularity ([Bar 1, Theorem 4.3]).

Suppose F is a closed subset of Prim,(4). We call F' a sef of synthesis
for A if ker(F)} is the only closed ideal of A whose hull equals F'.

For any subset S of C*(A4) we write §~ for the closure of § in C*(A)
with respect to |- |. If § C A we denote the closure of § with respect to || - ||
by 5%.

LeMMa 1.1. Let A be a hermition, locally regular A*-algebra, and let T
be a {not necessarily closed) ideal of C*(A) whose hull is a set of synthesis
for A. Then (INA)T=I1I"NA

Proof. First, note that I~ N A is || - ||-closed. Further, it follows easily
from the *-regularity of A that I~ and I~ N A have the same hull, say
F. By [H-K-K, Lemma 1.2], there is an ideal J(F) of A whose hull equals
F and which is contained in every ideal of A with this hull. This means
that J(F) ¢ I~ N A, and since F' is a set of synthesis for A, we have
J(F)= = I~ N A. From the construction of J(F) in the proof of [H-K-K,
Lemma 1.2], it is evident that J(F) is contained in the Pedersen ideal P(I ™)
of I, Since by [Ped, Theorem 3.6.1], P(I~) C I, we have

JIEYycPIT)NAcCINACI™ NA.
Taking the closures with respect to || - i|, we obtain

I"NA=JFYT c(InA~™clI™ nA4,
ie. (INA)™=I"NA asclaimed. u

For the main result of this section recall two concepts from automatic
continuity. :



100 V. Runde

Let A and B be Banach algebras, andletf : 4 — B bea homomorphism.,
Then

S(8) := {b € B : there is a sequence {a,}?%, in A
such that a,, ~— 0 and B(an) — b}

is called the separating spoce of 6. It is easy to see that S(9) v a cloged
ideal of the closure of #(4), and obviously, by the closed graph theorem, ¢
is continuous if and only if S(6) = {0}. For a comprohensive account of the
properties of §(f), see the monographs [Dal] und [Sin 2].

Equally important is the continuily ideal of 0, defined as

Z(0) == {a & A: 0(a)S(8) = 8(0)0(u) = {0}}.

It is easy to see that Z(#) is indeed an ideal of A. The continuity ideal is of
special importance if A is a C*-algebra ([Sin 1]). In particular, Z(¢)" has
finite codimension in this case.

THEOREM 1.2. Let A be o hermitian, locally regular A*-algebra with the
following properties:

(I) Buery closed ideal of A with finite codimension hus a bounded left
approzimate identity.

(I) Buery finite subset F of Prim,(4) such that cach I € F has finite
codimension is o set of synthesis for A.

Suppose 6 is a homomorphism from C*(A) into a Banech algebra. Then
the following are equivalent;

(1) 9 is continuous.
(il) 8|4 is continuous.
(iti) Z(8) N A is closed (with respect o i1

Proof. The implications from (i) to (if) and from (ii) to (jii) are trivial.

Suppase I :=Z(0) N A is || - ||-closed, Obvionsly, Z{#)~ is a left Banach
I-module. From Lemma 1.1, we conclude that I has finite codimension in A,
Hence, by assumption, I has a bounded left approximate identity, say {eq}.
Note that s

Im = (Z@)nA)"
=(Z(5)"NA)" Dby Lemma 1.1
= I(6)" by [Bar 1, Theorem 4.2).

As a consequence, {ea} is also a bounded approximate identity for the left
Banach I-module Z(#)~. Let ¢ (Z(8)™) denote the left Banach I-module of
all sequences {2, }22; in Z(6)" such that [a,| —» 0. Tt i easy to see that
{ea} is & bounded approximate identity for co(Z(8)™) ag well. Let {wn}i,
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be a sequence belonging to c(Z(8)~). The module version of Cohen's fac-
torization theorem ([B-D, Theorem 11.10]) then asserts that there is o € I
and a sequence {y,}52, in ()~ such that

Zn =ay, (ne€N) and [y, —0.
Since I C Z(9), this means that
8(zn) = 0{ay,) — 0,

i.e. 8|Z(6)" is continuous, Since Z(#)~ has finite codimension in C*(A), this
implies the continuity of 4. w

Remarks. 1. Assumption (I) of Theorem 1.2 is automatically satisfied
when A is amenable ([Hel, Proposition VII.2.31}). If @ is a locally compact
group, then L*(@) satisfies (I) if and only if G is amenable.

2. We do not know if in Theorem 1.2 the demand that 4 be hermitian and
locally regular cannot be relaxed. Weakening this hypothesis would require
a substitute for [H-K-K, Lemma 1.2] in the proof of Lemma 1.1.

2. Applications to L(G). We now wish to apply Theorem 1.2 to the
special cagse of a group algebra.
Recall the definitions of some classes of locally compact groups (compare
[Pal}):
[Moore]: Moore groups. Groups all of whose irreducible, unitary repre-
sentations are finite-dimensional.

[MAP]: Maximally almost periodic groups. Groups @ such that the f-
nite-dimensional, irreducible unitary representations of (7 sep-
arate its points.

[PG]: Groups with polynomial growth, Groups G such that for each
compact neighborhood K of 1 there is & € N such that

K™ =0(n*) (neN)

{|K™| denoting Haar measure of K™). ‘
(Her]: Hermitian groups. Groups G such that L!(G) is hermitian.

Our first result on homomorphisms from group algebras is a rather
straightforward application of Theorem 1.2.

THEOREM 2,1. Let G € [PG]N [Her], and let 8 be a homomorphism from
(@) into a Banach algebra. Then 8 is continuous if and only if 8|LY{G)
is continuous. In particular, if there is n € N such that G has an infinite
number of inequivalent, n-diménsional, irreducible unitary representations,
then there is a discontinuous homomorphism from L*(G) into a Banach
algebra. :
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Proof. Obviously, L*{(G) is hermitian. Also, by [Bar, Theorem 4.1],
LY(@) is locally regular. Further, L'(() is amenable by [B-L-Sch-V], and
finally, by [Bar 2, Theorem 12], every finite subset F of Prim, (L!(G)) such
that each P € F has finite codimension is a set of synthesis for L'(G). All
in all, L}(G) satisfies the assumptions of Theorem 1.2, This proves the first
part of the present theorem.

Now, suppose there is n € N such that ¢ has an infinite number of in-
equivalent, n-dimensional, irreducible unitary representations, Then C*(G)
has an infinite number of inequivalent, n-dimensional, irreducible *<represen-
tations. By [A-D, Theorem 2.5], there is a discontinuous homomorphism
from C*(G) into a Banach algebra; its restriction to L'(¢¥) is discontinnous
by the first part of the theorem. w

Remarks. 1. The second part of Theorem 2.1 clearly subsumes [Run,
Corollary 5.2].
2. For abelian G, the first part of Theorem 2.1 yields in particular that if

there is a discontinuous homomorphisr from Cg(@) into a Banach algebra,
then there is one from L*(G). This rather special case was already proved
in [Lau], several years before the question whether there are discontinuous
homomeorphisms from commutative C*-algebras was settled.

Concluding, we wish to confirm the “if* part of Conjecture B for another
class of locally compact groups.

If G is a locally compact group, we use Gy to denote the component of
G containing 1. It is easy to see that Gy is a closed, normal subgroup of G.
If G/G4 is compact, we call G almost connected.

THeOREM 2.2. Let G be an almost connected group, and suppose there is
n € N such that G has an infinite number of tnequivalent, n-dimensional,
irreducible unitary representations. Then there is a discontinuous homomonr-
phism from L(G) into a Banach algebra.

Proof. Let NV denote the intersection of the kernels of all n-dimensional,
irreducible unitary representations of . Clearly, N is a closed, normal sub-
group. It is easy to see that the class of almost connected groups is stable
under taking quotients, i.e. G/N is almost connected as well. Moreover,
G/N € [MAP] by the definition of N, By [(G-M, Theorem 2.18], this means
that G/N € [Moore]. By Theorem 2.1 (or alternatively by [Run, Corol-
lary 5.2]) there is & discontinuous homomorphism @ from LY(G/N) into a
Banach algebra. The canonical map # : L(G) — LY(G//N) being open, we
conclude that # o 7 is discontinuons. m

Remarks. 1. Let [X] be any class of locally compact groups such that

(a) [X] is stable under the formation of quotients, and
- (b) [X] N [MAP] & [PG] 1 [Her].
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Then, if G € [X], and if there is » € N such that G has an infinite number
of inequivalent, n-dimensional, irreducible unitary representations, the same
argument as in the proof of Theorem 2.2 shows that there is a discontinuous
homomorphism from L(G).

2. Both Theoremn 2.1 and Theorem 2.2 are certainly not optimal: Let
G be a locally compact group having an infinite number of inequivalent,
]-dimensional, irreducible unitary representations, i.e. characters. Then N
defined as in the proof of Theorem 2.2 is the closed commutator subgroup

of G. Consequently, G/N is abelian with G’TN infinite. Therefore, there is
a discontinuous homomorphism from L*(G/N) and hence one from L*(G).
For 7 € N, let F, denote the free group of r generators. The preceding
argument shows that there is a discontinuous homomorphism from £*(F,)
although F, is neither almost connected, nor, for r > 2, does it belong to
[PG] M [Her].
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