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On integrability in F-spaces
by

MIKHAIL M. POPOV (Kharkov)

Abstract. Some usual and unnsual properties of the Riemann integral for functions 1 :
[@,b] = X where X is an F-space are investigated. In particular, a continuous integrable
Iy-valued function (0 < p < 1) with non-differentiable integral function is constructed. For
some class of quasi-Banach spaces X it is proved that the set of all X-valued functions
with zero derivative is dense in the space of all continuous functions, and for any two
continuous functions z and y there is a sequence of differentiable functions which tends to
x uniformly and for which the sequence of derivatives tends to v uniformly. There is also
constructed a differentiable function z with z'(tg) = zg for given ¢y and g and #'(¢) = 0
for t # #g.

Consider the classical definition of the Riemann integral in the setting
of vector-valued functions z : [a,b] — X where X is an F-space (i.e. a
complete metric linear space with an invariant metric). For a partition
T = {tp}iey (6 = tog < t1 < ... < t, = b) of [a,b] and a collection
A= {201 (Ak € {te—1.1x]) define the Riemann sum

T

ST, 4) = Y a() Aty

k=1

Atg = tp —tp_1.

A function z is said to be integrable on [a,b] if G(T, A) has a limit as

maxy Aty - 0, Le. if there exists an element ff z(t) dt € X such that for
any & > 0 there is a § > 0 such that for each partition I’ of [a,b] with
max, Al < § and each 4,

o4~ | st <

Some usnal properties of the Riemann integral remains true: each inte-
grable function is bounded and the integrability of z on both intervals [a, b]
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206 M. M. Popov

and [b, ¢] implies its integrability on [a, ¢] with
[ b [4
Je@dt= [ ztydt+ [ (t)ds.
13 [ b

Other properties are not so trivial or even false. For example, an F-space
X is locally convex if and only if every continuous function z : la,0] — X is
integrable [4], 5, p. 121].

In Section 1 we prove some further properties of the Riemann integral,

Section 2 is devoted to the construction of an integrable continuous fune-
tion g : [0,1] — I, (0 <p < 1) for which the function

t
2(t) = [ y(s)ds
0
is not differentiable on the right at ¢ = 0.

The main unsolved question here is: does every continuous function y:
[a,b] — X have a primitive? (of course, we assume that X is not locally
convex). The result of Section 2 shows that the usual way of obtaining
primitives fails even for integrable continuous functions. Another way of
getting primitives is by passage to the limit. In Section 3 we show that
this may also fail, by proving that for some class of F-gpaces X and for
any two continuous functions #,y : [a,b] — X there exists a sequence of
differentiable functions {#,}3%.; such that . tends to # and 2/, tends to y
uniformly on [a, ). Finally, we show that there are differentiable functions
with derivatives having points of discontinuity of the first kind.

We denote by ||z|| the F-norm of X, i.e. ||z]| = p(,0) where o is the
metric of X, and £(X) denotes the space of all continuous linear operators
acting in X.

The author is grateful to L. V. Popova for her help in proving Theo-
rem 2.1 and to Professor S. Rolewicz for valuable remarks.

1. Some connections with other properties

PROPOSITION L.1. Let X be an F-space and  : [a,b] — X be an inte-
grable function on [a,b]. Then the set of all Riemann sums of & on [a,b] is
bounded in X' (in particular,  is bounded).

Proof. First we show that z is bounded. Supposing the contrary, let
gn \, 0 and s, € [a,}] be numbers such that lena(sn)|| = 6o > 0 for each n.
Choose 6 > 0 so that for every partition of (@,b] with diameter < § any
corresponding Riemann sum & satisfies

sup [e(8 - [ attyar)| < .

0<e<l
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Let m > (b — a)/6. Decompose g, b] into intervals {I;}7", of length
(b—a)/m. Let ky be an index such that there are infinitely many s,’s in Ii,;
say, {si, tnz1 C Ik, Choose any & € I, (k=1,...,m) and put

b—a
So=—= 3 2(6),  bn e,

ketkg —a
&, = Gy + 2 %a(ss.).
Then
sup [e(®, - [ ott)ar)| < &
0<e<1 " : 3

for each n and hence

b—a
51' 7.’1:(5%)

llee,(si,)| =

< |64, Gol| +

b b
b (81, — [ 2(t) dt) ” + |6 f =) dtH,
23 a

Since each of the terms on the right hand side can be made < &, /3 for n
large enough, the last inequality contradicts the assumption || ,2{s,)|| > 6o.

Thus, z is bounded. Let ey > 0. It is not hard (using the integrability
of z) to choose § > 0 such that for each collection {I;}, of subintervals of
a,b] with disjoint interiors and with maxy u(Iy) < &, and for any e € Ix,

sup “s(gm(nkm(ﬁ)—ki f:c(t)dt)“ < 2—0.

D<e<l 1 =1 Iy

Using boundedness of , choose £, € (0, 1] so that

8045
o2, 0O < 5
0<i<l
Let & be an arbitrary Riemann sum constructed for some partition o =

tg < ... <1, = b. Denote by ng the number of intervals [t;_1, %] of length
> 6. Clearly, ng < (b — a)/é. Now denote by &y the part of & which is
ohtained by summing over intervals of length < &. Then for 0 < £ < &1 we
have

e8] < lleGol| + Y
plltr—1tel) 26

£0 g0d  _eo . eb
<3t 2 2b—a) 2 ™3Goq
[tz tu])> 6

lle(te — te1)z(Er)ll

<egp. m
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Now suppose that y is integrable on [a, b] and g € [a,b]. If X is locally
convex then one can show that

(1) () = [ yls)ds

is a differentiable function at each point of continuity of ¥ and the main
formula of Integral Calculus is valid: 2’ = y. The situation changes when we
pass to non-locally convex spaces. In general, we can only prove countinuity
of x.

Prorosrrion 1.2, Let y : [a,b] — X be integrable on [a,b] (where X
is an F-space). Then the funetion z defined by (1) 48 uniformly continuous
on [a,b].

Proof. By the Cantor theorem it is enough to prove the continuity of
¢ at any point £; € [a,b]. For given £ > 0 choose § > 0 so that for every
partition T = {7,}7_5 of [a,}], a = 70 < ... < 7, = b, with diamT =
maxy (7, — Te—1) < & and for any points §x € [Th—1,7%] (€ = {&x}7=;) the
corresponding Riemann sum G(T', £) satisfies

b
€
He(T,g) f y (1) dt“ <
Suppose that £ € [a,bl and 0 < [t~ #| < 8. Let Ty = {t1 =19 < ... <
Tm = t} be any partition of [t1,%] (of [£,£1] if t < #;) and n; € [riy, 7] for
t=1,...,m (set n = {n;}[Z). Let us supplement the collection {r;}7%,
with points from [a, ] \ [t1,%] so that the new partition T of [a,}] satisfies
diamT < 4. Denote by I the partition of [a,b] which is obtained from T
by removing 7y,..., Tm-1. Since [t — 41| < & and 7; € [t1,t] and the ends
To =11, Tm = t are still in 77, we have diam 7" < §. Choose a collection of
points £ for T' as follows. For the intervals [r;_1, ;] retain the points n; which
have already been chosen and choose the left ends of the remaining intervals
(right ends if ¢ < t;). For the partition 7/ denote by ¢’ the collection of the
left ends of intervals from 7" (right ends if # < ¢;). Then

m

S(T,6) ~ 6(T', &) =Y x(n) Ar; — w(ta)(t —t1).

g=],

On the other hand, since diamT < § and diamT” < §, we have

I8(7.6) - 8¢l < [o(6) - [ 310 |+ f - s

g

< 2 3

= o

icm
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and therefore

| gy(m)An <t -t

_ Choose & > 0 so that if |a| < &, then [joy(t;)|| < e/2. Putting 65 —
min{é, 61}, we find that if |t — ¢;| < 6y then for each partition 17 of {£1,1]
(or [t,£1]) and each n; € [ry_y, 7], where 7; are the points of 77, we have

H iy(m)zln

i1

+ = =g

Since 300 y(n:)A7; is an arbitrary Riemann sum for y on [t1,¢] (or
t, 1]}, we conclude that

llz(t) — 2(t:1)]| - “ f y(s)ds” <e. nm

CoroLLARY 1.3. Let y : [a,b] — X be integrable on [a,b] and {a,}32,
be o numerical sequence satisfying a < any1 < an < ag=>b forn > 1 and
limy, a,, = @. Then the series

0Q  Qpel b
o [ wydt= [ y(t)at
n==1 a, a

converges in X

The following two propositions investigate the connections between con-
vergence of improper integrals and integrability, for the needs of Section 2.
We omit their proofs which are natural and straightforward.

ProOroSITION 1.4, Let X be a non-locally convex F-space. There exists
o continuous function z: [0,1] — X such that

(a) z(0) = 0;
(b) x is integrable on [g,1] for every € € (0,1) and the limit
1
Hm | (t)di

g0
£

ewisis;
(¢) = is not integrable on [0, 1].
PRroPOSITION 1.5. Let X be an F-space and z : [a,b] — X be a bounded

function. Suppose that for some seguence T, ™\, @, T, € [a,b], the following
hold:
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(i) z s integrable on [T}, b] for each n and the limil
b
I=lm [ a(f)dt
T

erists:

(ii) for every e > 0 there is ¢ § > 0 such that for each partition T,, =
LT < e < Ty = b with maxy A, = maxk(Th — Te—1) < & and cach
£ € [Th—1,7k) the Riemann sum

So= Y z(¢e)An
k=1

satisfies the condition
1
||("50 - f z(t) dtH <e.
T

Then x is integrable on [a, b} and
b

[a@ydt=1

@

2. An integrable continuous function having non-differentiable
integral function. We show that if the space I, with 0 < p < 1 embeds
isomorphically in an F-space X then there exists a function y : [0,1] - X
as in the title of this section. Clearly, we may simply assume that X =
lp. However, we do not know whether there exists a continuous integrable
function for which the integral function is non-differentiable at each point
or even almost everywhere,

THEOREM 2.1. There exists a continuous Riemann integrable function
y:{0,1] =1, (0 < p< 1) such that the function

¢
z(t) = [ y(s)ds
0
does not have o right derivative at t = 0.

For the proof of Theorem 2.1 we need some facts.
Denote by {e,}3%,; the standard basis in Iy, Put

Cp = 2'-11', Q== 1, bl == 1/2, y = Qg = 2_(1“1])/2, bz = bg = C2/2,
a’(n—l)n/2+1 = a‘(ﬂ'-l)'ﬂ./Z-l—Z =,.. = an(ﬂ+1)/2 i n—‘(l—P)/Q’

Bin-1)n/241 = bin-tjn/a42 = .- = bafnpr)sa = Cufn.

icm
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Obviously,
o oo
Sh=de =1
k=1 n=1
Now put

=1, ta=1-3 b= b (n>2), dp=0b/2(k>1).

k=1 k=n

LEMMA 2.2, (a) Tiop1 F dot1 St —dy for all b 2 1;
(b) for the function y(t) defined on [ty — di,te +di] by

y(t) =y (1 — |t — ty|/dx)

Per., every Riemann sum Gy on this interval is estimated as

where yy = ai/

16k < 2PdE;
(¢) 2oheydp < oo,

Proof (a} Since ty — tg+1 = by, we have

by
thgr +dpt1 = tpg1 + —-;i < tppr + 5
i~ fit1 by

= fp — 5

bk _

=ty — B =ty dy.
133 3 g dy

211

(b) Let t, — di = 89 < 81 < ... < 8 = I, + di be any partition, and let

& S [81‘-—1,51], Asi = 8; — 8i—1. Then

Gp= 3 yl&)Asi = ye(l ~ & — tel/di) As;
i=1 gzl

= Yk 2(1 — |&i ~ tx|/dx)Asi.

i==l

Then by the definition of yy,

T p
141 = o}/ > (1~ I6s — tal /i) As:
i=1

P
Qg

T
< ‘ Z As;
i=1

since |1 — |¢&; — tx|/di| < 1. Thus, |||l < ar(2dr)? < 274y,
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(c) Note that

n{n-+1)/2 n fi+1)/2
2o %= 2 H
k=1 b=l j=(i—1)i/2-F1

o

I

E'Ms i M:s

i(i4+1)/2 P n
7 2] —
p> (f) -3

~13i/24-1
=] .
gl
This implies the convergence of 3 .-, b% and hence that of 3 7o, db. The
lemma. is proved.

Define y(¢) on [0,1] by putting

y(t) =yl — it —ty|/dy)

for t € [ty — dr,tx +die] N[0,1], k=1,2,..., and y(t) = 0 for ¢t €
Use1 [tx — di, i + di]. Cleazly, y is continuous on [0,1] and ||y(¢)||
each ¢ € [0,1].

1

MI

17\

[0,
<1 for

Lemma 2.3. Let A € (0,1) and0 =79 < 71 < ... < 75 = A be an arbitrary
partition of [0, ], & € [y, ml, i=1,...,5 and Ar; = 73 — 1y_q1. Let ng be
an integer such that A\ < tn,. Then the Riemann sum & = "7, y(&) 4w
of the function y defined above has the following estimate:

IS <@ +4+20) Y .
k=np

Proof Decompose & as

o0
6=6’+6”+ z Gy
k==ng

where &y, is the sum of y(&m)Aﬂ over all ¢ for which ['r, 1,7 C [t — dy,
te+dg], & is the sum over i for which y(&;) = 0, and &” over the remaining 4
(i.e. over those i for which [r;_y, 7] lies partly in T = L_J,ﬂ__ﬂn [th — di, ty +di),
and partly in [0, A]\ ).

We now give an upper estimate of the sums &', 6" and &, (of coursc,
there are only finitely many non-zero elements among &y). Clearly, &' =
0. To estimate ||&"||, denote by I the set of corresponding indices 1. Let

i &€ I Since y(§) # 0, there is a (unique) k = k(i) > ng such that & €
[tk — di, tx + di]. Now put

K={k>ng:(Fel)k=k{i)].

icm
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Suppose that K = {ki,...,k,} where ng < k; < ... < k.. Then
@ e =] d_ve)an| < 3 lutenlany
ig i€l
Z >, luEliany < Z > M litan)y.
=1 el =1 gl
k(i)=k; E{)=hy

Note that if k(i) = k; then
ATy Sty + iy~ thyyy i
since the definitions of ki, ..., k&, and of I and K imply
[T dkj+1 STl ST Ty, dky._l

(ko = mo is understood). Hence the right hand side of (2) is bounded by

r
(3) Z Z Hyk;j”(tkj—l - tkj+1 + dkj_l +dkj+1)p'
j=1 ier
k{i)=k;

Note that for a given k € K there are at most two indices ¢/, i in T
such that k = k(¢") = k(i") since [ry_1, 7] and [rw_q, 7i#] should intersect
(ts — di, tx + di] without being contained in it. Thus, (3) is estimated by

»
<2 Z ”ykj H(tk;f-—l - tkj+1 + dkj—1 -+ dkj+1)p
=1

S 22 a1 (g _y — Bay ”+221[yk Iz, _. "I"?Zliyk 9%, 1

< ZZH%H (tsmn = Laypn )’ + 4 Z dj,

k=mn
kjp1—1 u
—23 {3 bm) 44 Z &
i=1 rﬂ.—~k:,m1
” kit1-1 e
<2y ol D, B4 4
J=1 kg k=g
o o [» =)
S2Y B4y B=T 44 Y &
k=np k=ng k=ng

To estimate G, note that it is a Riemann sum for y on [tg — dg, tx + di]
(the missing terms of the form y(€)(ri—1~(tx —dg)) and y(n)((tx-+di)—7;) are
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considered to be zero since y(€) = y(n) = 0 for & = ¢, — di, and np = t+dy).
Thus, by Lemma 2.2(b),
18kl < 274,

and so

[Sel<Siedsr S a

k=ng k=ngp k=ng

Combining all the above estimates we obtain the assertion of the lemma.

Proof of Theorem 2.1. Now we prove that y satisfies the assump-
tions of Proposition 1.5 with Ty = ¢,, — dy, and [a, ] = [0, 1] (the definition
of ¢ was given before Lemma 2.3).

Since y is piecewise linear on [T}, 1], it is integrable. In order to prove
the existence of the limit in (i), we calculate the integral

Th—1 tretdy
Jovdt= [ gl — |t —t)/dy) e
Ty th—dy
tutdy
=y [ (1—It—tel/dy)dt = dyps,
e —dip

Hence if n > ng then

Tng n o Th_y n
@ Juwwa= 37 [ ywda= Y du
T k=ng4-1 Ty k=mng+4-1

and also

Thg
H f y(t) dtH <
Tn k

k) o0
Y Elmil< Y
+1 k

=Nq =1

This means that f,;n y(t) dt is a Cauchy sequence. Define
1
I= hﬁn Tf y(t) dt.

To prove assumption (ii) of Proposition L5, fix € > 0 and choose ng so
that every Riemann sum for y on [0, Tho) is less than /4 (this is possible
by Lemma 2.3) and so that for each n > g,

Try | .
HT{ ye)dt < 3.
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Now pick 6 > 0 so that every Riemann sum &; for v on [I},,, 1], corre-
sponding to any partition U of [T},,, 1] with diam/ < §, satisfies

1
€
|& - [ v <=
ng
and also that 67 < £/4. Letn >ngandlet S={T, =7 <n < ... <7
= 1} be a partition of [T, 1] with diam 5 < §. Put

m

Go =Y y(&)An

k=1

where Aty = Ty — k-1 and &g € [74—1,7%). Choose j € {1,...,m} so that

Thy € [75-1,7j]. Note that &1 = 37,7 y(éx) A7y is a Riemann sum for y

on [Ty, 1] since we can pick £ = T}y, € [Th,, 77] with y(€) = 0. Finally, &' =
?;;11 y(&r) ATy, is a Riemann sum for y on {0, Ty, ] since y(0) = y(Ty,) = 0.

Thus,

60— [ utyee] < 1+ | Fuo di
n Tn
v an+ & - [ v

<4%=EI.

Suppose that n < ng, i.e. Tp, € Tp. It is easily seen that (since y is
piecewise linear on [Ty, T]) there is a Riemann sum 6" for y on [Ty, Th]
such that

Hence also for n < ng we have

Hsg— fly(t) dt”: H60+6‘_”— fly(t)dt” < Z <e,
Tn

ng

since Gy + &" is a Riemann sum for y on [Ty, 1].
Thus, we have proved that y is integrable on [0,1]. Now we prove that
the function

2(t) = [ (s)ds
0
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does not have a right derivative at 0. By (4),

o(Tay) = H(a{To) — 2(Ta) = S dati
k=ng+1

Hence

T (0(Tao) = 2(O)) | = T lle(Too) | = T |

oo
Z dkyi:”-

LN
By the definition of yy,

H i dlc?JkH = i dillyn

k=(n-1)n/24+1 =(n—1in/2+1
00 =) i{i+1)/2

=277 Z ka)ﬂ =27P Z Z bﬁak

k=(n—1jn/2+1 =1 k={i—1)§/2-+1

. i(i+1)/2 Cp 1 (1—~p)/2 o . . )
— 09— 1 B (1=
9 Z Z ;5(2) -2 pzcﬁ p—(1—-p)/

i=1 k=(i~1)i/2+1 =1

— 2P 3B g0
'L n 'L=ﬂ
0 (1-p)/2 o0
—py (1-p)/2 N oR P
227 (ZCZ) - ap ( Z b’“)
i=n ks=(n—1)n/2+41
_ 1~ -
= 9Pyl p)/%(n 1y /2+1....2 Py (1 p)/2(T(n a2 = dn—1yn/2)"-
Thus,
“T:a]—-» n/fz(x(T(ﬂ—l)-n/g) - .‘13(0))”
> TP a2 P T e — dineiyng2)?
— g-Pp1-r)/2 (1._ _ 30(n-1jn/2 )*’
Ek:(n«-l)n/? by ~ %b(n—l)n/ﬁ

> 9-Pp(i-p)/2 (1 _ 2bn=1)n/2 )"

bin—1yn/2e1 + bin-1)n 242

= 9—ppn{1-p)/2 (1
2en /1

Thus, the absence of the right derivative at 0 for z is proved.

1 -
- .2_5”_‘1/(_”__,}2)1) = 2“%““””2(1 - “-(—-n——
2
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3. On the impossibility of passage to a limit
under the derivation

THEOREM 3.1. Let x,y : [a,b] — L, (0 < p < 1) be continuous. There
exists o sequence T, : [a,b] — L,, n > 1, of functions differentiable on [a, b]
such that @, tends to x uniformly on [a,b] and z!, tends to y uniformly on
[a,].

For the proof we need a few lemmas.

LEMMA 3.2. For each mg € Ly \ {0} (0 < p < 1) there exisis a constant
M < o0 such that for each yo € Ly, there is a T € L(Ly) with Tz = yo and
1Tl £ Mlyol-

Lemma 3.2 can be obtained as a consequence of the results of [1] or 3,
p. 151] (notion of bounded transitivity).

LeMMA 3.3. The set of all functions z : [a,b] — Ly (0 < p < 1) with
zero derivative is dense in the space C{(a,b], Ly) of all continuous funciions
from [a,b] into Ly.

Proof Fixy € C([a,b],L;), ¢ > 0 and o < B. First we show that there
is a constant M such that for each z,y € L, there exists a differentiable
function z : [, 8] —+ L, with the properties

(i) z(a) = ¢, 2(8) = y

(ii) the oscillation of z on [c, 5] satisfies
w(z, o, B]) = sup |lz(t) — 2(s)l| < Mz -y,

t s, 3
(ili) 2'(t) = 0 for each ¢t € [a, 4]
Let u : [a,b] — L, be some non-constant differentiable function with

zero derivative (such a function exists in each F-space with trivial dual [2]).
By continuity of u, there are numbers a1, f1 (a < a1 < By < b) such that

0 < wlu o, f)) £ 1.
Again by continuity of u, there are oz, 82 (1 Sax < B2 < B1) with,
w(u, (o, A1) = [lu(az) - w(Ba)l
and hence
{5) 0 < w(u, [og, Ba]) = [[u(e2) — w(B)]| £ 1.

By Lemma 3.2, for g = u(B2) — u(az), choose M < oo so that for each
Yo € Ly thereis a T' € L({Ly) with T{w(Ba) = u(az)) = yo and ||T|l < M|lyoll-
Putting yo = y — @, choose T' € £(L,) with the above properties. For each
te [052:)62] put
v(t) = T{u(t) —ulaz)) + =
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It is not hard to see that v satisfies the following conditions:
(i) v(az) =z, v(B2) = v,
(iii") ' (¢) = 0 for each t € [ag, fa].
We show
(i) w(v, [oz, B2]) < Mz -y,
Fix any ¢, 5 € (o, fz]. Then
lo(@) — w(s)ll = |1 T (u(t) — u(s))]-
By (5) we obtain |u(t) — u(s)|| € 1, hence
lo(¢) ~ w(s)l| < | TN < Mlly - 2.
Finally, define 2 as the composition of the linear bijection of [a, B] onto
[z, B2] and the function v. Thus, (i'), (ii'), (i) imply (i), (it), (iii) for 2.

Since y is uniformly continuous on [a,d], we can decompose [o, b] into
small intervals o = £y < ... < t, = b so that foreach k= 1,...,n,

£
. . —
ol e ) S
For each k =1,...,n, choose z : [tg1,tk] — Lp 80 that
Q)k Zio(th1) = Y(te-1), 26(te) = y(te),
(i) w2k, [fo—1, te]) < My () — ylte-1)|l,
(iii)k Z;c(t) =0 for each t & [tk—la tk].

Then we piece together the functions z;:
o(t) = zx(t) ft€ [tpor,te], k=1,...,n.
Thus, « is defined on [a, b] and has zero derivative. To estimate ||z — y,
fix any t € [a, b]; say, t € [tg—1,%%]. Then

l2(@) — y(®)l = [l (t) -y

< llaw(®) = 2608 + lly () = vt

< w(zg, [t~y ta]) + w(y, [Bo-1, k)

< Mlly(te) = y(ti-r) || + /(M + 1)

€ g
< Muw(y, [tyer,t S = E.

(¥, [tr— k])+M+1 < M+1(M+1) E. W
' LEMMA 3.4. Let y1 be o continuous piecewise linear funclion from [a, b]
;nﬁo an F-space X. Then y1 is integrable on [a,b] and has a primitive of the
orm

The proof is straightforward.
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Proof of Theorem3.1. Fixe > 0. Since y is uniformly continuous on
[a, b], we can construct a continuous piecewise linear function y1 : [a, b — L,
such that [[y1(t) — y(£)]| < e for each ¢t & [a,B]. Let z be a primitive of
y1 on [a,b]. By Lemma 3.3, choose a differentiable function z, with zero
derivative such that ||z.(£) — 2(2) + 2(t)]| < & for each ¢ € [a, b]. Finally, put
z(t) = 2(t) + 2:(t) for each ¢ € [a,b]. Thus, we obtain |z.(t) — z(2)|| < &
and [z (£) — y(t)|| = |y1(t) ~ y(t)|| < & for each £ € [a,5]. w

Remark. We can prove Theorem 3.1 in a more general case. Recall
that an F-space X is called a quasi-Banach space if there exists an F-norm
on X equivalent to the original one which is p-homogeneous for some p €
(0,1] (i.e. |[A| = |A|?||z])). In this case X is also called a p- Banach space. If
X is a p-Banach space then the space £{X) of all continuous linear operators
T:X — X is also a p-Banach space with respect to the p-norm |T|| =
sup{fiTz|| : ||z| < 1}. A quasi-Banach space X is called boundedly transitive
3, p. 151] if there is a constant M < oo such that if 2,y € X with ||jz| =
[lyll = 1 then there exists a T € L£(X) with To = y and ||T|| < M. But
we need a weaker property of X. We say that a quasi-Banach space X is
pointwise-boundedly transitive if for each zo € X'\ {0} there exists a constant
M < oo such that for each yp € X thereisa T € L(X) with T'zg = 1o and
1T} < M||yo|. Now we are ready to formulate an exact result.

THEOREM 3.1'. Let X be o pointwise-boundedly transitive quasi-Banach
space for which there exists a non-constant function u : [a,b] — X with zero
derivative on [a,b]. Let z,y : [a,b] — X be coniinuous. Then there erists
o sequence Tn, : [, b] — X, n = 1, of functions differentiable on [a,b] such
that z,, tends to x uniformly on [a,b] and z!, tends to y uniformly on [a,b].

The proof is just the same.

THEOREM 3.5. Let X be a quasi-Banach space setisfying the conditions
of Theorem 3.1'. Then there exists o differentiable function z : [a,b — X
with dertvative having a point of discontinuity of the first kind.

Proof. Fix tg € (a,b), zg € X and construct a differentiable function
% : [a,b] — X with z'(tp) = 2o and 2'(t) = 0 for ¢ € [0,D] \ {to}. For this
purpose, choose any sequence 8, ™ { with & < tg — §; and iy + & < b.
Using Lemma 3.3 for the space X instead of Ly, for n = 1,2,... construct
a function

xz . [tO - 6ﬂ7t0 - 511,-|-1] U [tﬂ + 6'n.+1:t0 + 511.] —+ X

having zero derivative such that z(s) = sz for 5 = t9 x4, and s = {g£6n 41,

and

:z:(t) — tzg
nt1

1
)
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for each ¢ with 8,11 < [t —to| £ é,. Finally, define z(fo) = toxo. We show
that ' (t0) = zo. If §pt1 < |At| € by, then
:U(to -+ At) — Cc(to) _ I(tg + At) - (to + At)m’o
At ¢ ’ - At
ProsLEM. Let X be an F-space with trivial dual. Does every continuous
function from [a, b] into X have a primitive? What happens for X = L, with
0<p<1?

1
< . m
o)

Addendum (January 1994). Recently Professor N. J. Kalton sent me his short
preprint “The existence of primitives for continuous functions in quasi-Banach space”
which contains an affirmative answer to the Problem in the setting of quasi-Banach spaces.
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A recurrence theorem for square-integrable martingales
by

GEROLD ALSMEYER (Kiel)

Abstraet. Let (Mrn)p»p be a zero-mean martingale with canonical filtration (Fr)pn»o
and stochastically La-bounded increments ¥3,Y3, ..., which means that B

P([Ya| >t | Fp1) S 1—H@) asforalln>1,¢>0

and some square-infegrable distribution H on [0,c0). Let - Y1 E(Y? | Prne1). It
is the main result of this paper that each such martingale is a.s. convergent on {V < co}
and recurrent on {V = oo}, i.e. P(Mn € [-¢,¢ lo. | ¥ = c0) = 1 for some ¢ > 0.
This generalizes a recent result by Durrett, Kesten and Lawler [4] who consider the case
of only finitely many square-integrable increment distributions. As an application of our
recurrence theorem, we obtain an extension of Blackwell's renewal theorem to a fairly
general class of processes with independent increments and linear positive drift function.

1. Introduction. Let (S,)n>0 be a random walk with i.i.d. zero-mean,

non-vanishing increments Xj, Xs,... Then (S,)n>p is recurrent with re-
currence set B = R in case of non-arithmetic increments, and R = dZ if
X1, Xq,. .. are d-arithmetic for some d > 0. In any case

(1.1) P(|5,|<cio)=1

for all ¢ > 0. Dispensing with the stationarity assumption on X1, X, ...,
(1.1) need no longer be true. Durrett, Kesten and Lawler [4] give an exam-
ple of a random walk (Sy)n>o which converges a.s. to oo, even though its
increments are independent and drawn from a set of merely two zero-mean
digtributions. On the other hand, they also show that (1.1) holds true for suf-
fciently large ¢ provided that X1, Xs, ... are independent and drawn from a
finite et of distributions with mean 0 and finite, positive variances. In fact,
their result is even stated for so-called controlled random walks, that is, gen-
eral martingales with square-integrable conditional increment distributions
drawn from a finite set. Although their proof uses the finiteness of the latter
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